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Abstract 
RNA-binding proteins play a crucial role in regulating RNA processing, yet our understanding 
of their interactions with coding and non-coding RNAs remains limited. Experimental studies 
are typically restricted to a small number of cell lines and a limited set of RNA-binding 
proteins (RBPs). Although computational methods based on sequence and structure can 
predict protein-RNA interactions accurately, they often lack the ability to consider cell-type-
specific gene expression and the broader context of gene regulatory networks (GRNs).  
 
In the present study, we assess the performance of several GRN inference algorithms in 
predicting protein-RNA interactions from single-cell transcriptomic data, and we propose a 
pipeline, called scRAPID (single-cell transcriptomic-based RnA Protein Interaction 
Detection), that integrates these methods with the catRAPID algorithm, which can identify 
direct physical interactions between RBPs and RNA molecules. 
 
Our approach demonstrates that RBP-RNA interactions can be inferred from single-cell 
transcriptomic data, with performances comparable or superior to those achieved for the 
well-established task of inferring transcription factor-target interactions. Notably, the 
incorporation of catRAPID significantly enhances the accuracy of identifying interactions, 
particularly with long non-coding RNAs, and enables the identification of hub RBPs and hub 
RNAs. Additionally, we show that interactions between RBPs can be detected based on their 
inferred RNA targets.  
 
We have made the software freely available at https://github.com/tartaglialabIIT/scRAPID. 
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Introduction 
 
RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene 
expression (1), being involved in several aspects of RNA processing, including 
polyadenylation, splicing, capping and cleavage. They bind both coding and non-coding 
RNAs through RNA-binding domains, although several unconventional modes through which 
RBPs recognize their targets have been recently characterized (2). Recent advances in 
high-throughput experimental techniques, such as enhanced Crosslinking 
Immunoprecipitation (eCLIP) (3), provided a large catalog of known interactions of RNA with 
RBPs (4). However, current knowledge based on CLIP-Seq data is limited due to two main 
reasons: i) the experiments were performed in few cell lines, but emerging evidence 
indicates that RBP-RNA interactions occur specifically in distinct cell types and at 
determined time points (5, 6); ii) despite CLIP-Seq data are available for hundreds of RBPs, 
thousands of them are known at present and their list is continuously expanded in multiple 
species (2, 7). Moreover, the detection efficiency of CLIP-based techniques has several 
limitations, both in terms of sensitivity (e.g., low-abundance transcripts could be difficult to 
detect due to low crosslinking efficiency), specificity (8, 9) and reproducibility (10). 

In parallel, several computational approaches, trained on the available experimental data, 
have been developed for the prediction of protein-RNA interactions (11–13). We previously 
developed the catRAPID method, which combines information from the secondary structure, 
hydrogen bonding and van der Waals contributions to estimate the interaction propensity of 
protein-RNA pairs with an accuracy of 78% or higher (14, 15). The interaction propensity 
calculated with catRAPID correlates with the experimental binding affinities (11, 16, 17) and 
was successfully exploited to identify the binding partners of non-coding transcripts such as 
Xist (15), HOTAIR (18), HOTAIRM1 (19) and SAMMSON (20), as well as the interactomes 
of RNA genomes (21).  

The identification of common targets of RBPs holds significant importance, especially 
considering the involvement of specific RNAs such as Xist (22) and Neat1 (23) in promoting 
the formation of liquid-liquid phase-separated organelles. RBPs have been found to 
assemble in such organelles, including stress granules, which play a crucial role in 
regulating gene expression (24–26). In some cases, aberrant macromolecular assembly and 
dysregulation of these organelles have been associated with neurodegenerative disease 
(27). However, the impact of these changes in interaction networks on aberrant 
macromolecular assembly is still an unexplored area of research. 

In the last decade, single-cell RNA-sequencing (scRNA-seq) provided an unprecedented 
resolution of the cell type composition and transcriptional landscape of many organs and 
tissues in different organisms, leading to global atlas projects such as the Human Cell Atlas 
(28, 29) and the Mouse Cell Atlas (30). Beyond the identification of new cell types and 
subtypes, statistical and machine-learning methods for the inference of Gene Regulatory 
Networks (GRNs) from scRNA-seq data have been developed, with the goal of identifying 
the complex regulatory interactions between transcription factors (TFs) and their targets (31, 
32).  
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Despite the centrality of RBPs in the cellular regulatory machinery, transcriptome-wide 
experimental identification of RBP targets at single-cell resolution is still in its infancy (6). 
Notably, the interaction propensity of an RBP with its target RNA is associated with a 
correlation between their expression levels, as shown by computational analyses of RBP-
RNA interactions and bulk RNA-seq data (33), and RNA and protein expression levels are 
highly correlated for RBPs (34, 35). Furthermore, recent work has shown that it is possible to 
identify RBP regulators through the integration of scRNA-seq data and RNA-binding motif 
information (36).  

In this study, we conducted a systematic evaluation of GRN inference methods for 
accurately predicting protein-RNA interactions using single-cell transcriptomic data. We 
propose a pipeline, called scRAPID, which integrates these methods with catRAPID to 
enhance the inference performance. To assess their behavior in comparison to the classical 
task of TF-target inference, we focused on two cell lines (HepG2 and K562) with publicly 
available Chromatin Immunoprecipitation and sequencing (ChIP-seq), enhanced 
Crosslinking and Immunoprecipitation (eCLIP), bulk RNA-seq, and scRNA-seq data. 

Initially, we demonstrated that scRNA-seq data can be effectively used to infer protein-RNA 
interactions, exhibiting performances comparable to or even surpassing those achieved for 
TF-target inference. Subsequently, we improved the performance by employing catRAPID 
predictions (14, 15) to filter the returned GRNs from each method. Leveraging RNA-seq data 
obtained from experiments involving the knockdown of RNA-binding proteins (RBPs), 
specifically pooled short-hairpin RNA sequencing (shRNA RNA-seq), we demonstrated the 
efficacy of catRAPID in filtering out indirect interactions. 

Furthermore, we assessed the performance of the methods in predicting interactions 
between RBPs and long non-coding RNAs (lncRNAs). Despite the limited availability of 
experimental data for RBP-lncRNA interactions compared to mRNA interactions, we 
consistently achieved superior performance in inferring RBP-lncRNA interactions, 
particularly with scRNA-seq datasets obtained through the latest full-length sequencing 
protocols such as STORM-seq (37) and Smart-seq3 (38). 

Additionally, we evaluated the ability of the inference methods to identify hub RBPs, hub 
mRNAs, and hub lncRNAs, which are defined as regulators of a large number of RNAs or as 
RNAs regulated by a large number of RBPs, respectively. Notably, recent benchmarking 
studies have demonstrated that even when GRN inference methods achieve moderate 
performance in predicting the edges of the ground truth network, they often excel in 
predicting hub genes, which typically serve as master regulators in the biological processes 
under investigation (39). Confirming these findings within the context of protein-RNA 
interactions, we also observed that catRAPID enhanced the performance of the inference 
methods in identifying network hubs. 

To validate our methodology across different organisms and experimental techniques 
beyond eCLIP, we analysed a mouse cell line that recapitulates myoblasts-to-myotubes 
differentiation and retinoic acid-driven differentiation of mouse embryonic stem cells. 
Specifically, we evaluated the inference performance for two RBPs, ADAR1 and Caprin1, 
which play a role in stress granule formation (40, 41) and for which RNA targets are 
available from RNA immunoprecipitation followed by RNA-sequencing (RIP-seq) 
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experiments. Our results showcased favorable performance across most of the methods, 
with catRAPID consistently improving the predictive accuracy. 

Lastly, we demonstrated the feasibility of predicting direct RBP-RBP interactions by 
leveraging the overlap of RNA targets inferred from the scRNA-seq data.  

In summary, our study presents a novel and scientifically elegant evaluation of GRN 
inference methods for predicting protein-RNA interactions from single-cell transcriptomic 
data. By introducing catRAPID and conducting extensive validations, we significantly 
enhance the inference performance and provide valuable insights into RBP-lncRNA 
interactions, hub identification, and direct RBP-RBP interactions. 
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Methods 
We used human hepatocellular carcinoma (HepG2) and human lymphoblastoma (K562) cell 
lines in most of the analyses since, for these cell types, ChIP-seq, eCLIP and shRNA RNA-
Seq datasets are available from the ENCODE project (42, 43), and multiple scRNA-seq 
datasets obtained through different protocols are available from public repositories. 

Single-cell RNA-seq datasets 

HepG2 
For the HepG2 cell line we selected three scRNA-seq datasets, obtained through the Smart-
seq2, DNBelab C series Single-cell System, a droplet-based system similar to that from 10x 
Genomics in cell throughput and data formatting, and SCAN-seq2 (a single-cell Nanopore-
based sequencing protocol) sequencing protocols.  
The Smart-seq2 dataset is available on the Gene Expression Omnibus (GEO) (44) under 
accession number GSE150993 (45). We selected only the 68 live cells in the dataset.  
The DNBelab dataset is available on GEO under accession number GSM5677000 (46). It 
contains 1628 cells. 
The SCAN-seq2 dataset is available on GEO under accession number GSE20356 (47). We 
selected the “9CL” library, which contains 80 HepG2 cells. 

K562 
For the K562 cell line we selected five scRNA-seq datasets, obtained through the CEL-seq, 
STORM-seq, Smart-seq3 and SCAN-seq2 sequencing protocols.  
The CEL-seq dataset is available on GEO under accession number GSM1599500 (48). It 
contains 239 cells. 
The STORM-seq dataset is available on GEO under accession number GSE181544 (37). It 
contains 70 cells. The authors provided 3 processed datasets obtained from the same cells 
with different sequencing depth (100k, 500k and 1M reads). We used the dataset with 
highest depth (1M) in all the analyses. 
The Smart-seq3 dataset is available on Arrayexpress under accession number E-MTAB-
11467 (38, 49). It contains 231 cells sequenced with different reaction volumes (1 μl, 2 μl, 5 
μl and 10 μl) and with cDNA clean-up or dilution. We performed a standard pre-processing 
using the R package Seurat v4.1.0 (50), then we used the function “FindMarkers” to find 
differentially expressed genes between the reaction volumes of 1 μl and 10 μl. We found 
only 1 gene with adjusted p-value smaller than 0.05. Instead, we found 32 differentially 
expressed genes between the “cleanup” and “diluted” condition. We kept all 231 cells for 
downstream analysis but we removed the 32 identified differentially expressed genes.  
The SCAN-seq2 datasets for the K562 cell line are provided in the same study mentioned 
above for HepG2. We selected two libraries in this case: the “9CL”, containing 159 cells, and 
the “UMI200”, since it is the library with the highest sequencing depth, containing 96 cells.  

Pre-processing and gene selection 
We used Scanpy (version 1.8.2) (51) for the pre-processing and gene selection steps of the 
scRNA-seq datasets analysis. We removed spike-in genes where present. We filtered out 
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genes expressed in less than 10% of the cells (1% for the HepG2 DNBelab dataset that has 
1628 cells) using the function “scanpy.pp.filter_genes'' and we removed mitochondrial 
genes. We used the TPM matrices for the HepG2 Smart-seq2 and the K562 STORM-seq 
datasets; we log-transformed them using the function “scanpy.pp.log1p”. We normalized the 
UMI counts for the HepG2 DNBelab, K562 CEL-seq, K562 Smart-seq3 and SCAN-seq2 
datasets using the function “scanpy.pp.normalize_total” and we log-transformed the 
normalized counts using the function “scanpy.pp.log1p”. 
Two inference algorithms (SINCERITIES and TENET) require cells ordered in pseudotime. 
To this end, we computed the top 2000 highly variable genes using the function 
“scanpy.pp.highly_variable_genes” and we scaled the data to zero mean and unit variance 
using the function “scanpy.pp.scale”, clipping values larger than 10 (parameter 
“max_value=10”). We performed a principal component analysis using the function 
“scanpy.tl.pca”, with “svd_solver=arpack”. We computed a k-nearest neighbor graph 
(“scanpy.pp.neighbors”) and a UMAP (52) (“scanpy.tl.umap”). Next, we computed a diffusion 
map (53) (“scanpy.tl.diffmap”) and the diffusion pseudotime (54) (“scanpy.tl.dpt”) choosing 
the root cell based on the UMAP coordinates, since in these cell lines there is not an obvious 
starting cell for the pseudotime computation. 
For the gene selection step, we followed the BEELINE evaluation framework (31) and 
selected the top 500 and 1000 highly variable genes in each dataset. We restricted the gene 
sets for selection to protein-coding and long non-coding RNAs, according to the annotation 
in Gencode V41 (55). We added to each dataset the highly variable transcription factors or 
the RNA binding proteins present in the eCLIP experiments from the ENCODE project. We 
used a list of 1563 transcription factors provided in (31).  
 
Regarding the analyses involving comparisons between GRN inference on mRNAs and 
lncRNAs (Figure 3 and Supplementary Figures reported in the paragraph ‘Predicting 
protein interactions with long non-coding RNAs’), we selected the top 400 highly variable 
mRNAs or lncRNAs in each dataset. We added to each dataset the eCLIP RBPs as shown 
before. 

Ground truth networks 

TF-target 

ChIP-seq  

We downloaded ChIP-seq data for the HepG2 (56) and K562 cell lines from the ENCODE 
project portal (https://www.encodeproject.org/) (42). Accession codes and metadata 
obtained from the ENCODE project portal are reported in the Supplementary Tables linked 
to section ‘Protein-RNA interactions can be inferred from single-cell RNA-seq data’. 
Considering data associated with the GRCh38 assembly and experiments with multiple 
biological replicates, we selected 589 and 477 BED files with peaks merged using the IDR 
approach for HepG2 and K562, respectively. Next, using the “window” module from 
BEDTools (version 2.30.0) (57), we identified the target gene for each peak, defined as the 
closest gene whose transcription start site (TSS) is less than 50 kilobases away from the 
peak. TSS information was retrieved from the “upstream1000.fa” file provided by the 
UCSC Genome Browser (58) (available at 
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https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/), which reports the transcription 
starts of RefSeq genes (59) with annotated 5' UTRs. 

RBP-target 

eCLIP  

The BED files relative to the peaks identified in each biological replicate of eCLIP 
experiments conducted for 103 RBPs in HepG2 cells and 120 RBPs in K562 cells (3) were 
downloaded from the ENCODE project portal, selecting the GRCh38 assembly and “BED 
narrowpeak” file type. Accession codes and metadata obtained from the ENCODE project 
portal are reported in the Supplementary Tables mentioned in paragraph ‘Protein-RNA 
interactions can be inferred from single-cell RNA-seq data’. Next, we filtered the files of the 
single replicates with logFC > 1 and -log10 p-value > 3 and we took the intersection between 
the BED files of the single replicates for each RBP, using the “intersect” module from 
BEDTools (version 2.30.0). The same tool was used to find overlaps between the consensus 
peaks and the canonical isoforms of mRNA and lncRNA obtained from Ensembl 107 (60) 
distinguishing between exonic and intronic peaks. For the analyses in the manuscript we 
employed only the interactions involving exonic regions, because the inference of the 
interaction propensity of unspliced RNA molecules with catRAPID is a computationally 
demanding task that would require an ad hoc fragmentation procedure to deal with very long 
sequences. 

shRNA RNA-Seq  

We used the metadata from (4) (file “'41586_2020_2077_MOESM4_ESM.xlsx'”, sheet 
name: “KD-RNA-seq”, column “RBP knockdown DESeq after batch Correction”) to obtain the 
tsv file names for each RBP. We downloaded the tsv files from the ENCODE project, and we 
retained only targets with FDR < 0.05. 
To identify indirect RBP-RNA interactions (Figure 2C and Supplementary Figures reported 
in paragraph ‘catRAPID improves prediction performance and removes indirect 
interactions’), for each cell line we considered the interactions involving RBPs present in 
both eCLIP and shRNA RNA-Seq datasets (92 RBPs for HepG2 and 110 for K562), and, for 
each RBP, we removed the eCLIP-identified targets from those detected via shRNA RNA-
Seq. After this filter we obtained 259327 interactions involving 92 RBPs in HepG2 and 
176843 interactions involving 110 RBPs in K562. 

GRN inference methods and implementation 
For the inference of GRNs from scRNA-seq data, we chose the three top performing 
methods from BEELINE (31) (PIDC, GRNBOOST2, SINCERITIES). We also added two 
more recent methods that have been shown to outperform previous ones (TENET and 
DeePSEM), and a method not specifically designed for scRNA-seq, but that has good 
performance and it is widely used (ARACNe). 
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PIDC 
PIDC is a GRN inference algorithm based on multivariate information measures (61). 
Specifically, it uses Partial Information Decomposition (PID) between triplets of genes to find 
putative functional interactions between genes. It outputs an undirected network. 

GRNBOOST2 
GRNBoost2 uses stochastic gradient boosting regression to select the top regulators for 
each gene in the dataset (62). It is based on GENIE3 (63), a regression method initially 
designed for bulk transcriptomic data, but it is faster, thus it is more suited for scRNA-seq 
data. It outputs a directed network. 

SINCERITIES 
SINCERITIES requires cells ordered in pseudotime. It computes temporal changes in the 
expression of each gene in pseudotime using the Kolmogorov-Smirnov statistic (64). It uses 
Granger causality to infer connections between regulator and target genes. The GRN 
inference is formulated as a ridge regression problem. It outputs a signed and directed 
network; however, in this work we do not take into account the sign information. 

TENET 
TENET computes the transfer entropy, a measure of directed information transfer, between 
the expression profiles along pseudotime of each pair of genes in the dataset (65). Potential 
indirect interactions are trimmed applying the Data Processing Inequality (DPI). The False 
Discovery Rate (FDR) of the interactions is computed by performing a one-sided z-test 
considering the trimmed values of transfer entropy as normally distributed. TENET outputs a 
directed network. Due to the indirect interaction trimming, TENET outputs smaller networks 
compared to the other inference methods, making it more suited to be used on datasets with 
a larger number of genes. For this reason, we include TENET networks obtained in three 
different ways: 

- TENET: Full network without indirect interaction trimming. 
- TENET_A: Network obtained after indirect interaction trimming (cutoff = -0.1) and 

FDR < 0.01. This is the original usage.  
- TENET_B: Network obtained after indirect interaction trimming (cutoff = -0.1) and 

FDR < 0.5. 
For TENET implementation, we follow the installation and usage instructions provided at 
https://github.com/neocaleb/TENET. 

DeePSEM 
DeePSEM is a deep generative model designed for scRNA-seq data that can simultaneously 
infer a GRN, embed and visualize scRNA-seq data and simulate them (66). DeePSEM 
jointly models the GRN and the transcriptome by generating a Structural Equation Model 
(SEM) through a beta Variational Auto-Encoder (beta-VAE). Following the original 
implementation, we use the ensemble strategy to obtain more stable predictions, namely we 
train DeePSEM on the same dataset with ten different random initializations. The final GRN 
is obtained by averaging the adjacency matrices derived from the ten trained models. 
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Following the implementation provided in https://github.com/HantaoShu/DeepSEM 
(GRN_inference_tutorial.ipynb), we used DeePSEM in cell-type specific mode (task = 
celltype_GRN). DeePSEM outputs a directed network. 

ARACNe 
ARACNe (Algorithm for the reconstruction of accurate cellular networks) is one of the first 
GRN inference methods based on information theory, initially designed for microarray data 
(67). It infers putative direct regulatory relationships between regulator and target genes 
using mutual information (MI). In a first filtering step, interactions with low MI are filtered out 
based on a threshold computed under the null hypothesis of independence of two genes. 
Subsequently, the DPI is applied to filter out indirect interactions. ARACNe outputs a 
directed network. In this work, we use a faster re-implementation of ARACNe based on 
Adaptive Partitioning (ARACNe-AP) (68), since it is more suited to deal with the larger 
number of samples in scRNA-seq data. We follow the steps for its implementation provided 
in https://github.com/califano-lab/PISCES/ (69), in the folder /tree/master/data. We ran 
ARACNe-AP on a HPC cluster using a Singularity container that we built. For datasets with 
more than 1000 cells, we ran ARACNe-AP on 250 metacells computed following the 
instructions in https://github.com/califano-lab/PISCES/blob/master/vignettes/general-
workflow.Rmd.  
 

Implementation of the GRN inference 
GRN inference is based on BEELINE (31), whose installation instructions and 
documentation are available at https://murali-group.github.io/Beeline/. PIDC, GRNBOOST2 
and SINCERITIES were already available in BEELINE, thus we used the Docker containers 
provided in it. For TENET, we followed the instructions provided at 
https://github.com/neocaleb/TENET, as described before, and we used custom bash and 
Python scripts, which we provide in our Github repository 
(https://github.com/tartaglialabIIT/scRAPID), to include it in the BEELINE pipeline. DeePSEM 
instead runs on a GPU architecture and it was implemented following the instructions 
provided by the authors (https://github.com/HantaoShu/DeepSEM). ARACNe-AP was run on 
a HPC cluster following the instructions provided by the authors (https://github.com/califano-
lab/PISCES/tree/master/data). We provide the “def” file for building a Singularity image for 
running ARACNe-AP and custom bash scripts in our Github repository. Finally, we used a 
custom Python script to format the results of all the GRN inference methods as in BEELINE.  

catRAPID 
catRAPID is an algorithm that computes an interaction propensity score between a protein 
and a RNA based on their sequence, using information from the secondary structure, 
hydrogen bonding and van der Waals contributions (14, 15). Canonical protein sequences in 
FASTA format for the RBPs used in this study were obtained from Uniprot (70). Regarding 
the RNAs, we used the sequence of the canonical isoforms retrieved from Ensembl (version 
107).  
For the computation of the interaction propensity scores, we followed the fragmentation-
based approach of the “catRAPID fragment” module (71), also used in catRAPID omics v2.0 
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(17) and RNact (72). The final interaction propensity for a protein-RNA pair is defined as the 
maximum over the distribution of the interaction propensities of the fragments, as in RNAct 
(72).  
To facilitate the usage of scRAPID with new scRNA-seq datasets in different organisms, we 
provide a SQL database containing the maximum interaction propensity scores from 
catRAPID for: i) 3131 RBPs vs 62055 RNAs (all the canonical isoforms for the full 
transcriptome) in human, for a total of 194.3 millions interactions; ii) 2900 RBPs and 53087 
RNAs (all the canonical isoforms for the full transcriptome) in mouse, for a total of 154.0 
millions interactions. The lists of human and mouse RBPs were compiled by combining the 
RBPs from the RBP2GO database having score larger than 10 (7) with those that make up 
the catRAPID omics v2.0 RBP libraries (17); the latter sets were further expanded by 
including, for human and mouse, proteins that are orthologous to the RBPs identified in 
mouse and human, respectively.  
The SQL database can be queried via “curl”; further details and example queries are 
provided in our Github repository (https://github.com/tartaglialabIIT/scRAPID). 
Interactions that are missing in our database, for instance involving organisms other than 
human and mouse or RNA isoforms other than the canonical one in human and mouse, can 
be computed using the catRAPID omics v2.0 web server 
(http://service.tartaglialab.com/page/catrapid_omics2_group). 

RBP co-interaction analysis 

scRNA-seq datasets 

HEK293T 

We selected two scRNA-seq datasets for the HEK293T cell line. The 10x dataset is available 
from the website of 10x Genomics (73) and it contains 2885 cells. The Smart-seq3 dataset is 
available on ArrayExpress with accession E-MTAB-8735 (38) and the single cell identifier 
column in the sample information table is “HEK293T Smart-seq3”; it contains 117 cells. We 
followed the same pre-processing steps explained above for the HepG2 and K562 datasets. 

HCT116 

The scRNA-seq dataset for the HCT116 cell line is available on GEO with accession number 
GSE149224 (74). The dataset includes three different cell lines (RKO, HCT116 and SW480) 
treated with different doses of 5-fluorouracil treatment to study the DNA-damage response of 
the transcriptome.  
We selected only the 3011 HCT116 cells and we exploited the presence of treated cells to 
compute the diffusion pseudotime. We followed the pre-processing steps explained above 
for the HepG2 and K562 datasets, then we computed a diffusion map of HCT116 cells. We 
computed the diffusion pseudotime choosing as the root cell the control cell farthest from the 
treated ones. Next, we kept only the 2161 control cells for downstream analysis, following 
the analyses done for the HepG2 and K562 cell lines for gene selection and GRN inference.  
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RBP co-interaction prediction 
RBP co-interactions were predicted based on the overlap of the RNA targets inferred by 
each GRN inference algorithm. We considered as RBPs the intersection between human 
RBPs present in the RBP2GO database (7), with RBP2GO score larger than 10, and the 
proteins present in the BioPlex Interactome database (75), which contains protein-protein 
interactions measured with Affinity Purification Mass Spectrometry (AP-MS), for the 
corresponding cell line (HEK293T or HCT116). We obtained a list of 1808 and 1509 RBPs 
for the HEK293T and HCT116 cell lines, respectively, including 12730 and 9700 BioPlex 
interactions. 
For HEK293T, 186, 363 and 562 RBPs were included in the top 1000, 2000, 3000 HVGs 
selected from the 10x scRNA-seq dataset, respectively; 49, 145 and 247 RBPs were 
included in the top 1000, 2000, 3000 HVGs selected from the Smart-seq3 scRNA-seq 
dataset, respectively. 
For HCT116, 164, 341 and 520 RBPs were included in the top 1000, 2000, 3000 HVGs 
selected from the Drop-seq scRNA-seq dataset, respectively. 
Next, for the GRN inference methods that output more than the 5% of the possible edges, 
we cut the ranking to this threshold. For the other methods we kept all the edges returned. 
Then, for each pair of RBP, we computed the Jaccard coefficient between their sets of 
targets. 
We ranked the RBP-RBP pairs according to the value of the Jaccard coefficient and we ran 
a Gene Set Enrichment Analysis for each GRN inference algorithm and scRNA-seq dataset 
(with 1000, 2000 and 3000 HVGs selected) using the R package “fgsea” (76). The ground 
truth interactions are those obtained from the BioPlex Interactome database for each cell 
line. The code to predict and evaluate RBP co-interactions is provided in our Github 
repository https://github.com/tartaglialabIIT/scRAPID. 

Additional information about Methods is in the Supplementary Materials.  
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Results 

Protein-RNA interactions can be inferred from single-cell RNA-
seq data 
 
A recent work provided a framework, called BEELINE, to evaluate the performances of 
algorithms for the prediction of GRNs from scRNA-seq data (31). The main result of the 
study is that, when it comes to predicting ChIP-Seq derived cell type-specific TF-target 
interactions, the performance of 12 algorithms is generally moderate (31).  
 
Thus, to assess the performances of such algorithms in predicting RBP-RNA interactions, 
and to compare them with those obtained for the TF-target inference task, we selected 
datasets for two cell lines, HepG2 and K562, for which both ChIP-seq and eCLIP data are 
available from the ENCODE project (42, 43). We used 8 publicly available scRNA-seq 
datasets obtained with different sequencing protocols, including both full-length and 3’ end-
based protocols; their characteristics are provided in Supplementary Table S1, while further 
technical details about the datasets and their pre-processing are provided in the Methods 
section. 
 
Next, we selected six GRN inference algorithms, including the top three performing ones 
from BEELINE (PIDC (61), GRNBOOST2 (62) and SINCERITIES (64)), two recent methods 
that were shown to outperform the methods used in BEELINE (TENET (65) and DeePSEM 
(66)) and ARACNe (67), a method initially designed for bulk RNA-seq, but that has been 
widely used on scRNA-seq data with appreciable performance (77). The methods use 
different statistical models and theories to infer regulatory interactions from scRNA-seq data; 
details about their features and implementation are provided in the Methods section. For 
TENET, we evaluated three different inferred GRN types: the full inferred network without 
any filtering (indicated as TENET in the figures) and the networks on which we applied the 
data processing inequality (DPI) for removing indirect interactions, followed by the 
application of a stringent (TENET_A) or loose (TENET_B) threshold on the False Discovery 
Rate (FDR) (see Methods for further details). 
 
Following BEELINE, we selected the top 500 or 1000 highly variable genes (HVGs) for each 
dataset, then we added the highly variable TFs or the RBPs for which an eCLIP experiment 
is present in the ENCODE project for the corresponding cell line (Supplementary Table 
S2). We ran the inference methods on each dataset and we measured the inference 
performance on TF-target or RBP-target interactions using the Early Precision Ratio (EPR) 
(31), which is the fraction of true positives in the top k edges of the inferred network, where k 
is the number of edges in the ground truth network, divided by the density of the ground truth 
network (see Supplementary Materials for details). In Figure 1A we show the probability 
density of the EPR values for all the datasets and algorithms with 500 HVGs selected, for 
TF-target and RBP-target interactions. The performances for the TF-target inference task, in 
which the inferred networks are compared to cell-type specific ChIP-seq data, are in line with 
those observed by previous studies in other single-cell datasets and they are slightly better 
than a random prediction (black dashed line) for all datasets and methods (Figure 1A).  
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By contrast, the overall performance for RBP-target interactions, evaluated on cell-type 
specific eCLIP data, is significantly higher (p=4.4 x 10-5, Kolmogorov-Smirnov test, Figure 
1A). The datasets with 1000 HVGs show similar results (Supplementary Figures S1 and 
S2A). Figure 1B shows the performances of individual algorithms for the K562 dataset 
sequenced with the CEL-seq protocol, for which, on average, we obtained the best 
performances for the RBP-target inference task. 
 

The results for the other scRNA-seq datasets are shown in Supplementary Figures S1 and 
S2B, for 500 and 1000 HVGs, respectively. Interestingly, the EPR of the RBP-target inferred 
interactions is larger than the EPR of the TF-target ones in 73.4% of the cases. The statistics 
of the ChIP-seq and eCLIP ground truth networks for each dataset are reported in 
Supplementary Figure S3, together with the heatmaps of EPR values. On average, 
ARACNe is the top performing method for the TF-target inference task, while the dataset in 
which these interactions are best predicted is HepG2 DNBelab, as confirmed also for the 
datasets with 1000 HVGs (Supplementary Figures S2 and S3). For the inference of RBP-
target interactions, DeePSEM is the top method in terms of average EPR over the datasets 
when considering 500 HVGs (Supplementary Figures S1 and S3), while it has a drop in 
performance for the datasets with 1000 HVGs, in which the best method is TENET_A 
(Supplementary Figures S2 and S3). The large increase in performance of the latter 
algorithm is likely due to the larger number of interactions inferred on datasets with 1000 
HVGs. Indeed, TENET_A is very strict in considering significant interactions (see Methods 
for details), leading to the elimination of the majority of interactions for some datasets in the 
setting with RBPs and 500 HVGs. Regarding the datasets, in the case of 500 HVGs K562 
CEL-seq is the best for inferring RBP-RNA interactions (Figure 1B), while with 1000 HVGs 
the top dataset becomes K562 STORM-seq (Supplementary Figure S2), in particular 
thanks to the performance of TENET_A, which was not present for this dataset with 500 
HVGs due to the small number of interactions returned by this method. 
 
Our systematic evaluation shows for the first time that RBP-RNA interactions can be inferred 
from scRNA-seq data, with performance (in terms of EPR) similar to or better than the ones 
obtained for the “classical” TF-target inference task. However, it should be noticed that the 
percentages of true positives reach a maximum of ~35% at the top of the ranking of inferred 
interactions (Supplementary Figures S4 and S5). This is likely due to the confounding 
presence of direct protein-protein and RNA-RNA interactions, and of indirect interactions, 
which might be hard to disentangle from each other just looking at the interdependence of 
RNA expression levels. Another reason for the slightly low true positive rate is the 
incompleteness of the ground truth eCLIP network, especially due to detection limits. 

catRAPID improves prediction performance and removes 
indirect interactions 
We reasoned that an improvement in the performance of the GRN inference methods for 
predicting protein-RNA interactions could be achieved by integrating the results obtained 
from scRNA-seq data with complementary information independent of the expression of the 
RBP and its putative targets. For this reason, we used catRAPID (14, 15) to calculate the 
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interaction propensity of the inferred RBP-RNA pairs and we employed this score to filter out 
those which are not likely to represent direct interactions (see Methods for details).  
 
To find the optimal threshold for the catRAPID score, we tried several cutoff values and 
recalculated the EPR after removing the inferred interactions whose interaction propensity 
was lower than the employed cutoff. For most of the datasets and inference algorithms, the 
EPR increases with the threshold on catRAPID interaction propensity (Supplementary 
Figure S6). We selected 30 as the optimal cutoff for downstream analyses, since for larger 
values the EPR starts decreasing for some algorithms and datasets. Figure 2A shows the 
EPR obtained after filtering the inferred GRNs with catRAPID for each algorithm and 
dataset, together with the percentual relative difference with the original EPR value, i.e. the 
one obtained before catRAPID filtering. Notably, catRAPID leads to an increase of the EPR 
for all datasets and methods, except for SINCERITIES for the two K562 SCAN-seq2 
datasets and DeePSEM for the K562 CEL-seq dataset, providing a relative improvement of 
the EPR of 17.6%, on average. We notice that ARACNe and TENET_A are among the 
methods with the largest relative improvement in EPR after filtering based on catRAPID 
(Figure 2A and Supplementary Figure S7A), despite both algorithms making use of the 
DPI to eliminate indirect interactions. DeePSEM and SINCERITIES instead show the least 
enhancement. Regarding the datasets, the HepG2 Smart-seq2 dataset benefits more than 
the others from catRAPID, while the K562 CEL-seq and SCAN-seq2 (UMI200) datasets 
improve less. We also highlight the improvement in the percentage of true positive 
interactions given by catRAPID (Supplementary Figures S4 and S5). 
 
Previous work highlighted that the poor performance of inference methods, when evaluated 
against cell type-specific ChIP-seq data, is due to the presence of indirect interactions, as 
witnessed by the better performance achieved when using the STRING database as ground 
truth (31). With the two cell lines under study, we have the possibility of testing this 
hypothesis for RBP-RNA interactions using shRNA RNA-seq data for the same cell lines, 
available from the ENCODE project (see Methods for details) (4). To evaluate whether 
inference methods are also predicting indirect interactions, we tested their ability to infer the 
interactions of RBP with the RNAs deregulated upon their knock-down, from which we 
removed eCLIP-derived targets to obtain only putative indirect interactions (see Methods). 
While catRAPID causes a shift toward higher EPR values in the case of direct (eCLIP) 
interactions (Figure 2B, Kolmogorov-Smirnov test’s p-value= 6.8 x 10-5), for indirect 
interactions (shRNA RNA-seq) it produces the opposite trend (Figure 2C, Kolmogorov-
Smirnov test’s p-value= 7.3 x 10-4), meaning that it effectively removes indirect interactions. 
Overall, GRNBOOST2 and ARACNe are the inference methods most prone to detect 
indirect interactions, while TENET_A infers the least indirect interactions, since it applies the 
DPI downstream of GRN inference to trim them out (Supplementary Figures S8 and S9). 
Interestingly, also ARACNe applies the DPI but it does not work as effectively as TENET_A, 
possibly indicating that transfer entropy is more suited than mutual information for the 
prediction of gene interactions, since the latter does not quantify a directional information 
flow. 
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Predicting protein interactions with long non-coding RNAs 
So far we focused on HVGs, which are mostly composed of protein-coding genes. 
Consequently, the inferred RBP-RNA networks can be confounded by the presence of 
protein-protein interactions, as mentioned above, while they would not be present when 
considering only lncRNAs in the datasets. For this reason, for each scRNA-seq experiment, 
we compared the EPR of the RBP-RNA interactions inferred from two different datasets, 
built using the top 400 highly variable mRNAs and the top 400 highly variable lncRNAs, 
respectively. We chose a smaller set of genes compared to the previous analyses since 
lncRNAs are less represented in the scRNA-seq datasets, due to their smaller absolute 
number in the transcriptome compared to mRNAs and to their lower expression. In 
agreement with our expectations, in most of the cases (60%, which becomes 87.5% upon 
using the catRAPID filter) the performance of the inference algorithms is higher for the 
lncRNA datasets than for the mRNA ones (Figure 3 and Supplementary Figure S10). 
While for the mRNAs the top performing method is DeePSEM and the best dataset is K562 
CEL-seq, as already discussed for the datasets including both types of HVGs, ARACNe 
emerges as the best method for the inference of RBP-lncRNA interactions. However, we 
highlight that the smaller number of ground truth eCLIP interactions for lncRNAs might 
penalize the performance of TENET_A in some datasets, which instead performs very well 
for the K562 STORM-seq and Smart-seq3 datasets, the newest full length protocols that 
provide a more precise measurement of lncRNAs expression levels compared to the others. 
We also evaluated the performances after the catRAPID-based filter (Figure 3) and 
observed that the predictive ability further increases for lncRNAs, even more than for 
mRNAs. Specifically, the curves of the EPR as a function of the catRAPID interaction 
propensity threshold (Supplementary Figure S11) show that higher values of the EPR are 
reached for lncRNAs than for mRNAs; the mean EPR over datasets and inference methods 
is 1.22 for mRNAs and 1.47 for lncRNAs in the original rankings, while it becomes 1.39 for 
mRNAs and 2.61 for lncRNAs after the catRAPID-based filter with threshold on the 
interaction propensity set at 30 as in previous analyses. Moreover, for every inference 
method almost all the datasets with lncRNAs show a monotonic increase of the EPR as a 
function of the threshold on catRAPID score, especially for the STORM-seq and Smart-seq3 
sequencing protocols (Supplementary Figure S11).  
 

Given the large difference in ground truth network size and density between mRNAs and 
lncRNAs (Supplementary Figure S10), for each scRNA-seq dataset we performed 100 
random samplings of the eCLIP ground truth networks for mRNAs, to match the statistics 
obtained for lncRNAs in the same dataset. Next, we compared the EPR values of the 
lncRNAs with the distribution of EPR values obtained from the samplings of the mRNA 
ground truth networks, computing an empirical p-value (see Supplementary Materials). In 
Supplementary Figure S12 we show that, for most of the inference methods and datasets, 
the EPR values for RBP-lncRNA interactions are significantly higher than those obtained for 
the downsampled RBP-mRNA interactions. Moreover, catRAPID increases the number of 
statistically significant comparisons, confirming its usefulness in supporting the prediction of 
RBP-lncRNAs interactions from scRNA-seq data. Finally, we note that the percentage of true 
positives is generally smaller in datasets with lncRNAs compared to mRNAs, due to the 
small size and sparsity of the eCLIP RBP-lncRNA ground truth network, but it gets a large 
boost after the catRAPID-based filter, especially for the K562 STORM-seq dataset 
(Supplementary Figures S13 and S14).  
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Identification of hub genes in protein-RNA networks 
One common application of GRN inference from scRNA-seq data is the identification of hub 
genes (65, 78), intended as genes that regulate a large number of targets, with the goal of 
discovering novel master regulators (in particular TFs) of the biological process under study. 
A recent systematic evaluation of GRN inference methods in terms of topological network 
properties showed that, despite the moderate performance of the algorithms in predicting the 
correct TF-target edges, the identification of hub genes is generally more reliable (39). Thus, 
we tested the capability of the methods in predicting hub RBPs and, in addition to previous 
studies, we also considered “hub RNAs”, defined as RNAs that are regulated by a large 
number of RBPs. Examples of such RNAs include mRNAs, some of which encode for 
important regulators of cellular functions like Cyclin D1, c-Fos and Bcl-2, whose 3’UTR 
contain AU-rich elements recognized by multiple proteins (79), and very long non-coding 
RNAs, such as MALAT1, NEAT1 and NORAD, whose sequence provides a platform for the 
binding of multiple factors that are relevant for phase separation (80–82). 
 
Hub RBPs and RNAs were defined according to the out- or in-degree centrality, respectively, 
computed on the nodes of the ground truth network (see Supplementary Materials). 
Following a previous work (39), we tested the performance of the inference methods using 
the Jaccard coefficient ratio (JCR), which is the ratio between the Jaccard coefficient of the 
hubs of the inferred and ground truth networks and the Jaccard coefficient that a random 
predictor would achieve. 
 

In Figure 4 we show the results for the datasets that achieve, on average over the inference 
algorithms, the best performances in terms of JCR in identifying hub RBPs (HepG2 Smart-
seq2) and hub mRNAs or lncRNAs (K562 CEL-seq).  
 
For the prediction of hub RBPs, the filter with catRAPID preserves or increases the value of 
the JCR in 95% of the cases for the datasets with 500 HVGs and 94% of the cases for the 
datasets with 1000 HVGs (Supplementary Figures S15 and S16). The K562 SCAN-seq2 
(UMI200) and HepG2 SCAN-seq2 (9CL) datasets achieve the best performance before the 
filter with catRAPID, for datasets with 500 and 1000 HVGs, respectively, while the HepG2 
Smart-seq2 dataset benefits most from the filter, becoming the dataset with highest JCR, on 
average, in both cases (Figure 4 and Supplementary Figures S15 and S16). Regarding 
the inference methods, TENET and TENET_B, followed by SINCERITIES and DeePSEM, 
are the top methods in finding hub RBPs in datasets with 500 HVGs (Figure 4 and 
Supplementary Figure S15) before the catRAPID-based filter. SINCERITIES becomes the 
top performing method after the catRAPID filter, followed by DeePSEM and PIDC. For 
datasets with 1000 HVGs PIDC is the best method, followed by DeePSEM and ARACNe, 
both before and after catRAPID (Supplementary Figure S16). 
 
Regarding the identification of hub mRNAs and lncRNAs, the K562 CEL-seq dataset 
achieves, on average, the highest JCR, both before and after the catRAPID-based filter, 
apart from the datasets with 1000 HVGs, in which the top dataset after such filter becomes 
the K562 SCAN-seq2 (9CL) (Figure 4 and Supplementary Figures S15, S16 and S17). 
The filter with catRAPID preserves or improves the value of the JCR in 83% of the cases for 
datasets with 500 HVGs, 75% for datasets with 1000 HVGs and 85% for datasets with 400 
lncRNAs. The best method for identifying hub mRNAs is DeePSEM, followed by PIDC, for 
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datasets with 500 HVGs, while it is the opposite for datasets with 1000 HVGs, and this 
stands both before and after the catRAPID-based filter. Finally, DeePSEM, followed by 
GRNBOOST2 and ARACNe, is the top performing method in identifying hub lncRNAs.  

Cross-validation  of the method using RIP-seq data from  
murine cells 
Subsequently, we assessed the efficacy of the aforementioned methods in predicting RBP-
RNA interactions detected through another experimental technique in differentiating cells 
originating from a distinct organism. To this end, we first considered the C2C12, an 
immortalized mouse cell line that recapitulates myoblasts to myotube differentiation, for 
which Split Pool Ligation-based Transcriptome sequencing (SPLiT-seq) scRNA-seq and 
single-nuclei RNA-seq (snRNA-seq) datasets at 0 (myoblasts) and 72 hours (myotubes) of 
differentiation are available (83). We inferred the differentiation trajectory from myoblasts to 
myotubes, selected the top 500 and 1000 HVGs for each dataset and ran the GRN inference 
(see Supplementary Materials; Supplementary Figure S18). We focused the evaluation 
on the ADAR1 deaminase, which plays a prominent role in skeletal myogenesis, 
suppressing apoptosis at the myoblast stage and facilitating the myoblast to myotube fate 
transition (84). ADAR1 target RNAs have been identified in C2C12 cells at 0h and 72h 
through RNA immunoprecipitation followed by RNA-sequencing (RIP-seq) (84); we highlight 
that these targets are specific of each time point, thus they represent a restricted list. The 
results for the myoblasts snRNA-seq dataset are shown in Figure 5A. We notice that the 
performance in terms of EPR is quite robust across algorithms and that catRAPID increases 
the EPR for all of them except ARACNe, producing, on average, a relative improvement in 
EPR of 54% for the datasets with 500 HVGs and 24% for those with 1000 HVGs. However, 
we stress that in this case, in which performances are tested for the interactions of a single 
RBP, TENET_A, TENET_B and ARACNe are penalized due to the smaller number of 
interactions that they output compared to the other methods. In Figure 5 we show only 
algorithms for which at least two experimental interactions are present in the inferred 
network, before the catRAPID-based filter. 
We show the results for a scRNA-seq of myoblasts and snRNA-seq of myotubes, obtained 
from the same study, in Supplementary Figures S19A-B. The results for the myoblasts 
scRNA-seq (Supplementary Figure S19A) are in line with those observed for the snRNA-
seq, except for a worse performance of DeePSEM and the increase in EPR after the 
catRAPID-based filter for ARACNe. Instead, the myotubes dataset (Supplementary Figure 
S19B) shows less consistent results: the filter with catRAPID tends to preserve the EPR 
values and DeePSEM has higher EPR compared to the other methods, especially for the 
dataset with 500 HVGs. We hypothesize that the less robust performance obtained for the 
myotubes dataset is due to the smaller number of ADAR1 targets in myotubes (401 targets 
vs 3263 targets in myoblasts). 
 
As a second validation system, we considered mouse embryonic stem cells (mESCs) 
differentiation driven by retinoic acid (RA). We ran the GRN inference on a single-cell RNA 
barcoding and sequencing (SCRB-seq) dataset in which mESCs were sequenced at 9 time 
points ranging from 0h to 96h of RA-induced differentiation (85). We evaluated the 
performance on the RNA targets of the cell-cycle-associated protein 1 (Caprin1), which were 
obtained at 0h and 96h of RA-induced mESCs differentiation through RIP-seq (86). This 
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protein plays a crucial role during mESC differentiation, regulating an RNA degradation 
pathway, and its knockout was shown to have a little effect in mESCs while it significantly 
altered cell differentiation pathways (86). We show the results for the 96h time point in 
Figure 5B. TENET_B and ARACNe outperform the other inference algorithms, especially 
after filtering the interactions with catRAPID. In this case the EPR of all the methods 
increases after the catRAPID-based filter. Instead, for the dataset at 0h (Supplementary 
Figure S19C) catRAPID causes a decrease in EPR for some algorithms; this might be 
explained by the non-essential function of Caprin1 in mESCs (86) and by the smaller 
number of interactions measured at 0h compared to 96h (1178 Caprin1 targets at 0h vs 
2116 at 96h). 

Prediction of RBP co-interactions based on the overlap of 
inferred targets 
The interaction between proteins that bind to common RNA targets can extend beyond their 
RNA associations and may encompass protein-protein interactions as well (87). Indeed, by 
binding to shared RNA molecules, the RBPs form a functional partnership that enables 
coordinated regulation of RNA metabolism and cellular activities (88). The interplay between 
RBPs at the protein-protein level contributes to the assembly and stabilization of 
ribonucleoprotein complexes, facilitating RNA processing, transport, and translation (89). 
These protein-protein interactions can occur through direct physical associations or indirect 
interactions mediated by bridging factors such as intermediate proteins. Through their 
interactions, RBPs create dynamic macromolecular complexes that influence RNA 
localization, stability, and function. Elucidating the protein-protein interactions among RBPs 
is essential for comprehending the intricate regulatory mechanisms underlying RNA biology 
and its impact on cellular homeostasis. Therefore, we predicted RBP co-interactions based 
on their shared RNA targets from the inferred GRNs (see Methods for details). To validate 
the predicted interactions, we considered two cell lines, HEK293T and HCT116, for which 
scRNA-seq data are available and RBP co-interactions have been experimentally 
determined through Affinity Purification Mass Spectrometry (AP-MS) and are provided in the 
BioPlex Interactome database (75).  
 
We considered two scRNA-seq datasets for the HEK293T cell line, obtained with two 
different protocols (10x and Smart-seq3) (38, 73), and a scRNA-seq dataset from the 
HCT116 cell line obtained with the Drop-seq protocol (74). For each dataset and inference 
method, we ranked RBP-RBP pairs based on the fraction of shared targets (see Methods). 
Next, we ran a Gene Set Enrichment Analysis (GSEA) to test the enrichment for 
experimental RBP co-interactions in the rankings (see Methods). In Figure 6A-C we show 
the Normalized Enrichment Score (NES) and the p-value obtained from the GSEA for 
datasets with 1000, 2000 and 3000 HVGs. We observe that most of the inference methods 
achieve a significant enrichment, especially for datasets with a higher number of HVGs. In 
particular, GRNBOOST2 is the best method for the prediction of RBP co-interactions, 
suggesting that the presence of shared indirect targets can be informative for RBP-RBP 
interactions, but also DeePSEM, PIDC and ARACNe achieve good performances. The 
importance of the shared indirect targets for the prediction of RBP-RBP interactions is 
confirmed by the overall decrease of the NES when the interactions are predicted from the 
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inferred rankings after the catRAPID-based filter (Supplementary Figure S20). In Figure 
6D we show the enrichment plots for the top performing inference methods for each dataset. 
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Discussion 
 
In this study, we present scRAPID, a computational pipeline for inferring protein-RNA 
interactions from single-cell transcriptomic data. We conducted a comprehensive evaluation 
of the inferred GRNs using various state-of-the-art inference methods across diverse 
scRNA-seq datasets of different sizes and obtained through different protocols. Importantly, 
our pipeline is applicable downstream of any inference method, offering flexibility in its 
usage, and is available at https://github.com/tartaglialabIIT/scRAPID. 
 
We successfully demonstrated the effectiveness of our pipeline in inferring RNA-binding 
protein (RBP)-RNA interactions. Notably, we achieved similar or even superior performance 
compared to the inference of TF-target interactions.  Furthermore, our observations revealed 
that the integration of inferred GRNs with catRAPID predictions not only enhanced the 
inference performance, but also effectively filtered out indirect interactions to a significant 
extent. Notably, when focusing on RBP-lncRNA interactions, we found even greater 
improvement, although the task is limited at present by the detection limits of scRNA-seq 
and eCLIP data used for validation. We highlight that the most recent full-length scRNA-seq 
protocols, such as Smart-seq3 and STORM-seq, with higher sequencing depth and thus 
supposed to measure the level of lowly expressed RNAs more precisely, yielded the best 
results in predicting RBP-lncRNA interactions. The widespread adoption of these protocols, 
along with improved lncRNA annotation in scRNA-seq (90), is expected to further enhance 
the prediction of RBP-lncRNA interactions. This development holds great relevance for the 
identification of functional pathways involving lncRNAs and for the discovery of the 
underlying mechanisms through which they serve as scaffolds for the formation of protein 
complexes. By exploring RBP-lncRNA interactions, we could gain insights into the intricate 
regulatory networks and molecular interactions that contribute to various biological 
processes. This knowledge is crucial for understanding the roles of lncRNAs and their 
implications in complex cellular processes, ultimately advancing our comprehension of gene 
regulation and cellular function. 
 
Moreover, we expanded our investigation beyond binary interactions and demonstrated the 
ability of the inference methods to predict hub RBPs, hub mRNAs, and lncRNAs. The 
pipeline's validation encompassed different organisms and experimental techniques used to 
obtain protein-RNA interactions. Additionally, we showed the feasibility of predicting RBP-
RBP interactions based on their shared targets in the inferred GRNs. 
 
A recent work showed that RBP regulators can be predicted by integrating the GRNs 
inferred from scRNA-seq data with the information from the RBP binding motifs (36). 
However, this study uses only GENIE3 for GRN inference, which we did not use since it is 
very slow and computationally demanding. However, we considered its faster 
implementation, GRNBOOST2, which has been previously shown to have very similar 
performance (31), and we found that it shows the lowest performance in predicting RBP-
RNA interactions, although it has better performance in detecting hub RBPs. Moreover, the 
study is limited to the known RBP binding motifs, while our pipeline can be used on any 
protein, even not necessarily a known RBP.  
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To better select  an appropriate inference method based on the specific task, we conducted 
a systematic analysis. Our findings indicated that DeePSEM and TENET are the best 
methods for inferring binary RBP-RNA interactions. DeePSEM was particularly effective for 
small datasets, while TENET_A was more suitable for larger datasets due to its strict filter on 
indirect interactions. For inferring RBP-lncRNA interactions, ARACNe and DeePSEM 
performed well. All inference methods demonstrated proficiency in identifying hub RBPs and 
RNAs. Notably, PIDC and DeePSEM excelled in hub prediction, while GRNBOOST2 was 
the top-performing method for predicting RBP co-interactions, despite its tendency to predict 
more indirect interactions. DeePSEM, PIDC and ARACNe also achieved good performance 
in this context.  
 
The evaluation of our pipeline on various prediction tasks allowed us to uncover the 
strengths and weaknesses of different GRN inference algorithms. Methods quantifying the 
statistical dependence of gene pairs, such as TENET, performed well in inferring binary 
RBP-RNA interactions but struggled in "global" tasks such as hub detection and RBP co-
interactions. In contrast, PIDC, which employs a multivariate information measure between 
gene triplets, was not effective in identifying RBP-RNA interactions but excelled in hub 
prediction. Regarding indirect interactions, the application of the DPI effectively filtered them 
out in TENET_A and TENET_B but not in ARACNe, which was prone to inferring indirect 
interactions, possibly indicating that transfer entropy should be preferred to mutual 
information for the prediction of direct regulatory genetic interactions. DeePSEM emerged as 
the most flexible method, exhibiting good performance in both "local" and "global" prediction 
tasks. Indeed, its deep neural network based on the Structural Equation Model (SEM) learns 
features from the scRNA-seq data that enable data embedding, simulation and GRN 
inference with the same model. 
 
The ability to predict common targets of RBPs is fundamental to identify elements that co-
assemble in phase-separated assemblies such as SGs (91). Indeed, RNA is a key 
component of SGs and it has been proposed that rising levels of ribosome-free mRNAs drive 
SG formation during stress (92). The molecular composition and the function of proteins in 
the compartmentalization and the dynamics of assembly and disassembly of phase-
separated assemblies is being studied in detail, but the role of RNA in these structures still 
remains largely unknown (93). RNA can function as molecular scaffolds recruiting 
multivalent RBPs and their interactors to form higher-order structures (93). Following our 
approach, we showed that beyond predicting the RNA interactors of proteins that mediate 
SG condensation, like Caprin1, common RNA targets of RBPs can be inferred to a 
remarkable extent, which could be in the future exploited to identify transcripts favoring the 
assembly of protein complexes and their phase separation. 
 
The combination of the predictions of binary RBP-RNA interactions with RBP co-interactions 
might lead to the development of methods for predicting cell-type specific ribonucleoprotein 
complexes. By integrating the cell-type resolution of GRN inference from single-cell 
transcriptomic data with the structural and physico-chemical information encoded by 
catRAPID, our pipeline enables cell-type-specific prediction of new protein-RNA interactions 
— an exceptionally challenging task from an experimental point of view (6). 
 
A promising future application of our strategy consists in the integration of other single-cell 
omics data to predict GRNs at multiple layers of gene expression regulation. In parallel, the 
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advancement in the resolution and throughput of experimental techniques for the detection 
of protein-RNA interactions will provide more accurate data to test the computational 
methods. Indeed, massively multiplexed methods for the simultaneous measurement of 
protein-RNA interactions from tens to hundreds of RBPs, such as antibody barcode eCLIP 
(94) and Split and Pool Identification of RBP targets (SPIDR) (95), have been recently 
developed, and they are expected to produce massive interaction datasets in the near future 
(10). 
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Figures  
Figure 1. Performances obtained for the prediction of TF-target and RBP-target interactions from scRNA-
seq data. (A) Probability densities of the Early Precision Ratio (EPR) measured across methods and datasets for 
the TF-target and RBP-target datasets. The ground truth network is given by cell-type specific ChIP-seq and 
eCLIP interactions for TF-target and RBP-target interactions, respectively (p-value= 4.4 x 10-5 , Kolmogorov-
Smirnov test). (B) Bar plots showing the EPR obtained for TF-target and RBP-target interactions by each GRN 
inference method, for the K562 CEL-seq scRNA-seq dataset. Both panels refer to the analyses performed using 
the top 500 HVGs. The black dashed line shows the EPR of a random predictor. 
 
Figure 2. Performances obtained after filtering the inferred RBP-RNA interactions using the catRAPID 
algorithm. (A) Heatmap showing the EPR measured for each scRNA-seq dataset and GRN inference method 
after the catRAPID-based filter of the inferred networks. The number in brackets in each cell indicates the relative 
percentage difference in EPR between the rankings filtered using catRAPID and the original ones. A black box 
indicates EPR smaller than the one of a random predictor. The colors in the heatmap are scaled between 0 and 1 
by row, ignoring values less than that of a random predictor. The table on the left shows the statistics of the 
eCLIP ground truth networks for each dataset. (B) Probability densities of the EPR across methods and datasets 
for the original rankings and those filtered using catRAPID. The ground truth network is given by eCLIP 
interactions (p-value= 6.8 x 10-5, Kolmogorov-Smirnov test). The black dashed line shows the EPR for a random 
predictor. (C) Same as B, but for indirect RBP-RNA interactions obtained by removing eCLIP interactions from 
shRNA RNA-seq ones (p-value=7.3 x 10-4, Kolmogorov-Smirnov test). In all panels we used scRNA-seq datasets 
with RBPs included in the eCLIP data and the top 500 HVGs. 
 
Figure 3. Comparing the inference of RBP-mRNA and RBP-lncRNA interactions. Bar plots showing the EPR 
measured for datasets with eCLIP RBPs and 400 HVmRNAs or 400 HVlncRNAs, for each GRN inference 
method (columns) and scRNA-seq dataset (rows). A filled box for an inference method or a dataset indicates that 
it has the highest EPR (on average), with the color corresponding to mRNAs or lncRNAs, as indicated in the 
legend. In each bar plot we show the comparison between the performances obtained for mRNA and lncRNAs 
before (“original”) and after (“catRAPID”) the catRAPID-based filter. The dashed black line indicates the EPR of a 
random predictor. 
 
Figure 4. Identification of hub RBPs and hub RNAs in protein-RNA networks. Bar plots showing the JCR for 
hub RBPs, hub mRNAs and hub lncRNAs before (“original”) and after (“catRAPID”) the catRAPID-based filter, for 
the HepG2 Smart-seq2 and K562 CEL-seq datasets, that, on average, achieve the best performance in 
identifying hub RBPs and hub RNAs, respectively. The dashed black line indicates the JCR of a random 
predictor. 
 
Figure 5. Validation of the method using RIP-seq experiments in mouse cell systems. (A) EPR measured 
for the inference made on the SPLiT-seq dataset of the C2C12 murine cell line recapitulating myoblasts to 
myotubes differentiation. Performances are tested on the ADAR1 RIP-seq experiments at 0h (myoblasts; here 
snRNA-seq, see Supplementary Figure S19A for scRNA-seq) and 72h (myotubes; see Supplementary Figure 
S19B) of C2C12 differentiation. (B) EPR for the SCRB-seq dataset of mouse embryonic stem cells differentiation 
driven by Retinoic Acid. Performances are tested on the Caprin1 RIP-seq experiments at 0h (undifferentiated 
mESCs; see Supplementary Figure S19C) and 96h (RA-differentiated cells). In both panels we show only 
algorithms for which at least two experimental interactions are present in the inferred network, before the 
catRAPID-based filter. 
 
Figure 6. Gene Set Enrichment Analysis of inferred RBP co-interactions. (A-B-C) Bar plots showing the -
log10(p-value) (left) and Normalized Enrichment Score (NES) obtained from the Gene Set Enrichment Analysis 
(GSEA) on the inferred RBP-RBP pairs ranked according to the fraction of shared RNA targets, for each GRN 
inference method. (A) scRNA-seq of the HEK293T cell line obtained with the 10x protocol. (B) scRNA-seq of the 
HEK293T cell line obtained with the Smart-seq3 protocol. (C) scRNA-seq of the HCT116 cell line obtained with 
the Drop-seq protocol. p-values capped to 10-16 are indicated by a star. (D) GSEA enrichment plots for the most 
significant inference method for each scRNA-seq dataset (3000 HVGs).  
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