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ABSTRACT

Neural activity is presumed to be correlated with motor behavior almost everywhere in the brain, implying that many different
brain processes are involved in generating a behavioral output. Recent studies in multiple non-human species have observed
pervasive brain-wide neural activity directly related to motor output. However, similar brain-wide investigations in humans with
high-temporal resolution are lacking to date. Here, we recorded invasive data from brain-wide distributed electrodes in humans
and reveal global neural dynamics that are predictive of movement across tasks and across participants. The dynamics are
remarkably stable between participants with substantially varying electrode configurations and to loss of information. We
demonstrate that these global neural dynamics are near brain-wide and present in all participants. Uncovering these global
neural dynamics may allow for a more holistic and network-based perspective on motor-related neural activity.

1 Introduction
Nearly all decisions eventually lead to movement, and consequently most neural processes facilitate a downstream motor output.
While the neural basis and localization of the processes involved remain elusive, it is conceivable that movement sparks the
involvement of many different brain areas. In animals, brain-wide neural activity associated to motor output was observed
in zebrafish1 and mice2–5, where spontaneous behaviors elicited a broadcast of neural activity throughout the dorsal cortex.
Moreover, in a study with 12.000 recorded neurons in mice, nearly all neurons were strongly modulated by any type (instructed
and uninstructed) of movement in mice6. Consequently, the authors conclude that robust movement representations might be
present throughout the brain. In humans, early indications in functional magnetic resonance imaging (fMRI) suggest that similar
brain-wide activity exists7, but it has yet to be demonstrated in humans with high temporal resolution in electrophysiological
recordings.

Capturing the neural substrate of these brain-wide motor-related responses in humans will not only increase our un-
derstanding of motor processes in the brain, but also allow for robust neural decoders. Results from animal studies that
identified global motor-related activity suggest that there indeed exists decodable information throughout the brain. To this end,
stereotactic-electroencephalographic (sEEG), also called depth electrodes, provide a unique opportunity to record from sparse
but brain-wide cortical and subcortical areas, and allow us to shine light on global motor activity and its dynamics8. To date,
motor decoding studies based on sEEG recordings have described the decoding of action (e.g. different hand signs or grasp
types) from a variety of individual cortical and subcortical areas9, including the ventral premotor cortex10, posterior parietal
cortex11–13, somatosensory cortex10, supramarginal gyrus10, 12, 14, middle temporal gyrus and fusiform gyrus14, insula12, 14 and
hippocampus12, 14.

Given that individual areas are predictive of movements, the underlying neural dynamics between areas could increase the
available information and uncover global dynamics. To capture these dynamics into a low-dimensional representation, multiple
techniques are available to reduce the neural space into a single manifold that describe the underlying neural dynamics15–20.
Manifolds are demonstrated to capture robust representations of latent dynamics21 and to be predictive for multiple types
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Figure 1. Conceptual overview of the methods. A - Electrode configurations of 8 participants mapped onto an average brain.
A total of 956 contacts cover 60 unique brain areas. For each participant, data were recorded in 3-second trials in either a move
(red) or rest (blue) trial. B - On the training set, principal components were extracted and each trial was transformed to a lower
dimensional representation. C - Then, the sample covariance matrix was estimated for each trial, and for all trials per class in
the training set, the geometric mean of the covariance matrices was calculated using the kullback-leibler divergence. D - New,
unseen trials from the test set are then classified by findings the geometric class mean with the smallest kullback-leibler
divergence to the new trial sample covariance matrix.

of behaviors22, 23 and subjects24. In the context of decoding motor behavior, these neural manifold approaches have almost
exclusively been used to decode spiking activity recorded in the primary motor cortex, although the methods are well suited for
local field potentials recorded with sEEG electrodes.

Here, we explore motor-related activity from brain-wide distributed recordings. Eight participants implanted with sEEG
electrodes performed trial-based executed and imagined motor tasks. In each 3-second trial, they continuously opened and
closed either their left or right hand. In total, we recorded data from 956 contacts covering 60 unique brain areas. By extracting a
low-dimensional representation, we were able to decode movements across tasks and participants using a Riemannian geometry
approach (Fig. 1, Fig. 2a). We find remarkably stable motor dynamics that are independent of task and participant. Indeed, we
were able to decode movements across participants with non-overlapping electrodes.

2 Results

2.1 Executed and imagined movement can be decoded from low-dimensional neural representations from
distributed brain areas

The Riemannian geometry-based classifier was able to decode executed movements for beta, high-gamma and both frequency
bands and all number of principal components (Fig. 2b, e, h) significantly above chance level. Beta power resulted in higher
decoding performance than high-gamma power (0.83±0.15 area under the curve (auc) vs 0.75±0.17 auc), and including both
frequency bands led to similar performance (0.84±0.14 auc) as beta power. All number of principal components and frequency
inputs resulted in decoding performance significantly above chance (one sample t-test, α = 0.05, FDR corrected). Zooming in
on 10 components for executed movements, based on the optimum further described in section 2.2, most participants reached
above chance decoding, averaging 0.75±0.18, 0.69±0.18, 0.74±0.18 for beta, high-gamma and both, respectively (Fig. 2d,
g, j). Inter-participant variance was high, ranging from chance level decoding to auc > 0.9. This is regularly observed in sEEG
decoding studies due to varying electrode configurations. In the imagined task, the decoder reached above chance decoding as
well for nearly all combinations of principal components and frequency bands (Fig. 2c, f, i), except for the lower number of
principal components (ncomponents <= 10). Compared to executed movement, the performance was lower overall, but similar
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Figure 2. Decoder performance. A - Representation of the average dynamics of movements and rest in the first three
components. Blue (rest) and red (move) boxes illustrate the corresponding covariance matrices. B - Average decoding
performance for executed movements using only beta power. Performance significantly (one sample t-test, α = 0.05, false
discovery rate corrected) above chance (0.5, black dotted line) is shown by filled circled, non-significant scores are shown as
open circles. The annotated number shows the maximum performance. Each colored line is one participant. C - Same as B, but
for imagined movement decoding. D - Decoding performance per participant for executed movements using only beta power
and 10 principal components. Error bars show standard deviation over folds. Red dotted line shows chance level (0.5). E, F, G -
Same as B, C, D, respectively, but with high-gamma power. H, I, J - Same as B, C, D, respectively, but with both beta and
high-gamma power.

between all frequency bands (0.65±0.17, 0.64±0.15 and 0.64±0.18 auc), where beta power and beta & high-gamma power
achieved the highest performance. Given that beta provides the same predictive power as both beta and high-gamma, further
analyses will continue with beta power only.

2.2 The optimal amount of components remains stable under loss of information
To assess whether the extracted low-dimensional representation captures neural dynamics on a stable manifold, we performed an
ablation study that progressively removed information from randomly selected channels. The number of principal components
included strongly determined the baseline performance (Fig. 3a), defined as having access to 100% of the available channels. A
higher baseline performance led to a progressive decrease in stability, as the performance dropped more rapidly for models with
more components when information was removed. Using ncomponents < 10, the performance showed no drop in performance for
up to 50% information loss, whereas ncomponents = 50 led to a drop of 0.15 auc when losing only 10% of information. Losing
even more information reduced the performance to chance level already at 70% of the available channels. The results introduce
a trade-off between decoder performance and stability, suggesting that there exists an optimum. Therefore, we calculated the
mean performance over all percentages of information loss for each number of principal components, and find a smooth curve
with an optimum of ncomponents = 10 (Fig. 3b). Further inspection of the individual scores at the optimum (Fig. 3c) revealed
that the stability found on average holds true for each participant, regardless of their individual performance. While standard
deviation increased slightly as expected, the mean performance remains equal or decreases only slightly under increasing loss
of information.

2.3 Optimal manifold captures similar information across tasks
Next, we explored whether the stable manifold describes task-specific or broader movement-related information. To test this,
we trained our decoder on executed movements and tested it on imagined movements. The decoder reached performance
significantly above chance (one sample t-test, α = 0.05, FDR corrected) between 10 to 25 principal components and 40
components (Fig. 4a, black line). Maximum performance was 0.61± 0.07 auc at 25 components. Interestingly, cross-task
performance is equal to within-task performance (Fig. 4a, black dashed line), as there is no significant difference between the
performances. The performance is similar specifically up to 30, after which both start to diverge with an increasing number of

3/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548122doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.07.548122
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Manifold stability. A - Decoder performance when information is removed from a percentage of channels. Less
components (purple) leads to lower baseline performance that remains stable over information loss, whereas more components
(yellow) leads to higher baseline performance, but instability to information loss. B - Mean performance over different
percentages of information loss, where the optimum is shown at 10 principal components. C - Performance per participant for
the optimal number of components. Regardless of baseline performance, the performance remains relatively stable with
increasing information loss for each participant.

principal components.

2.4 Optimal manifold captures participant invariant global neural dynamics
To further explore the extend of shared information captured by the manifold, we evaluated the decoding performance on
executed movements across participants. We trained our decoder on a source participant and tested it on each remaining
target participant. For 7 out of 8 source participants the decoder was able to decode significantly above chance (one sided
t-test, α = 0.05, FDR corrected, Fig. 4b) on average over all target participants using beta power. For the same analysis using
high-gamma power, 6 out of 8 participants reached significantly above chance decoding, whereas beta + high-gamma resulted
significant decoding in 0 out of 8 participants. While each participant’s electrode configuration was quite varied and distributed
throughout the brain (Fig. 1b, Fig. 4e), nearly all electrode configurations were sufficient to capture similar information across
participants on average. Surprisingly, even source-target pairs with barely overlapping electrode configurations were able to
achieve good decoding results (Fig. 4d, e). A closer inspection of the first principal component showed that the variance is
significantly lower (independent t-test, p = 0.001) during the move trials compared to rest (Fig. 4c). This suggests that the first
component captures beta band desynchronization, as this analysis only uses beta power as input. Inspecting the individual
performance values showed that the source-target pairs are not symmetrical: if one participant is a good source, it does not
seem to predict that one is a good target as well. For example, the circle shown in Fig. 4d, shows a high decoding performance
as target (auc = 0.82), but the reversed direction only shows auc = 0.54. Furthermore, it seems that if a participant has good
target decoding, they are generally a good target for the other participants (Fig. 4d, columns). From a source perspective, this is
not the case, as the scores vary substantially over participants. Quantitatively, it shows that the standard deviation (std) of the
target perspective, that is whether a participant is a good target, is substantially lower than the source perspective: 0.062±0.026
vs 0.096±0.020 (mean ± std of the std). Taken together, our results suggests that decodable global neural dynamics exist and
these dynamics are similar across tasks and across participants.

3 Discussion
We find a stable low-dimensional manifold underlying global motor activity in sEEG recordings that is predictive for both
executed and imagined grasping movements. Any number of components is sufficient to decode executed movement, but we
observe that including more components gradually increases performance (Fig. 2b, e, h). In imagined movements, the decoding
performance is significantly above chance from 15 or more components, and the same gradual increase in performance is
observed (Fig. 2c, f, i). However, the ablation study revealed that including too many components decreased the stability of
the decoder. The more components included, the faster the performance of the decoder decreased under loss of information
(Fig. 3). Thus, it seems like restricting the number of components increases the generalizability of the decoder and prevents it
from fitting dataset specific information. It is challenging to discern whether the increased performance is movement-related
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Figure 4. Cross-task and cross-participant decoding. A - Performance across task, where the decoder is trained on executed
movements and tested on imagined movements. For cross-task (filled line) the filled circles represent scores significantly above
chance (one sample t-test, α = 0.05, FDR corrected), whereas the circles in within tasks (dashed line) shows whether the
scores are significantly different then across task (independent t-test, α = 0.05, FDR corrected). None of the within task
decoding scores are significantly different than across task, although performance starts to increase gradually over cross-task
performance with 30 or more principal components. B - Decoding performance when trained on a source participant and tested
on the remaining target participants. Each color represents a single participant. * shows decoding performance significantly
above chance (one sample t-test, α = 0.05, FDR corrected). n.s. = not significant. C - Distribution of variance in the first
components per class. PC = principal component. D - Performance matrix for each source-target pair. An example
performance is highlighted by the circle and arrow, and shows the E - electrode configurations of the source (p4, red) and target
(p7, pink) participant.
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information only captured by the participant-specific electrode configuration, or that it increasingly overfits on dataset specific
bias or other non-movement related noise.

Our results indicate that there is a performance-stability trade-off (Fig. 3b) with an optimum of 10 components. Decoding
with this optimum reveals a manifold that describes remarkably stable neural dynamics, demonstrating that movement-related
activity is captured in a smaller subspace than the original space. For all participants, this manifold remained stable for up to
50% of missing information, regardless of baseline performance. The stability shows that the information must come from
multiple sources, suggesting that the manifold captured a distributed network throughout the brain. If a single region or process
was mainly driving performance, we would expect that fewer components were required to capture the same information, a
larger standard deviation under loss of information, as well as non-significant decoding performance across participants. The
distributed network captured by the manifold is even predictive across tasks and across participants with non-overlapping
electrode configurations (Fig. 4a, b), demonstrating that it describes generalizable dynamics. In the cross-task analysis (Fig. 4a)
the decrease in generalizability becomes apparent when adding more components. For up to 25 components, the performance is
equal, after which the within-task performance continues to increase and cross-task performance starts to decrease.

Taken together, our results point towards global motor dynamics and are congruent with results reported in other species2–4,
other recording modalities7, and in human sEEG motor decoding studies decoding from individual brain-wide areas9–14. A
key difference with the global motor dynamics reported in animals or fMRI is that those are based on spiking activity or
hemodynamics, while our results are based on local field potentials. Furthermore, Steinmetz et al.2 report that a majority of the
neurons correlated with movement increased their activity, while a significant minority reduced their activity, highlighting the
heterogeneity in responses required to capture the full neural dynamics. In this work, we focused on beta and high-gamma
activity because of their known involvement with motor behavior. We found a significant decrease in variation in the first
components between move and rest that might indicate a beta desynchronization (Fig. 4c). Nonetheless, perhaps a broader
spectral scope could reveal stronger generalizable dynamics.

Our data reveal some contours of the network. First, the network seems to be global, but not ubiquitous: not all participants
reached sufficient decoding performance when using the optimal number of components, (Fig. 2d, g, j) and some participants
seems to be good targets but poor sources for decoding, and vice versa (Fig. 4b, d). Notably, we observe that the lowest
performing participant in executed beta (p7, pink) is the best target for cross-decoding (Fig. 4). Even more, based on the
individual source-target scores, some participants are good targets for all other participants. That means that if a participant is a
good target in a source-target pair, then it is likely that the participant is also a good target for the other participants. However,
this does not seems to be the case from the source perspective. The varying performance between participants and source-target
pairs might also be influenced by non-technical reasons, such as varying engagement, as all our participants are under clinical
treatment during our experiments, and often report tiredness and lack of concentration.

The global motor dynamics may enable us to combine data from multiple participants, regardless of electrode configuration,
improving performance of future decoders as well as reducing calibration times. Although the task is simple, detecting
movements is an essential part for hierarchical decoders25,26. Moreover, movement detection might be useful for adaptive
deep-brain stimulation, where an intended movement might be detected, which subsequently activates stimulation27. More
speculatively, the revealed global neural dynamics might be able to inform about a disease state28, where changes in global
motor dynamics might reflect disease progression. Future work will be required to disentangle the size and content of the neural
dynamics, and explore potential application in new or existing decoders.

4 Conclusion
In summary, we have identified decodable global motor-related neural dynamics that is captured by a low-dimensional manifold.
This manifold is stable to loss of information, and captures information that is similar across tasks and across participants,
even with varying and non-overlapping electrodes. These results are the first demonstration showing decodable brain-wide
movement-related neural activity in human electrophysiological recordings, and builds upon studies showing similar brain-wide
activity across multiple species. These global dynamics might open up the way for a broader scope for all movement-related
neuroscience research, including combining datasets of multiple participants, detection of movements for adaptive stimulation
technologies and potentially disease progressions states.

5 Methods
5.1 Participants
We recorded data from eight epilepsy patients (age 35.8± 14.2, mean ± standard deviation, supplementary table 1). All
participants were undergoing presurgical assessment for resection surgery as treatment for their medication-resistant epilepsy.
Each participant was implanted with a varying amount of sEEG electrodes (supplementary table 1) in varying locations (Fig. 1a,
supplementary Fig. 5). All electrode configurations and trajectories were solely based on clinical need and were not influenced
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in any way by this study. The amount of implanted shafts ranged from 5 to 14 electrodes, containing 42 to 127 recordable
contacts.

5.2 Ethical approval
The institutional review board of Maastricht University and Epilepsy Center Kempenhaeghe (METC 20180451) approved the
experimental protocol. All experiments were in accordance with local guidelines and regulations, and were under supervision
of experienced healthcare staff. All participants participated voluntarily and provided written informed consent.

5.3 Tasks
Our participants performed an executed and imagined continuous grasping task. In the execution task, they were instructed
to open and close their left or right hand continuously, based on visual instruction. Each trial was 3 seconds long, directly
followed by a 3 second rest period (Fig. 1a). Left and right hand were each cued 30 times in pseudorandomized order, resulting
in a total of 60 movement trials and 60 rest trials. After a short break, the participants were instructed to imagine performing the
previous execution task. The imagined task was always after the execution task. In earlier pilots, participants reported to find it
challenging to imagine the movements. Thus, performing the executed task prior to the imagined task provided a fresh memory
of the proprioceptive and kinematic experience of the grasping movement. To further aid the participants, the experimenter
briefly introduced a kinesthetic and visual strategy29. However, the participants were free to use any strategy they felt was most
effective. During the imagery task, the experimenter instructed the participants to remain completely still and visually checked
whether they adhered to the instruction.

5.4 Recordings and electrodes
Participants were implanted with platinum-iridium stereotactic-electroencephalography electrodes (Microdeep intracerebal
electrodes; Dixi Medical, Beçanson, France), containing 5 to 18 contacts (2 mm long, 0.8 mm in diameter and 1.5 mm
intercontact distance). Neural activity was recorded using two stacked Micromed SD LTM amplifiers (Micromed, S.p.A.,
Treviso, Italy). All contacts were referenced to a contact in white matter that visually did not show epileptic activity, determined
by the epileptologist. Neural data and experimental stimuli were synchronized using LabStreamingLayer30. In this work, we
refer to electrodes as the full shaft and contact as each recording location on the shaft. Once data is recorded and digitized, we
then refer each contact as a channel.

5.5 Imaging
We determined the anatomical locations of each contact by coregistering a pre-implantation anatomical T1-weighted MRI
scan and post-implantation CT scan. We first parcellated the MRI using Freesurfer (https://surfer.nmr.mgh.harvard.edu/) and
then labeled the anatomical locations according to the Destrieux atlas31 using img_pipe32. To generate a visualization with all
electrodes from all participants on a single brain (Fig. 1a), we warped all brains and corresponding electrode locations to the
CVS average-35 atlas in MNI512 space. Note that anatomical locations are always determined in native space.

5.6 Electrode coverage
A total of 956 contacts on 82 electrodes covered 59 unique grey matter areas (supplementary Fig. 5). The grey matter areas
covered most were the insular sulcus (n = 25), superior temporal sulcus (n = 23) and middle frontal gyrus (n = 23). Most
non-grey matter areas were in white matter (n = 408) or unknown areas (n = 100). The unknown areas could not be labeled
due to various reasons, such as the atlas not having a label for a specific location or contacts between brain tissues, e.g. in sulci.

technical reasons.

5.7 Data preparation
All our analyses were done using Python 3.9.7 and all code is openly available on (TODO github) First, we removed
channels without relevant information, such as marker channels and disconnected channels. Then we removed the channel
mean and detrended the signal. Lastly, we extracted 3 sets of frequency bands: beta (12−30 hz), high-gamma (55−90 Hz) and
both. For the combination of both frequency bands, we concatenated the channels per frequency. To acquire the instantaneous
power, we band-pass filtered the data using a zero-phase finite impulse response filter and then took the absolute of the hilbert
transform. Finally, we split the continuous data into trials, and combine left and right hand movement trials into a single
move class.

5.8 Decoding
We used a Riemannian classifier, which directly classifies based on the trial covariance matrix33. Riemannian approaches have
shown to be promising for brain-computer interface applications, given its robustness to outliers and applications in surface
EEG34, 35. To decode movement from neural activity, we first split the data into training and test data using 10-fold cross
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validation. On the training data, we z-score the data, fit a principal components analysis (PCA) and transform the data to 3 to
50 principal components (Fig. 1b). Then, for each trial we estimate a regularized (Ledoit and Wolf36) sample covariance matrix
and calculate the geometric mean of all covariance matrices of one class using the symmetric Kullback-Leibler divergence37

(Fig. 1c). To classify trials in the test set, the learned standardization and filters from the PCA are applied to the test data. Then,
for each trial in the test set the same regularized sample covariance matrix is estimated. Next, a prediction is made per trial by
the minimum distance to the learned geometric class means (Fig. 1d). We used the pyRiemann package38 for covariance
estimation and decoding.

5.9 Manifold stability
To assess whether the extracted low-dimensional representation captures neural dynamics on a stable manifold, we performed
an ablation study that removed information from randomly selected channels39. We progressively removed information by
setting all values in randomly selected channels to zero, and then retested our decoder. Baseline performance was defined
at 100% of the available channels. We then removed information from 10%, 20%, 30%, 40% and 50% randomly selected
channels by setting all values to 0. We then applied the previously described decoding (section 5.8) strategy. Within each fold,
we repeated the random channel selection 10 times.

5.10 Cross-task and cross-participant decoding
To decode across tasks, we trained our decoder on the full executed dataset, and tested it on the full imagined dataset. The
standardization, principal components filters and geometric class means were fitted on the executed data, and then applied to
the imagined test data. To decode across participants, the same strategy was used as cross-task decoding, but the training and
test set were a source and a target participant.

5.11 Evaluation
All decoding scores were evaluated by the area under curve the receiver operator characteristic. To compare the decoding
results against chance level (AUC = 0.5), we used a one-sample t-test and applied a False Discovery Rate (Benjamin-Hochberg)
correction to correct for multiple testing in the main results (Fig. 2b, c, e, f, h, i) and Fig. 4a, b).

References
1. Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477, DOI:

10.1038/nature11057 (2012).

2. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement
across the mouse brain. Nature 576, 266–273, DOI: 10.1038/s41586-019-1787-x (2019).

3. Stringer, C. et al. Spontaneous Behaviors Drive Multidimensional, Brain-wide Activity. Science 364, 255, DOI:
10.1126/science.aav7893 (2019).

4. Zatka-Haas, P., Steinmetz, N. A., Carandini, M. & Harris, K. D. Sensory coding and the causal impact of mouse cortex in a
visual decision. eLife 10, e63163, DOI: 10.7554/eLife.63163 (2021).

5. Lab, I. B. et al. A Brain-Wide Map of Neural Activity during Complex Behaviour, DOI: 10.1101/2023.07.04.547681
(2023).

6. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by
richly varied movements. Nat. Neurosci. 22, 1677–1686, DOI: 10.1038/s41593-019-0502-4 (2019).

7. Gonzalez-Castillo, J. et al. Whole-brain, time-locked activation with simple tasks revealed using massive averaging and
model-free analysis. Proc. Natl. Acad. Sci. 109, 5487–5492, DOI: 10.1073/pnas.1121049109 (2012).

8. Herff, C., Krusienski, D. J. & Kubben, P. The Potential of Stereotactic-EEG for Brain-Computer Interfaces: Current
Progress and Future Directions. Front. Neurosci. 14, DOI: 10.3389/fnins.2020.00123 (2020).

9. Rockhill, A. P. et al. Stereo-EEG recordings extend known distributions of canonical movement-related oscillations. J.
Neural Eng. 20, 016007, DOI: 10.1088/1741-2552/acae0a (2023).

10. Wandelt, S. K. et al. Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron
DOI: 10.1016/j.neuron.2022.03.009 (2022).

11. Andersen, R. A., Aflalo, T. & Kellis, S. From thought to action: The brain–machine interface in posterior parietal cortex.
Proc. Natl. Acad. Sci. 116, 26274–26279, DOI: 10.1073/pnas.1902276116 (2019).

12. Li, G. et al. Assessing differential representation of hand movements in multiple domains using stereo-
electroencephalographic recordings. NeuroImage 250, 118969, DOI: 10.1016/j.neuroimage.2022.118969 (2022).

8/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548122doi: bioRxiv preprint 

10.1038/nature11057
10.1038/s41586-019-1787-x
10.1126/science.aav7893
10.7554/eLife.63163
10.1101/2023.07.04.547681
10.1038/s41593-019-0502-4
10.1073/pnas.1121049109
10.3389/fnins.2020.00123
10.1088/1741-2552/acae0a
10.1016/j.neuron.2022.03.009
10.1073/pnas.1902276116
10.1016/j.neuroimage.2022.118969
https://doi.org/10.1101/2023.07.07.548122
http://creativecommons.org/licenses/by-nc-nd/4.0/


13. Wang, M. et al. Enhancing gesture decoding performance using signals from posterior parietal cortex: A stereo-
electroencephalograhy (SEEG) study. J. Neural Eng. 17, 046043, DOI: 10.1088/1741-2552/ab9987 (2020).

14. Breault, M. S. et al. Non-motor Brain Regions in Non-dominant Hemisphere Are Influential in Decoding Movement Speed.
Front. Neurosci. 13, 1–13, DOI: 10.3389/fnins.2019.00715 (2019).

15. Shenoy, K. V. & Kao, J. C. Measurement, manipulation and modeling of brain-wide neural population dynamics. Nat.
Commun. 12, 633, DOI: 10.1038/s41467-020-20371-1 (2021).

16. Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Modeling behaviorally relevant neural
dynamics enabled by preferential subspace identification. Nat. Neurosci. 24, 140–149, DOI: 10.1038/s41593-020-00733-0
(2021).

17. Jiang, X., Saggar, H., Ryu, S. I., Shenoy, K. V. & Kao, J. C. Structure in Neural Activity during Observed and
Executed Movements Is Shared at the Neural Population Level, Not in Single Neurons. Cell Reports 32, 108006, DOI:
10.1016/j.celrep.2020.108006 (2020).

18. Michaels, J. A., Dann, B. & Scherberger, H. Neural Population Dynamics during Reaching Are Better Explained by a
Dynamical System than Representational Tuning. PLOS Comput. Biol. 12, e1005175, DOI: 10.1371/journal.pcbi.1005175
(2016).

19. Perkins, S. M., Cunningham, J. P., Wang, Q. & Churchland, M. M. Simple decoding of behavior from a complicated neural
manifold, DOI: 10.1101/2023.04.05.535396 (2023).

20. Gallego-Carracedo, C., Perich, M. G., Chowdhury, R. H., Miller, L. E. & Gallego, J. Á. Local field potentials reflect cortical
population dynamics in a region-specific and frequency-dependent manner. eLife 11, e73155, DOI: 10.7554/eLife.73155
(2022).

21. Degenhart, A. D. et al. Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural
activity. Nat. Biomed. Eng. 4, 672–685, DOI: 10.1038/s41551-020-0542-9 (2020).

22. Gallego, J. A. et al. Cortical population activity within a preserved neural manifold underlies multiple motor behaviors.
Nat. Commun. 9, 4233, DOI: 10.1038/s41467-018-06560-z (2018).

23. Natraj, N., Silversmith, D. B., Chang, E. F. & Ganguly, K. Compartmentalized dynamics within a common multi-area
mesoscale manifold represent a repertoire of human hand movements. Neuron DOI: 10.1016/j.neuron.2021.10.002 (2021).

24. Melbaum, S. et al. Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject
decoding. Nat. Commun. 13, 7420, DOI: 10.1038/s41467-022-35115-6 (2022).

25. Metzger, S. L. et al. Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal
paralysis. Nat. Commun. 13, 6510, DOI: 10.1038/s41467-022-33611-3 (2022).

26. Moly, A. et al. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a
tetraplegic. J. Neural Eng. 19, 026021, DOI: 10.1088/1741-2552/ac59a0 (2022).

27. Neumann, W.-J., Gilron, R., Little, S. & Tinkhauser, G. Adaptive Deep Brain Stimulation: From Experimental Evidence
Toward Practical Implementation. Mov. Disord. n/a, DOI: 10.1002/mds.29415 (2023).

28. Fiorenzato, E. et al. Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain 142,
2860–2872, DOI: 10.1093/brain/awz192 (2019).

29. Hanakawa, T. Organizing motor imageries. Neurosci. Res. 104, 56–63, DOI: 10.1016/j.neures.2015.11.003 (2016).

30. Kothe, C. Lab Streaming Layer (lsl) (2014).

31. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard
anatomical nomenclature. NeuroImage 53, 1–15, DOI: 10.1016/j.neuroimage.2010.06.010 (2010).

32. Hamilton, L. S., Chang, D. L., Lee, M. B. & Chang, E. F. Semi-automated anatomical labeling and inter-subject
warping of high-density intracranial recording electrodes in electrocorticography. Front. Neuroinformatics 11, DOI:
10.3389/fninf.2017.00062 (2017).

33. Congedo, M., Barachant, A. & Bhatia, R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a
review. Brain-Computer Interfaces 4, 155–174, DOI: 10.1080/2326263X.2017.1297192 (2017).

34. Yger, F., Berar, M. & Lotte, F. Riemannian Approaches in Brain-Computer Interfaces: A Review. IEEE Transactions on
Neural Syst. Rehabil. Eng. 25, 1753–1762, DOI: 10.1109/TNSRE.2016.2627016 (2017).

35. Barachant, A., Bonnet, S., Congedo, M. & Jutten, C. Multiclass Brain–Computer Interface Classification by Riemannian
Geometry. IEEE Transactions on Biomed. Eng. 59, 920–928, DOI: 10.1109/TBME.2011.2172210 (2012).

9/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548122doi: bioRxiv preprint 

10.1088/1741-2552/ab9987
10.3389/fnins.2019.00715
10.1038/s41467-020-20371-1
10.1038/s41593-020-00733-0
10.1016/j.celrep.2020.108006
10.1371/journal.pcbi.1005175
10.1101/2023.04.05.535396
10.7554/eLife.73155
10.1038/s41551-020-0542-9
10.1038/s41467-018-06560-z
10.1016/j.neuron.2021.10.002
10.1038/s41467-022-35115-6
10.1038/s41467-022-33611-3
10.1088/1741-2552/ac59a0
10.1002/mds.29415
10.1093/brain/awz192
10.1016/j.neures.2015.11.003
10.1016/j.neuroimage.2010.06.010
10.3389/fninf.2017.00062
10.1080/2326263X.2017.1297192
10.1109/TNSRE.2016.2627016
10.1109/TBME.2011.2172210
https://doi.org/10.1101/2023.07.07.548122
http://creativecommons.org/licenses/by-nc-nd/4.0/


36. Ledoit, O. & Wolf, M. Honey, I Shrunk the Sample Covariance Matrix. The J. Portfolio Manag. 30, 110–119, DOI:
10.3905/jpm.2004.110 (2004).

37. Chevallier, S., Kalunga, E. K., Barthélemy, Q. & Monacelli, E. Review of Riemannian Distances and Divergences, Applied
to SSVEP-based BCI. Neuroinformatics 19, 93–106, DOI: 10.1007/s12021-020-09473-9 (2021).

38. Barachant, A. et al. pyriemann/pyriemann: v0.3, DOI: 10.5281/zenodo.7547583 (2022).

39. Meyes, R., Lu, M., de Puiseau, C. W. & Meisen, T. Ablation Studies in Artificial Neural Networks, DOI: 10.48550/arXiv.
1901.08644 (2019). 1901.08644.

10/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548122doi: bioRxiv preprint 

10.3905/jpm.2004.110
10.1007/s12021-020-09473-9
10.5281/zenodo.7547583
10.48550/arXiv.1901.08644
10.48550/arXiv.1901.08644
1901.08644
https://doi.org/10.1101/2023.07.07.548122
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Supplementary material

# Age Sex Sample rate Electrodes Contacts
1 16 M 2048 14 127
2 47 M 1024 11 127
3 52 M 1024 6 68
4 22 F 1024 5 54
5 20 F 1024 11 117
6 40 M 1024 12 127
7 55 F 1024 12 127
8 34 M 1024 11 115

Table 1. Participant information. Age = years, Sample rate = Hz
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