New Results
Deep Learning Approaches to the Phylogenetic Placement of Extinct Pollen Morphotypes
View ORCID ProfileMarc-Élie Adaïmé, View ORCID ProfileShu Kong, View ORCID ProfileSurangi W. Punyasena
doi: https://doi.org/10.1101/2023.07.09.545296
Marc-Élie Adaïmé
1Department of Plant Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801
Shu Kong
2Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843
Surangi W. Punyasena
1Department of Plant Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801
Posted July 13, 2023.
Deep Learning Approaches to the Phylogenetic Placement of Extinct Pollen Morphotypes
Marc-Élie Adaïmé, Shu Kong, Surangi W. Punyasena
bioRxiv 2023.07.09.545296; doi: https://doi.org/10.1101/2023.07.09.545296
Subject Area
Subject Areas
- Biochemistry (13386)
- Bioengineering (10199)
- Bioinformatics (32595)
- Biophysics (16786)
- Cancer Biology (13866)
- Cell Biology (19694)
- Clinical Trials (138)
- Developmental Biology (10641)
- Ecology (15747)
- Epidemiology (2067)
- Evolutionary Biology (20057)
- Genetics (13246)
- Genomics (18384)
- Immunology (13483)
- Microbiology (31572)
- Molecular Biology (13165)
- Neuroscience (68770)
- Paleontology (510)
- Pathology (2133)
- Pharmacology and Toxicology (3682)
- Physiology (5741)
- Plant Biology (11794)
- Synthetic Biology (3311)
- Systems Biology (8044)
- Zoology (1819)