Radial glia control microglial differentiation via integrin avb8-dependent trans-activation of TGFB1

Gabriel L. McKinsey1*, Nicolas Santander2, Xiaoming Zhang3, Killian Kleeman3, Aditya Katewa1, Lauren Tran1, Kaylynn Conant1, Matthew Barraza4, Carlos Lizama2, Hyun Ji Koo1, Hyunji Lee1, Dibyanti Mukherjee1, Helena Paidassi6, E. S. Anton7, Kamran Atabai5, Dean Sheppard5, Oleg Butovsky3, Thomas D. Arnold1*

1University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
2Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
3Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
4Northwestern University, Department of Neuroscience, Chicago, IL, USA
5University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
6Centre International de Recherche en Infectiologie, Lyon, France
7University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

*Correspondence: gabriel.mckinsey@ucsf.edu, thomas.arnold@ucsf.edu

Abstract

Microglia diversity emerges from interactions between intrinsic genetic programs and environment-derived signals, but how these processes unfold and interact in the developing brain remains unclear. Here, we show that radial glia progenitor-expressed integrin beta 8 activates microglia-expressed TGFB1, permitting microglial development. Domain-restricted deletion of Itgb8 in these progenitors establishes complementary domains of developmentally arrested “dysmature” microglia and homeostatic microglia that persist into adulthood. In the absence of autocrine TGFB1 signaling, we find that microglia adopt a similar reactive microglial phenotype, leading to astrogliosis and neuromotor symptoms almost identical to Itgb8 mutant mice. By comparing mice with genetic deletions in critical components downstream of Itgb8, we show that non-canonical (Smad-independent) signaling partially suppresses the dysmature microglia phenotype, associated neuromotor dysfunction and expression of disease-associated genes, providing compelling evidence for the adoption of microglial developmental signaling pathways in the context of injury or disease.

Introduction

A substantial body of evidence has shown that transforming growth factor beta (TGFβ) signaling is crucial for microglial development and function1. In vitro studies have indicated that microglial-specific gene expression and survival can be induced by application of TGFB12 and Tgfb1 null mice display severe neuropathological changes, including microgliosis, neuronal cell death, and synaptic loss3,4. Mice mutant for the microglial enriched gene Lrrc33 (Nrros), which binds and presents TGFB1 to its cognate receptor TGFBR2, have severe microglial defects, but no major vascular abnormalities5,6. These findings suggest that the microglial defects seen in Tgfb1 mutants are not the result of vascular defects, but rather derive from the direct effects of TGFB1 signaling in microglia. Similarly, conditional deletion of Tgfb2 in microglia results in the disruption of microglial homeostasis7–9.
TGFβ1 is synthesized in a latent inactive complex that requires two key steps to be activated10,11. First, latent TGFβ1 is anchored to the surface of one cell type by a so-called “milieu” molecule, LRRC33 (NRROS). Second, the integrin avb8 dimer on neighboring cells binds to and activates latent-TGFβ1, which can then signal to TGFBR2. Cryo-EM analyses of avb8 in complex with TGFβ1 and LRRC33 support a model whereby the release and diffusion of active TGFβ ligand is not necessary; rather, TGFβ1 is positioned by LRRC33 and avb8 to interact with TGFBR2, reinforcing TGFβ signaling in the cell which expresses TGFβ10,11. This “paracrine activation / autocrine signaling” model predicts that deletion of \textit{ltgb8} in one cell type primarily affects a neighboring cell type which both presents and responds to TGFβ1. Consistent with this model, \textit{ltgb8}, \textit{Tgfb1}, \textit{Tgfb1RGE}, \textit{Lrrc33} mouse mutants have largely overlapping phenotypes. However, the specific cell types expressing these various signaling components, and the timing of their interactions during brain development have remained unclear.

In a previous study, we demonstrated a critical role for integrin avb8 in presenting active TGFβ to microglia7. We found that in the absence of avb8-mediated TGFβ signaling, microglia are developmentally arrested and hyper-reactive. Furthermore, the presence of these “dysmature” microglia (and not just the absence of mature microglia) causes loss of GABAergic interneurons and myelination failure, aspects of pathology underlying the development of a severe neuromotor syndrome characterized by seizures and spasticity. We found that this phenotype is entirely due to loss of TGFβ signaling in microglia during brain development because microglia-specific deletion of \textit{Tgfb2} during early stages of brain development completely recapitulated the \textit{ltgb8} mutant phenotype.

In this study, we aimed to identify 1) The relevant \textit{ltgb8} expressing cell types that mediate microglial TGFβ activation; 2) The developmental timing of \textit{ltgb8}-mediated TGFβ signaling in microglia; 3) The cellular source and identity of the TGFβ ligand relevant for microglial development and homeostasis; 4) The relationship between developmentally disrupted microglia and disease associated microglia, and 5) The role of canonical (Smad-mediated) versus non-canonical TGFβ signaling in microglia. Here, we have defined the genes, timing, and cell-cell interactions required for \textit{ltgb8}-TGFβ dependent development of the neuroimmune system. By systematically deleting \textit{ltgb8} from different cell lineages of the adult and embryonic brain, we show that \textit{ltgb8} expression, specifically in embryonic radial progenitors, is necessary for microglial differentiation, but is dispensable to maintain homeostasis. We find that microglial expressed \textit{Tgfb1} is required cell-autonomously for microglial differentiation and, in contrast to \textit{ltgb8}, is also required for the maintenance of microglial homeostasis. By analyzing various \textit{ltgb8}-TGFβ pathway mutants, we find that non-canonical TGFβ signaling fine-tunes microglial maturation and homeostasis, such that upstream mutants have amplified microglia and neuromotor phenotypes compared to \textit{Smad2/3} conditional mutants. Together, these data support the model that \textit{ltgb8}-TGFβ1 signaling via radial glia-microglial interactions is crucial for the embryonic maturation of microglia, and that postnatal microglial \textit{Tgfb1} expression is necessary for the maintenance of microglial homeostasis.

Radial glia \textit{ltgb8} expression promotes vascular and microglial development

We previously found that CNS-wide deletion of \textit{ltgb8} using \textit{Nestin}\textsubscript{Cre} leads to microglial dysmaturation and associated neuromotor impairments nearly identical to those seen in mice with conditional deletion of \textit{Tgfb2} in microglia7. \textit{Nestin}\textsubscript{Cre} constitutively removes \textit{ltgb8} from all cells derived from the early neuroepithelium (astrocytes, oligodendrocytes, and neurons), and \textit{ltgb8} is expressed in all of these cell types (Supplementary Fig 1)12. To determine which of these \textit{ltgb8}-expressing cells are responsible for the phenotypes observed in \textit{ltgb8}f/f;Nestin\textsubscript{Cre} mice, we generated six different \textit{ltgb8} conditional knockout lines to systematically delete \textit{ltgb8} from astrocytes, oligodendrocytes or neurons individuallly and in combination (Supplementary Figure 2). As summarized in Supplementary Figure 1, none of these cell-type specific \textit{ltgb8} mutants produced the phenotypes observed in \textit{ltgb8}f/f;Nestin\textsubscript{Cre} mice (motor dysfunction, microglial TIMEM119/P2RY12 loss, GFAP upregulation). Most notably, conditional deletion of \textit{ltgb8} using \textit{hGFAP}\textsubscript{Cre} resulted in no obvious neuropathological changes despite recombining nearly all neuron, astrocytes and oligodendrocytes in the cortex (98.3\%\pm 0.3\%; 98.1\%\pm 2.7\%; 100\% respectively)(Supplemental Figure 2). These data indicate that \textit{ltgb8} is dispensable for maintaining microglial, neuro/glial and vascular homeostasis in adult mice.

To understand why \textit{Nestin}\textsubscript{Cre} mediated \textit{ltgb8} deletion resulted in a fulminant neuromotor phenotype, while deletion from all other brain cell types (alone or in combination) did not, we considered the unique features of \textit{Nestin}\textsubscript{Cre}12. \textit{Nestin}\textsubscript{Cre}-mediated recombination occurs at ~ embryonic day E10.5, resulting in loss of \textit{ltgb8} in radial

1 Conditio
glia and their progeny; Figure 1C,D, Supplementary Figure 2). Interestingly, hGFAPCre also recombines radial glia progenitors and their progeny, but three days later than NestinCre at ~E13.513,14. Both of these lines have recombination in almost all neurons and glia by adulthood (Supplementary Figure 2). The sequential recombination of brain progenitors in Itgb8f/f;NestinCre (complete phenotype) and Itgb8f/f;hGFAPCre (no apparent phenotype) suggests that the developmental timing of Itgb8 expression in, or deletion from, neuroepithelial progenitor cells or radial glia is responsible for the stark phenotypic differences in these mice.

Published RNA-Seq (Fig. 1A, Supplemental Figure 3A) and in situ hybridization (Supplemental Figure 3B) show that Itgb8 is expressed in neuroepithelial progenitor cells throughout the brain starting by E8.5, and that by E14.5 Itgb8 is most highly expressed in radial glia progenitors, and less so in maturing astrocytes and oligodendrocytes15. We confirmed this using Itgb8f/f reporter mice, finding intense tdT expression in ventricular zone progenitors at E14.5 (Fig 1b and Supplementary Figure 3C)16 as well as tdT expression in radial glia fibers and endfeet in the embryonic meninges (open and closed arrowheads in B respectively).

To more directly test the hypothesis that early developmental expression of Itgb8 is necessary for microglial maturation, we analyzed Itgb8 conditional knockouts (NestinCre, hGFAPCre, Olig2Cre) at E14.5. We also generated Itgb8f/f;Emx1Cre mice, in which Cre is expressed in neocortical neuroepithelial cells just before the formation of radial glia at E917. As we previously reported1, we found that Itgb8f/f;NestinCre mice develop vascular dysplasia and hemorrhage in the brain starting at E11.5 (not shown), which progresses in a ventral-dorsal fashion to include all periventricular vessels by E14.5 (Fig. 1D). Coinciding with these vascular changes, we observed that IBA1+ macrophages were strongly associated with dysplastic vessels in Itgb8f/f;NestinCre mutants (arrowhead in Fig. 1D), and were characteristically dysmature, i.e. lacking expression of mature/homeostatic microglia marker P2RY12, and reciprocally upregulating (or persistently expressing) CD206, a marker of undifferentiated microglial precursors and border associated macrophages (BAMs) (Fig. 1D)18,19,20,21. While the vascular phenotype and hemorrhage was largely localized to areas near the cerebral ventricles (the periventricular vascular plexus, PVP), we observed microglia lacking P2RY12 staining throughout the brain, including areas far from hemorrhage, suggesting that the two phenotypes might be dissociable, i.e. that hemorrhage is not causing these widespread microglial changes or vice-versa.

Similar to Itgb8f/f;NestinCre embryos, Itgb8f/f;Emx1Cre E14.5 embryos had vascular abnormalities and hemorrhage near the cerebral ventricles, concomitant with microglial changes throughout the developing cortex and hippocampus. However, these vascular/hemorrhage and microglial abnormalities in Itgb8f/f;Emx1Cre mice were strikingly domain-specific; hemorrhage and microglial changes occurred only in regions where Cre-recombinase had been active (as indicated by tdTomato Cre-reporter expression) (Fig. 1D). In sharp contrast, Itgb8f/f;hGFAPCre mice lacked any apparent phenotype (Fig. 1D). Similar to Itgb8f/f;hGFAPCre mice, we observed no obvious vascular or microglial phenotype in Itgb8f/f;Olig2Cre (Supplementary Figure 4). This Cre line is active at or before E14.5, but not in radial glia. Based on the timing of Itgb8 expression in the brain and the timing of recombination in these various Cre lines (Emx1Cre ~E9; NestinCre ~E10.5; hGFAPCre ~E13.5), our data indicate that Itgb8 expression in early stage radial progenitors promotes both vascular and microglia maturation, and that expression of Itgb8 in astrocytes, oligodendrocytes, and in post-mitotic neurons is dispensable for brain vascular and microglia development, and for ongoing cellular homeostasis.

Initial descriptions of microglia by del Rio-Hortega proposed that microglia are developmentally derived from the inner layer of the meninges, the pia mater22. Recent genetic fate-mapping reports show that microglia are derived from a CD206 expressing undifferentiated macrophage precursors21,19,20. Upon differentiating, these progenitors down-regulate the expression of CD206 and up-regulate microglial markers such as P2RY12. To determine whether embryonic radial glia make contact with CD206+ microglial precursors, we crossed Emx1Cre mice to a mouse line (RG-Brainbow) that mosaically expresses a Cre-dependent plasma membrane-tagged fluorescent reporter under the GLAST promotor23. We then examined the interaction between radial glial endfeet and CD206+ macrophages in the meninges, where most embryonic CNS-associated CD206+ macrophages reside. Analysis of the mosaic expression of mGFP (membranous) in E14.5 Emx1Cre;RG-Brainbow embryos revealed contact between radial glia endfeet and CD206+ macrophages in the innermost layer of the meninges (Figure 1G), consistent with the model that meningal CD206+ microglial precursor interaction with Itgb8 expressing radial glial endfeet is necessary for the TGFβ-dependent differentiation of these progenitors (Figure 1H).
In total, these data suggest that Itgb8 expression in early embryonic radial glia is necessary for the TGFβ-dependent differentiation of CD206+ microglial precursors, and that in the absence of Itgb8, these CD206+ precursors populate the brain, but fail to express microglial-specific markers.

Domain-specific microglial dysmaturation persists in adult Itgb8f/f;Emx1Cre mice

We next followed Itgb8f/f;Emx1Cre mice into adulthood to see how developmental phenotypes might evolve over time. Similar to Itgb8f/f;NestinCre, mice, vascular defects and hemorrhage resolved, while microglial changes persisted. To examine the transcriptional properties of microglia in Itgb8f/f;Emx1Cre mice, we isolated affected cortical and hippocampal microglia microglia by fluorescence-activated cell sorting and sequenced RNA derived from these microglia. To explore our hypothesis that cortical and hippocampal microglia in Itgb8f/f;Emx1Cre microglia are developmentally blocked in an immature state, we compared this transcriptional data to a recently published transcriptional analysis that identified 7 clusters of genes associated with microglia at various stages of development, from the early yolk sac progenitor stage through embryonic development and into adulthood.42 Remarkably, when we compared the expression of these genes in adult Itgb8f/f;Emx1Cre dysmaturation microglia to adult control microglia, we found a striking enrichment for genes in clusters 3-5, which represent transcripts that are enriched in microglia during early development (Figure 2A, B). Conversely, genes that were enriched in clusters 6 and 7, which represent late embryonic/neonatal and adult stages were strikingly downregulated (Fig. 2B). Immunochemistry revealed that the dysmaturation microglia phenotype was identical to that we observed in Itgb8f/f;NestinCre, and Tgbr2f/f;Cx3cr1Cre mice (P2RY12emb, Tmemb19emb; CD206hi, CLEC7ah and APOEh) and was tightly restricted to the Emx1Cre recombination domain (Figure 2C-G). Outside this domain, microglia were comparable to control mice. Surprisingly, and in contrast to Itgb8f/f;NestinCre, mice, Itgb8f/f;Emx1Cre mice had no obvious neuro-motor deficits or early mortality, suggesting that the profound motor disturbances in Itgb8f/f;NestinCre and Tgbr2f/f;Cx3cr1Cre are not derived from disruption of the motor or sensory cortex.

We also observed that among the genes enriched in dysmaturation Itgb8f/f;Emx1Cre microglia, a number of these genes are also enriched in disease and injury states (Fig. 2A, H). Furthermore, many of these disease and injury-associated genes are developmentally expressed (Fig. 2A), suggesting that disease and injury-associated microglia recapitulate transcriptional states associated with progenitor and early embryonic developmental stages. Together, these experiments indicate that domain-specific deletion of Itgb8 results in the blockage of microglial development, leaving them trapped in an early embryonic progenitor state, and establishes complementary domains of microglial dysmaturation and homeostasis that are maintained into adulthood.

Tgfβ1 is required cell-autonomously for microglial development

The only known biological function of ITGB8 is to activate TGFβ1 and TGFβ3 involved in the activation of TGFβ1 signals within the confines of latent TGFβ; the release and diffusion of TGFβ1 is apparently not required. This “paracrine activation / autocrine signaling” model predicts that deletion of Itgb8 on one cell type primarily affects another, and that deletion of Tgfβ1 will only affect the cells from which it is deleted. Here, we looked to test this model as it applies to microglial development.

To determine the developmental expression of Tgfβ1 in the brain, we examined published RNAseq atlases, which showed strong expression of Tgfβ1 in brain macrophages, and weaker expression in brain blood vessels (both endothelial cells and PDGFRβ+ mural cells) at E14.5 (Fig. 3A)25. Based on these data, we generated Tgfβ1 floxed conditional mutants using a Tgfβ1 floxed exon 1 allele and Cre lines to target macrophages/microglia (Cx3cr1Cre), endothelial cells and macrophages/microglia (Tie2Cre), or vascular mural cells (pericytes and vascular smooth muscle cells) and fibroblasts (PdgfrbCre).28 We compared vascular and microglial phenotypes in these conditional mutants to those in Tgfβ1−/− mice26 which serve as a positive control (Fig. 3C).

As previously documented, Tgfβ1−/− mice showed prominent vascular changes (glomeruloid malformations, dilated and tortuous vessels) and associated hemorrhage throughout the cerebrum ("X" and asterisk in Fig. 3C). Concomitant with vasculopathy and hemorrhage, microglia in Tgfβ1−/− embryos completely lacked P2RY12 staining, even in microglia distant from hemorrhaging (Figure 3C). Tgfβ1−/− mutants therefore closely phenocopy Itgb8f/f;NestinCre mutants. Tgfβ1f/f;Cx3cr1Cre mice displayed an identical microglia phenotype with loss of P2RY12 throughout the brain (Fig 3D). BAM cellular phenotypes were comparable to controls (not shown). Tgfβ1f/f;Tie2Cre mice similarly had almost no P2RY12 expression, with the few P2RY12+ microglia lacking TdT-recombination reporter indicating lack of gene deletion in these cells (Figure 3E and data not shown). Interestingly,

To determine the developmental stage at which Tgfb1 signaling is important for microglial development, we re-examined bulk RNAseq from sorted microglia and BAMs\(^{18}\) and observed that Tgfb1 is highly expressed in both microglia and BAMs throughout development (Fig. 4A). In contrast, P2ry12 and Pf4 are specific markers for these cells and are expressed at early developmental stages. To conditionally delete Tgfb1 from all macrophages in the developing brain, we generated Tgfb1\(^{f/f}\);Cx3cr1\(^{CreER}\) and flox/null Tgfb1\(^{fl/GFP}\);Cx3cr1\(^{CreER}\) E14.5 embryos from mothers treated with tamoxifen for three days after microglia have engrafted in the brain (E11.5-E13.5)\(^{30,31}\). Tgfb1 RNAscope showed strong expression of Tgfb1 in IB4+ blood vessels, IB4+ microglia and BAMs (meningeal and choroid plexus macrophages), and a loss of Tgfb1 expression in microglia and macrophages in Tgfb1\(^{f/f}\);Cx3cr1\(^{CreER}\) embryos (Fig. 4B,C). Similar to Tgfb1\(^{f/f}\);Cx3cr1\(^{Cre}\) E14.5 embryos, we found that Tgfb1\(^{f/f}\);Cx3cr1\(^{CreER}\) and Tgfb1\(^{fl/GFP}\);Cx3cr1\(^{CreER}\) embryos had normal vasculature and no evidence of hemorrhage, but lacked microglial P2RY12 staining (Fig. 4C). To specifically delete Tgfb1 in BAMs or microglia we relied on our previous findings that Pf4\(^{Cre}\) and P2ry12\(^{CreER}\) specifically drive recombination in these populations respectively\(^{21}\). After finding that P2ry12\(^{CreER}\) was unable to efficiently delete Tgfb1 in all microglia, we sought to improve deletion efficiency by homozygosing P2ry12\(^{CreER}\). We generated Tgfb1\(^{f/f}\);P2ry12\(^{CreER/CreER}\);Ai14 and Tgfb1\(^{f/f}\);P2ry12\(^{CreER/CreER}\);Ai14 E14.5 embryos, inducing three days prior as with Cx3cr1\(^{CreER}\) mice. Importantly, P2ry12\(^{CreER}\) is a P2A fusion knock-in allele mice that retains P2RY12 protein expression in homo and heterozygous mice\(^{21}\). In contrast to P2ry12\(^{CreER}\) heterozygotes, which showed a partially penetrant phenotype, Tgfb1\(^{f/f}\);P2ry12\(^{CreER/CreER}\);Ai14 and Tgfb1\(^{f/f}\);P2ry12\(^{CreER/CreER}\);Ai14 E14.5 embryos had a complete loss of P2RY12 expression that was identical to embryos with Cx3cr1\(^{CreER}\)-mediated Tgfb1 deletion (Fig. 4D). These data suggest that the microglial phenotype observed in these models is due to loss of Tgfb1 in microglia, and not microglia progenitors or BAMs. To more directly test the function of Tgfb1, we generated Tgfb1\(^{f/f}\);Pf4\(^{Cre}\);Ai14 E14.5 embryos. We previously showed that Pf4\(^{Cre}\) specifically recombinates all BAMs including choroid plexus, meningeal and perivascular macrophages\(^{21}\). Consistent with this, we observed specific recombinaction of meningeal and choroid plexus macrophages in E14.5 control and Tgfb1 conditional knockouts, but no changes in microglial P2RY12 expression (Figure 4E). Of note, Pf4 is highly expressed in yolk sac myeloid precursors\(^{32}\). Retention of recombined tdT+ cells in border-associated spaces, and lack of recombinaction in microglia, indicate that Pf4 is an early marker of BAM-committed cells. In total, our data indicate that Tgfb1 is required well into midgestation for microglial development, provides additional evidence that vascular or BAM-expressed Tgfb1 cannot compensate for the loss of Tgfb1 in microglia, and suggests that that loss of Tgfb1 in BAMs does not result in vascular or microglial dysfunction.

Tgfb1 is required to maintain postnatal microglial homeostasis

To assess whether there is an ongoing requirement for Tgfb1 in microglial homeostasis we induced recombination in Tgfb1\(^{f/f}\);Cx3cr1\(^{CreER}\) and Tgfb1\(^{fl/GFP}\);Cx3cr1\(^{CreER}\) mice at P4,5,6. These mice were then collected at P30 for histological analysis. In Tgfb1\(^{f/f}\);Cx3cr1\(^{CreER}\) and Tgfb1\(^{fl/GFP}\);Cx3cr1\(^{CreER}\) mice given tamoxifen at P4,5,6, we found large patches of dysmature microglia – cells lacking expression of homeostatic markers (e.g. P2RY12), and with apparent upregulation of immature or reactive microglia markers. Among these patches were microglia that appeared similar to microglia in control mice. The size and distribution of patches was highly variable. Of note, Tgfb1 tamoxifen-inducible mutants exhibited no obvious neurobehavioral abnormalities, possibly due to sub-total and/or delayed acquisition of the dysmature microglia phenotype. To assay the degree of Tgfb1 recombination in these mice, we performed RNAscope on Tgfb1\(^{f/f}\);Cx3cr1\(^{CreER}\) mice, using probes targeting the floxed region of Tgfb1. This analysis showed that dysmature microglia lacked Tgfb1, while normal appearing microglia retained Tgfb1 expression at levels similar to wild type mice (Fig. 4G) Remarkably, Tgfb1-expressing microglia and vascular cells were often found intermingled with Tgfb1 cKO microglia indicating that Tgfb1 from one cell cannot fully compensate for the loss of Tgfb1 in neighboring cKO cells. Together these data further support the contention that Tgfb1 is required cell autonomously to maintain neonatal microglial homeostasis.
Conditional Smad2/3 mutants reveal role for non-canonical TGFβ signaling in microglial homeostasis and neuromotor functioning.

After engaging the TGFβ-receptor, TGFβ signaling proceeds through both canonical (SMAD-dependent) and non-canonical (SMAD-independent) pathways (Fig 5A). To understand whether microglia abnormalities and associated neuromotor dysfunction can be attributed to canonical versus non-canonical TGFβ signaling, we generated Smad2/3f/f;Cx3cr1Cre mice and compared the behavioral, transcriptional and histological properties of these mice to Tgfb1f/f;Cx3cr1Cre mice. Both Smad2/3f/f;Cx3cr1Cre and Tgfb1f/f;Cx3cr1Cre mutants showed evidence of neonatal brain hemorrhage (data not shown). Following mice into adulthood, Tgfb1f/f;Cx3cr1Cre mice presented at 2 months of age with neuromotor dysfunction highly similar to 2-month-old Itgb8f/f;NestinCre, and Tgfb2f/f;Cx3cr1Cre mice and Lrrc33f/f mice. In contrast, Smad2/3f/f;Cx3cr1Cre mice showed no obvious behavioral abnormalities until 15 months of age, at which point some mice exhibited a slight tremor.

To understand why Smad2/3 mutants lacked neurobehavioral symptoms comparable to other Itgb8-Tgfb1 signaling mutants, we compared the transcriptional properties of Itgb8, Lrrc33, Tgfb1, Tgfb2 and Smad2/3 conditional mutant models using whole brain and microglia bulk RNASeq (Figure 5B-E, Supplementary Figure 6). Whole brain transcriptomes from TGFβ pathway mutants were highly correlated, as would be expected from disrupting genes in a shared signaling pathway (Fig. 5B). Interestingly, Lrrc33 and Itgb8 mutants, the two most "proximal" to TGFβ1 activation, were the two most highly correlated gene sets. In contrast, Smad2/3 mutants, being the most distal from TGFβ1 activation were the least correlated, possibly reflecting the accumulation of interceding non-canonical signaling pathways. We also identified several key differences among pathway mutants. First, we noticed that the pathway genes themselves were differentially altered in the various mutants (Fig. 5C) suggesting compensatory pathway feedback. Among these, Lrrc33 is strongly upregulated in Itgb8, Tgfb1, and Tgfb2 mutants, compared to Smad2/3 mutants in which Lrrc33 is not differentially expressed. Beyond these potential feedback-associated gene changes, the most highly differentially expressed genes were largely microglia-specific, which we confirmed by comparing to bulk RNAseq of sorted microglia from each model. Notably, the reduction in homeostatic and the increase in MGNd/DAM genes were generally less pronounced in Smad2/3 mutants than in all other mutants, in association with the much less severe neuromotor phenotype (Fig. 5D and Supplementary Figure 5). We then reasoned that whole brain transcriptomic differences between Smad2/3 mutants and other mutants could reveal gene sets relevant for neurobehavioral symptoms. Isolation of genes that were differentially expressed in Tgfb1 and Tgfb2 mutants, but not Smad2/3 mutants in isolated microglia and whole brain (Supplementary Figure 5) yielded several putative biological processes enriched in symptomatic mutants. Phagocytosis (vacuolar acidification), myelination, and synaptic pruning were among the most representative terms associated with Tgfb2f/f;Cx3cr1Cre and Tgfb2f/f;Cx3cr1Cre microglia and whole brain RNAseq gene sets, which also differentiate these models from Smad2/3f/f;Cx3cr1Cre mice (Supplementary Figure 5).

Among microglia-specific genes differentially expressed in Smad2/3f/f;Cx3cr1Cre versus other mutant models, we found Apoe, Clec7a and Lgals3 to be particularly interesting (Fig. 5D). These genes are transiently enriched in populations of developmentally restricted microglia associated with myelin and axonal tracts (Axonal tract microglia, ATM), and in areas of active neurogenesis (proliferation associated microglia, PAM)35. Of note, we previously found evidence for delayed myelination in Itgb8f/f;NestinCre and Tgfb2f/f;Cx3cr1Cre mutant mice5.

Transcriptional changes in neuro-degenerative disease associated microglia (DAM or MGNd) depend on the APOE pathway, and MGNd signature genes, including Spp1, Gpnnmb, and Clec7a are suppressed in disease models that also lack Apoe7,37. We were therefore interested to understand the degree to which Apoe might regulate PAM/MGNd signature genes, and whether increased expression of APOE in Itgb8, Lrrc33, Tgfb1, and Tgfb2 mutants might account for their more severe neuromotor symptoms. To that end, we generated Tgfb2f/f;Cx3cr1Cre, Apoe−/− and Tgfb2f/f;Cx3cr1Cre, Apoe−/− mutant mice, and evaluated their behavioral and neuroinflammatory (microglial) phenotypes at P9038 (Supplemental Figure 6). Surprisingly, despite the transcriptomic similarity between dysmature and MGNd microglia, we found that deletion of APOE in Tgfb2f/f;Cx3cr1Cre mice had no major effects on the neuromotor phenotype or microglial phenotypes (Supplemental Figure 6). This is similar to PAM/ATM microglia which also do not depend on APOE35. These data indicate that, unlike MGNd microglia, dysmature microglia do not depend on APOE for their polarization to occur, or alternatively, that non-canonical TGFβ signaling functions directly downstream of Apoe in microglial polarization.
We recently found that MgND-polarized microglia can directly induce astrocyte activation similar to that observed in AD (in Review, Nature Immunology). Astrocyte microactivation is correlated with the degree of MgND polarization, and is mechanistically linked to microglia expression of LGALS3. We sought to determine whether the differences in symptom severity in Smad2/3<fref>,Cx3cr1_{Cre} vs other pathway mutants can be attributed to relatively reduced expression of LGALS3, and whether SMAD2/3 mutant mice have evidence of correspondingly reduced astrocyte activation. To that end, we compiled a list of astrocyte activation markers from published data sets including models of brain injury and assessed the expression levels of these genes in our whole brain RNAseq dataset. This analysis revealed remarkable correlation among differentially expressed genes in Itgb8-TGFβ pathway mutants - Itgb8, Lrc33,Tgfb1, and Tgfbr2 pathway mutants, which have more polarized MgND-like microglia compared to Smad2/3<fref>,Cx3cr1_{Cre} mice, also had more polarized astrocyte genes including ApoE, GFAP, Fabp7, and Vimentin (Fig. 5E). One potential mechanism for this differential polarization of astrocytes is the differential expression of Lgals3, a gene expressed by MgND microglia that we recently found to drive astrocyte polarization and neuropathology in a mouse model of Alzheimer's disease (in Review, Nature Immunology). Examination of LGALS3 expression by immunohistochemistry confirmed that LGALS3 expression was much higher in Tgbf1_{1f/f},Cx3cr1_{Cre} than Smad2/3_{f/f},Cx3cr1_{Cre} mice, providing a potential explanation for the differential behavioral outcomes in these mice, despite the loss of microglial homeostatic markers in both models (Fig 5F-H). Interestingly, while most brain regions in Smad2/3_{f/f},Cx3cr1_{Cre} mice did not show microglial LGALS3 expression, areas containing dense white matter, such as the corpus callosum, showed upregulation of LGALS3 (Fig 5H). Tgbf1_{1f/f},Cx3cr1_{Cre} also had much higher relative levels of microglial LGALS3 expression (arrowheads in Fig 5G) in the corpus callosum and fiber tracts of the striatum (arrowheads in 5G), suggesting that white matter microglia may be particularly reactive to the effects of TGFβ signaling disruption. Together, these data indicate that isolated disruption of canonical (SMAD-directed) TGFβ signaling in microglia results in neuropathological phenotypes that are less severe than in mice with more proximal disruptions in the TGFβ signaling cascade, and that the disease-associated microglial gene LGALS3 may drive astrocytic changes seen in Tgbf1_{1f/f},Cx3cr1_{Cre} mice that are less severe or absent in Smad2/3_{f/f},Cx3cr1_{Cre} mice.

Discussion

Here, we show that that microglial differentiation is dependent upon the activation of microglial TGFβ1 by Itgb8-expressing radial progenitors. Disruption of this signaling by conditionally deleting radial progenitor Itgb8, microglial Tgfb1 or the downstream transcription factors Smad2/3 in microglia results in a microglial transcriptional phenotype marked by the absence of mature microglial markers, persistent expression of genes normally expressed in microglial precursors, and heterogeneous accrual of reactive genes commonly found in transient developmental (PAM/ATM) or disease-associated (DAM/MGnD) microglia subsets. (Need to change this as we now see that MgND markers are expressed developmentally and are enriched in b8 mutants).

Interestingly, we find that domain-specific deletion of Itgb8 in early embryonic radial progenitors results in microglial defects that are restricted to the brain regions created by these progenitors. Furthermore, consistent with recent reports that microglia are derived from a CD206+ precursor^{19–21}, and the earliest characterizations of microgliogenesis by del Rio-Hortega²², we find that embryonic radial glial endfeet make direct contact with CD206+ meningeal macrophages. This is consistent with our model that the physical interaction between radial progenitors and immature microglia is crucial for radial glial Itgb8-mediated TGFβ signaling in microglia. This is also consistent with previous reports of microglial/radial glial interactions³⁹. Lack of a similar microglial phenotype in Itgb8^{f/f}:hGFAP_{Cre} mutants, which recombine dorso-lateral radial progenitors ~3 and ~5 days after Nestin_{Cre} and Emx1_{Cre} respectively, places the timing of this interaction between E9 and E13.5, when microglia initially begin to invade the developing nervous system^{40,13}. Remarkably, dysmature microglia in Itgb8/Tgfb1 pathway mutants are highly similar to myeloid progenitors at this age. Our data are most consistent with recent fate-mapping data showing that microglia are derived from a CD206+ precursor and that disruption of Itgb8/Tgfb1 signaling results in the maintenance of immature markers that would otherwise be downregulated, as well as the blockage of microglial marker expression. Future studies are needed to determine where and more precisely when this interaction occurs developmentally, and to better determine whether the specific interactions between ingressing microglia and radial glial basal and/or apical endfeet in the meninges or ventricular surface are necessary for microglial differentiation.

Our findings suggest that additional new models of brain region restricted microglial dysfunction can be created by deleting Itgb8 in other radial progenitor domains. Taking advantage of the trans-activation of TGFβ1 to create...
genetic models of brain region-restricted microgliopathy is particularly useful, as microglial Cre and CreER lines generally recombine microglia throughout the nervous system, and not in particular brain regions.31,41,42,43 We believe that the study of brain region-restricted microglial dysfunction will provide crucial information about how microglial dysfunction in particular brain regions contributes in a modular fashion to more complex behavioral and cognitive disruptions seen in other animal models and in humans with pervasive neurodevelopmental immune dysfunction. Combining mouse models of neuroinflammatory or neurodegenerative disease with brain region-specific \textit{Itgb8} conditional knock-out models will be especially illuminating.

In line with recent cryoEM data,10,11 we show that microglia depend on cell-autonomous expression of \textit{Tgf}b1 for their early maturation. Interestingly, we only observe a fulminating vascular/hemorrhage phenotype in \textit{Tgf}b1 null mice; deletion of \textit{Tgf}b1 in endothelial cells and microglia (\textit{Tie2Cre}), or in vascular mural cells and fibroblasts (\textit{Pdgfrb}Cre) had no major effect on cerebrovascular morphogenesis or barrier function. Therefore, vessel-expressed \textit{Tgf}b1 is apparently dispensable for microglial maturation, but the source of \textit{Tgf}b1 for vascular maturation remains unknown. Fitting with the paracrine activation / autocrine signaling model, we propose radial glial \textit{ITGB8} activates \textit{Tgf}b1 on endothelial cells and/or pericytes, so that the loss of endothelial \textit{Tgf}b1 can be compensated by pericyte \textit{Tgf}b1 or vice versa. It is also possible that \textit{Tgf}b1 in the embryonic circulation can compensate for the loss of vascular \textit{Tgf}b130.

In contrast to \textit{Itgb8} which we show is largely dispensable for maintaining microglial homeostasis, we find that microglial \textit{Tgf}b1 is necessary for microglial homeostasis postnataally. One potential explanation for this discrepancy could be the activation of \textit{Tgf}b1 by other integrin complexes or by integrin-independent pathways postnataally. The apparent absence of phenotype in mice with disruption of \textit{Itgb8} after birth is particularly important in considering \textit{Itgb8}-targeting therapeutics. We recently found that antibody-based blockade of \textit{ITGB8} in AD mouse models enhances \textit{MGNd} polarization and reduces the size of amyloid plaques (in Review, Nature Immunology). Altogether, our studies present a model for microglial development whereby interactions between neural progenitor and immature microglia are necessary for the \textit{avb8}-dependent activation of microglial \textit{Tgf}b1.

Acknowledgements

This study was supported in part by HDFCC Laboratory for Cell Analysis Shared Resource Facility through a grant from NIH (P30CA82103). This research was supported, in part, by the UCSF Vision Core shared resource of the NIH/NEI P30 EY002162. We would like to thank Marie La Russa for helpful manuscript editing suggestions. We would like to thank Dr. Richard Flavell for providing \textit{Cx3cr1Cre} and \textit{Cx3cr1GFP} mice. We would also like to thank Dr. Rosemary Ackhurst for providing \textit{Tgf}b1 null mice.

Author Contributions

T.A. supervised the study, performed the behavioral analysis in Figure S1 and did the cell counting in Figure S2. G.L.M. designed the study, under the supervision of T.A. G.L.M. performed the histological analysis, with specific contributions from others listed here. N.S. performed preliminary histological analysis of postnatal \textit{Tgf}b1F/F/\textit{Tgf}b1F/GFP; \textit{Cx3cr1Cre} and \textit{Smad2/3Cre}; \textit{Cx3cr1Cre} mice. G.L.M performed the imaging, with support from T.A. for Figure S2. Mouse husbandry was done by G.L.M., with support from N.S., who initially bred \textit{Tgf}b1F/F/\textit{Tgf}b1F/GFP; \textit{Cx3cr1Cre} and \textit{Smad2/3Cre}; \textit{Cx3cr1Cre} mice, and with support from A.K., L.T., M.B., K.C., and D.M.. G.L.M. performed RNA isolation and bulk RNA-seq experiments for Figure 7. N.S. performed bioinformatic analysis in Fig. 2 and 7. X.Z. performed RNA-seq analysis of sorted microglia in \textit{Itgb8fl/fl},\textit{Emx1Cre} mice for Figure 2, with bioinformatic support from K.K. A.K and L.T sectioned \textit{Tie2-Cre} and \textit{PdgfrbCre} embryos used in Fig 3. G.L.M. performed the flow cytometry experiments to isolate microglia from \textit{Tgf}b1F/F; \textit{Cx3cr1Cre} mice, with support from C.O. C.O. performed the flow cytometry experiments to isolate microglia from \textit{Smad2/3Cre}; \textit{Cx3cr1Cre} mice. L.T. collected and stained embryos used in the \textit{Emx1-Cre}; \textit{RG-Brainbow} analysis. H.K. helped to collect \textit{NestinCre} embryos used in Fig 1. H.P. provided the \textit{Itgb8-Tdt} mouse line and E.S. provided \textit{RG-Brainbow} mouse line. K.A. supervised C.O. D.S. provided input regarding experimental design and interpretation. O.B. supervised work by X.Z. and K.K. The manuscript was written by G.L.M and T.A..
Competing Interests

D.S. and UCSF hold patents on the uses of antibodies that block the alphavbeta8 integrin. D.S. is a founder and owns stock in Pliant Therapeutics, is on the Scientific Review Board for Genentech and is on the Inflammation Scientific Review Board for Amgen.

Figure Legends

Figure 1. Deletion of Itgb8 in early embryonic radial glia disrupts microglial maturation.

A) Analysis of Itgb8 expression in the E14.5 mouse embryo in neural progenitor cells (NPCs) and radial glia, microglia, endothelial cells, and mural cells. B) Itgb8-TdT reporter expression confirms strong Itgb8 expression in SOX9+NESTIN+ radial progenitors at E14.5. Open arrowhead marks radial glia fibers; closed arrowhead marks ramified radial glia endfeet at the surface of the neuroepithelium. C) Model describing developmental expression of Itgb8 in neuroepithelium and radial glia, and correlation with sequential timing of Cre recombination in Emx1Cre, NestinCre and hGFAPCre lines. (see also Supplementary Figures 2 and 3). D-F) Deletion of Itgb8 from neuroepithelial and radial progenitors using indicated Cre lines. Coronal brain sections stained for tdT (Cre recombination, red), vascular endothelium (CD31, cyan), and macrophages/microglia (IBA1, yellow); hemorrhage (red blood cells marked by TER119 (yellow) observed outside of vascular lumen (CD31, cyan) and microglia precursors (CD206, yellow), and committed/homeostatic microglia (P2RY12, cyan). G) E14.5 brain section from Emx1Cre;RG-brainbow mouse stained for membranous GFP (individual recombined radial glia; endfeet, green), microglia precursors (CD206, magenta), and committed/homeostatic microglia (P2RY12, yellow). Arrowheads indicate foot process of radial glia contacting presumptive pial-associated CD206+ microglia precursor (model to right). Scale bar in B=500μm, D=200μm, G=25μm.

Figure 2. Emx1-Cre deletion of Itgb8 results in anatomically restricted blockage of microglial differentiation.

A) Comparison of the transcriptional properties of adult Itgb8f/f; Emx1Cre mutant and control microglia to stage specific developmental markers reveals that dysmature microglia retain the gene expression profiles of early embryonic microglia. B) Analysis of developmental gene cluster expression reveals enrichment for progenitor (cluster 1) and early embryonic phase (clusters 3-5) enriched gene sets. C) Whole brain sagittal immunostaining of adult Itgb8f/f; Emx1Cre mice revealed anatomically restricted maintenance of the microglial precursor marker CD206 in the cortex and hippocampus (asterisk), accompanied by loss of the homeostatic marker P2RY12. D) Increased expression of the MGN marker LGALS3 in a subset of cortical and hippocampal microglia in Itgb8f/f; Emx1Cre mice (asterisk). Closed and open arrowheads in E-G) mark cortical and striatal microglia respectively. E) Downregulation of the microglial homeostatic marker TMEM119 in the cortex of a Itgb8f/f; Emx1Cre mouse. F) Cortex-restricted upregulation of the microglial reactive marker APOE in IBA1+ cells of the cortex (green cells). D) Cortex-restricted upregulation of the microglial reactive marker CLEC7a. Cc= cerebral cortex; Cc= corpus callosum; Str= striatum; Dashed line= cortical/striatal boundary. Scale bar in C= 2mm, E=150μm.

Figure 3. Microglial dysmaturation due to Tgfb1 deletion in microglia/macrophages.

A) Analysis of the embryonic expression of Tgfb1 in E14.5 neural progenitors, microglia, endothelial and mural cells (from E14.5,B,C) E14.5 coronal brain sections from control (Tgfb1+/−) embryos, or embryos with global (Tgfb1−/−) or cell-lineage specific deletion of Tgfb1 (Tgfb1f/f) in D) macrophages/microglia (Cx3cr1Cre), E) endothelial cells and microglia/macrophages (Tie2Cre), or F) vascular mural cells (PdgfrbCre) were stained for hemorrhage (TER119, magenta) and vasculature (CD31, green); microglia/macrophage (IBA1, magenta) association with blood vessels (CD31, green); and committed/hemostatic microglia (P2RY12, magenta). Only Tgfb1−/− mutants have consistent evidence of vascular dysplasia (marked by X) and hemorrhage (asterisk), whereas mice with microglia/macrophage deletion of Tgfb1 (Tgfb1−/−;Cx3cr1Cre and Tgfb1f/f;Tie2Cre mutants) have presence of dysmature microglia (open arrowheads, blowups to right). Scale bar in B=150μm.

Figure 4. Microglia provide their own TGFβ1 to promote and maintain homeostasis.

A) Sorted bulk-Seq analysis of embryonic microglia and BAMs reveals that Tgfβ1 is expressed in both microglia and BAMs during embryonic development, whereas P2ry12 and Pf4 are specific markers of these two respective
Analysis of control (B) and conditional Cx3cr1CreER mediated deletion of Tgfb deletion in the E14.5 forebrain following E11.5, 12.5 and 13.5 tamoxifen induction. Analysis revealed no hemorrhage (CD31 in green, TER119 in magenta), no change in macrophage/blood vessel association (IBA1 in magenta, CD31 in green), loss of the homeostatic marker P2RY12 (in magenta, IBA1 in green), and loss of Tgfb (cyan) in Isolectin B4 (green) and Tdt (red) labeled microglia, but not in IB4 + labeled blood vessels. D) Analysis of conditional P2\texttext{ry12}CreER mediated deletion of Tgfb deletion in E14.5 microglia the following E11.5, 12.5 and 13.5 tamoxifen induction. Analysis revealed no brain hemorrhage (CD31 in green, TER119 in magenta), no change in macrophage/blood vessel association (IBA1 in magenta, CD31 in green), and loss of the homeostatic marker P2RY12 (magenta), in IBA1+ (green) microglia. E) Analysis of conditional P\textit{f4}Cre mediated deletion of Tgfb deletion in E14.5 forebrain. Analysis revealed no brain hemorrhage (CD31 in green, TER119 in magenta), no change in macrophage/blood vessel association (IBA1 in magenta, CD31 in green), and no loss of the homeostatic marker P2RY12 (magenta), in IBA1+ (green) microglia. F) Bulk-seq analysis of Tgfb expression in the adult mouse brain25. Analysis revealed enrichment for Tgfb expression primarily in microglia and vascular cells. G) Analysis of conditional Cx3cr1CreER mediated deletion of Tgfb deletion in the P30 mouse brain following neonatal tamoxifen induction at P4,5 and 6. Analysis revealed a “patchy” distribution of Tgfb negative microglia with altered morphology and loss of P2RY12 (open arrowheads in 1) adjacent to patches of microglia with no loss of Tgfb or P2RY12. Scale bar in B=150\textmu m, G=100\textmu m.

Figure 5. Disruption of non-canonical TGF\textbeta signaling in microglia drives disease-associated gene expression.

A) Schematic of TGF\textbeta, with mutant mouse models analyzed by bulk and microglial flow cytometry noted by color (Itgb8=red; Tgfb=cyan; Lrrc33=orange; Tgfb=blue, Smad2/3=green). B) Correlation of bulk-seq gene expression across TGF\textbeta mutant models. C) Compensatory transcriptional changes of key TGF\textbeta signaling genes in different TGF\textbeta mutant models. D) Bulk-seq analysis of microglial homeostatic and disease associated (MnD/Dm) microglial markers across TGF\textbeta mutant models. E) Bulk-seq analysis of astrocytosis-associated markers across TGF\textbeta mutant models. F-G) Comparison of control (F) Tgfbfl+;Cx3cr1Cre, (G) Tgfbfl-;Cx3cr1Cre and (H) Smad2/3fl-;Cx3cr1Cre adult mice. Analysis revealed loss of the homeostatic marker P2RY12 in both conditional Tgfb and Smad2/3 mutants, but significantly higher upregulation of the MnD-associated microglial marker LGALS3 (see arrowheads). LGALS3 upregulation in Tgfb conditional mutants was significantly higher in white matter (asterisk in G and H) and was only seen in the white matter of Smad2/3 conditional mutants (H). Scale bar in F=50\textmu m.

Methods:

Key Resources Table:

<table>
<thead>
<tr>
<th>Reagent type</th>
<th>Designation</th>
<th>Source of references</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse line</td>
<td>Ai14</td>
<td>JAX</td>
<td>Stock No: 007914. RRID:IMSR_JAX:007914.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Aldh1L1-CreER</td>
<td>JAX</td>
<td>Stock No: 029655. RRID:IMSR_JAX:029655.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>CAG-Sun1/sfGFP</td>
<td>JAX</td>
<td>Stock# 030952. RRID: IMSR_JAX:030952.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Cx3cr1-Cre</td>
<td>JAX</td>
<td>Stock No: 025524. RRID:IMSR_JAX:025524.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Cx3cr1-CreER</td>
<td>JAX</td>
<td>Stock No: 020940. RRID:IMSR_JAX:020940.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Emx1-IRES-Cre</td>
<td>JAX</td>
<td>Stock No: 005628. RRID:IMSR_JAX:005628</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>hGFAP-Cre</td>
<td>JAX</td>
<td>Stock No: 004600. RRID:IMSR_JAX:004600.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>iSure-Cre</td>
<td>(Fernández-Chacón et al. 2019)</td>
<td>MGI:6361145.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Itgb8 flox</td>
<td>(Proctor et al. 2005)</td>
<td>MGI: 3608910.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Itgb8-tdT</td>
<td>(Nakawesi et al. 2021)</td>
<td>Obtained from Dr. Helena Paidassi.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Nestin-Cre</td>
<td>JAX</td>
<td>Stock No: 003771. RRID:IMSR_JAX:003771.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Olig2-Cre</td>
<td>JAX</td>
<td>Stock No: 025567. RRID:IMSR_JAX:025567.</td>
<td></td>
</tr>
<tr>
<td>Mouse line</td>
<td>Genotype</td>
<td>Supplier</td>
<td>Stock No</td>
<td>RRID</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>P2ry12-CreER</td>
<td>JAX</td>
<td></td>
<td>034727</td>
<td>IMSR_JAX:034727.</td>
</tr>
<tr>
<td>PdgfRb-Cre</td>
<td>JAX</td>
<td>MGI</td>
<td>6361145</td>
<td></td>
</tr>
<tr>
<td>Pf4-Cre</td>
<td>JAX</td>
<td></td>
<td>008535</td>
<td>IMSR_JAX:008535.</td>
</tr>
<tr>
<td>RG-Brainbow</td>
<td>(Nakagawa et. al. 2019)</td>
<td>Obtained from Dr. E. S. Anton.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smad2 flox</td>
<td>JAX</td>
<td>MGI</td>
<td>3822465</td>
<td></td>
</tr>
<tr>
<td>Smad3 flox</td>
<td>JAX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syn1-Cre</td>
<td>JAX</td>
<td></td>
<td>003966</td>
<td>IMSR_JAX:003966.</td>
</tr>
<tr>
<td>Tgfb1 flox</td>
<td>JAX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tgfb1 null</td>
<td>(Kulkami et. al. 1993)</td>
<td>MGI</td>
<td>1857671</td>
<td></td>
</tr>
<tr>
<td>Tgfb1-GFP</td>
<td>(Li et. al. 2007)</td>
<td>MGI</td>
<td>3719583</td>
<td></td>
</tr>
<tr>
<td>Tgfb2-R2-GFP</td>
<td>(Chytil et. al. 2002)</td>
<td>MGI</td>
<td>2384513</td>
<td></td>
</tr>
<tr>
<td>Tie2-Cre</td>
<td>JAX</td>
<td></td>
<td>008863</td>
<td>IMSR_JAX:008863.</td>
</tr>
<tr>
<td>Ubc-CreER</td>
<td>JAX</td>
<td></td>
<td>007001</td>
<td>IMSR_JAX:007001.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Description</th>
<th>Supplier</th>
<th>Cat#</th>
<th>RRID</th>
<th>Used at</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApoE</td>
<td>Rabbit monoclonal.</td>
<td>Abcam</td>
<td>ab183596</td>
<td>AB_2832971.</td>
<td>1:300.</td>
</tr>
<tr>
<td>CD206</td>
<td>Rat monoclonal antibody.</td>
<td>Biorad</td>
<td>MCA2235T</td>
<td>AB_1101333.</td>
<td>1:150.</td>
</tr>
<tr>
<td>CD11b-PE-Cy7</td>
<td>Rat monoclonal antibody.</td>
<td>eBioscience</td>
<td>50-154-54</td>
<td>AB_469588.</td>
<td></td>
</tr>
<tr>
<td>CD31</td>
<td>Goat polyclonal antibody.</td>
<td>R&D Systems</td>
<td>AF3628; AB_2161028</td>
<td>Used at 1:300.</td>
<td></td>
</tr>
<tr>
<td>Clec7a</td>
<td>Rat monoclonal antibody.</td>
<td>BioLegend</td>
<td>144302: AB_2561519</td>
<td>Used at 1:300.</td>
<td></td>
</tr>
<tr>
<td>Fcrls-APC</td>
<td>Rat monoclonal antibody.</td>
<td>Butovsky lab</td>
<td>Clone 4G11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB4-488</td>
<td>Goat polyclonal antibody.</td>
<td>Thermo Fisher</td>
<td>214111, AB_2314662</td>
<td>Used at 1:150.</td>
<td></td>
</tr>
<tr>
<td>IBA1</td>
<td>Rabbit polyclonal antibody.</td>
<td>Novus</td>
<td>NB100-1028</td>
<td>AB_521594.</td>
<td>1:300.</td>
</tr>
<tr>
<td>IBA1</td>
<td>Rabbit polyclonal antibody.</td>
<td>Wako</td>
<td>019-19741; AB_839504</td>
<td>Used at 1:300.</td>
<td></td>
</tr>
<tr>
<td>LGALS3</td>
<td>Rat monoclonal antibody.</td>
<td>CedarLane</td>
<td>CL8942AP</td>
<td>AB_10060357.</td>
<td>1:150.</td>
</tr>
<tr>
<td>Ly-6C-PerCP/Cy5.5</td>
<td>Rat monoclonal antibody.</td>
<td>Biolegend</td>
<td>128012; AB_1659241</td>
<td>Used at 1:300.</td>
<td></td>
</tr>
<tr>
<td>Nestin-488</td>
<td>Mouse monoclonal antibody.</td>
<td>Abcam</td>
<td>ab197495</td>
<td>AB_232861.</td>
<td>1:150.</td>
</tr>
<tr>
<td>NeuN</td>
<td>Mouse monoclonal antibody.</td>
<td>Millipore</td>
<td>MAB377</td>
<td>AB_2298772.</td>
<td>1:100.</td>
</tr>
<tr>
<td>Olig2-Rb</td>
<td>Rabbit polyclonal antibody.</td>
<td>Millipore</td>
<td>AB_89610</td>
<td>AB_570666.</td>
<td>1:300.</td>
</tr>
<tr>
<td>P2ry12</td>
<td>Rabbit polyclonal antibody.</td>
<td>Anaspec</td>
<td>55043A</td>
<td>AB_2298886.</td>
<td>1:500.</td>
</tr>
<tr>
<td>P2ry12</td>
<td>Rabbit polyclonal antibody.</td>
<td>A generous gift from Dr. David Julius.</td>
<td></td>
<td></td>
<td>1:1000.</td>
</tr>
<tr>
<td>PdgfRa</td>
<td>Goat polyclonal antibody.</td>
<td>R & D Systems</td>
<td>AF1062</td>
<td>AB_2236897.</td>
<td>1:300.</td>
</tr>
<tr>
<td>GFAP</td>
<td>Rabbit polyclonal antibody.</td>
<td>DAKO</td>
<td>Z0334</td>
<td>AB_10013382.</td>
<td>1:300.</td>
</tr>
<tr>
<td>pSmad3 (S423/S425)</td>
<td>Rabbit polyclonal antibody.</td>
<td>Abcam</td>
<td>ab52903; AB_882596</td>
<td>Used at 1:100.</td>
<td></td>
</tr>
<tr>
<td>Sox9</td>
<td>Goat polyclonal antibody.</td>
<td>R and D Systems</td>
<td>AF3075</td>
<td>AB_2194160.</td>
<td>1:300.</td>
</tr>
<tr>
<td>Ter119</td>
<td>Rat polyclonal antibody.</td>
<td>R&D Systems</td>
<td>MAB1125</td>
<td>AB_2297123.</td>
<td>1:150.</td>
</tr>
</tbody>
</table>
Mice: All mouse work was performed in accordance with UCSF Institutional Animal Care and Use Committee protocols. Please see key resources table for additional mouse line information.

Histology and Immunostaining: Adult mouse mouse brains were harvested at P60-P90 following transcardial perfusion with 20 mL cold PBS and 20 mL cold 4% formaldehyde. Brains and embryos were fixed overnight at 4 degrees in 4% formaldehyde, followed by overnight incubation in 30% sucrose. Samples were embedded (Tissue Plus O.C.T. Compound, Fisher Scientific) and sectioned at 20 µm. Some adult brains were sectioned at 40um. Sections were immunostained using a blocking/permeabilization buffer of PBS containing 2% BSA, 5% donkey serum and 5% TritonX-100. Primary and secondary antibodies were diluted in PBS containing 1% BSA and 25% TritonX-100. Secondary antibodies conjugated to Alexa fluorophores were used at 1:300 (Jackson ImmunoResearch). Immunostained sections were mounted with Prolong Gold Antifade Mountant (Thermofisher P36930). Please see Key Resources Table for list of antibodies and the relevant concentrations used for immunofluorescence.

RNAscope: 20µm cryosectioned tissue sections were processed for RNAscope using the manufactures protocol for cryosectioned tissue and reagents from the RNAscope Multiplex Fluorescent Reagent Kit v2 (Cat #323100) and Opal secondary antibodies (Okaya Biosciences FP1488001KT). A custom RNAscope probe set was used to target the floxed exon 1 of Tgfβ1 (Cat #1207831-C1). Slides were hybridized in the ACD HybEZ II Oven (Cat #321711).

Tamoxifen induction: Recombination was induced by three doses of tamoxifen dissolved in corn oil, administered by oral gavage every other day (150 µL of 20 mg/mL). For embryonic mouse inductions, pregnant dams were given tamoxifen (150 µL of 20 mg/mL) on E13.5, E15.5 and E17.5, for a total of three gavage injections. Neonatal tamoxifen injections were done at P4,5, and 6, at a dosage of 500 µg injected intraperitonealy (50UL of a 10mg/mL solution in corn oil). All mouse work was performed in accordance with UCSF Institutional Animal Care and Use Committee protocols. Mice had food and water ad libitum. The P2ry12-CreER mouse line will be deposited at Jackson Labs (Stock #034727) and at the Mutant Mouse Resource and Research Center (MMRRC).

Flow cytometry: The Igb8Cre,Emx1Cre Mice were euthanized in a CO2 chamber and then transcardially perfused with 10 ml cold Hanks’ Balanced Salt Solution (HBSS, ThermoFisher, 14175103). The mouse brain was isolated and the cortex was dissected from one hemisphere for microglia purification using the standard isolation procedure established in Butovsky lab45 Briefly, the cortex was homogenized and resuspended with 5 ml 70% Percoll Plus (GE Healthcare, 17-5445-02) and 5 ml 37% Percoll Plus placed on top. The microglia were enriched in the interface layer after centrifugation in 800 g, 4°C, for 25 min with an acceleration of 2 and a deceleration of 1. The microglia enriched cell population were stained with PE-Cy7 anti-mouse CD11b (1:300, eBioscience, 50-154-54), APC anti-mouse Fcrls (1:1000, clone 4G11, Butovsky Lab), and PerCP/Cy5.5 anti-mouse Ly-6C (1:300, Biolegend, 128012). The cells were then processed by a BD FACSAria™ II (BD Bioscience) and CD11b+Fcrls+ Ly-6C− cells were sorted into Eppendorf tubes for RNA-seq. Microglia from Smad2/3Cre,Cx3cr1Cre and Tgfβ1Cre,Cx3cr1Cre mice were isolated as previously described by the Arnol lab42.

Imaging: Confocal images were taken with 10x, 20x or 40x objectives using a motorized Zeiss 780 upright laser scanning confocal microscope or a motorized Zeiss 900 inverted laser scanning confocal microscope. Image brightness and contrast was optimized in ImageJ. Images and figures were arranged in Adobe Illustrator.

Statistical analysis: Sample size was not precalculated using a statistical framework, but conformed to general standards in the field. Sample analysis was not blinded. For all immunostaining quantification, values for each mouse were calculated by averaging three pictures from each mouse. Differences between means were compared using a two-tailed t-test, with an alpha of 0.05.
RNA sequencing:
For the sequencing of microglia isolated from \(\text{Itgb8}^{\text{ff}};\text{Emx1}^{\text{Cre}} \) mice, one thousand sorted microglia resuspended in 5 ml TCE buffer with 1% 2-Mercaptoethanol were placed into a 96-well plate and sent to Broad Technology Labs for Smart-Seq2 following their standard protocol. Briefly, cDNA libraries were generated using the Smart-seq2 protocol\(^6\). The amplified and barcoded cDNA libraries were loaded into Illumina NextSeq500 sequencer using a High Output v2 kit to generate 2 x 25 bp reads. For whole brain samples, RNA isolation was performed using dounce homogenization and Trizol extraction and alcohol precipitation. For Total RNA from FACS-sorted microglia from \(\text{Smad2/3}^{\text{ff}};\text{Cx3cr1}^{\text{Cre}} \) and \(\text{Tgfb1}^{\text{ff}};\text{Cx3cr1}^{\text{Cre}} \) mice, RNA was isolated using the QIAGEN RNAeasy micro kit. PolyA+ unstranded libraries were synthesized from total RNA (RIN > 6) with NEBNext Ultra II RNA Library Prep Kit and sequenced in a Illumina HiSeq4000 system (150 bp paired-end setting). Demultiplexed fastq files were aligned to the mouse genome (mm10) with Rsubread and quantified with FeatureCounts. Count normalization and differential expression analysis were performed with DESeq2. Correlations between multiple datasets were computed with the cor() function from base R and visualized using the corrplot package. Heatmaps were generated with the pheatmap package. Venn diagrams were produced with standard GNU coreutils and drawn in Inkscape. Overrepresentation analysis was performed using PANTHER from the GO portal. Datasets used in this study are as follows: newly generated data (whole brain data, isolated Tgfb1 mutant microglia data) have been deposited into the GEO database and will be made public upon publication. \(\text{Itgb8}^{\text{ff}};\text{Emx1}^{\text{Cre}} \) microglia and \(\text{Smad2/3}^{\text{ff}};\text{Cx3cr1}^{\text{Cre}} \) data were retrieved from the GEO database and will also be made public upon publication. \(\text{Tgfb1}^{\text{ff}};\text{Cx3cr1}^{\text{Cre}} \) microglia is from GEO GSE124868. Data from \(\text{Lrrc33}^{-/-} \) microglia and whole brain was obtained from GEO GSE96938.

References

14. Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., and Orban, P. α1-1-Class Integrins Regulate the

Supplemental Figure 1. Deletion of \textit{Itgb8} in adulthood does not disrupt microglial homeostasis.

A) Expression analysis of \textit{Itgb8} expression in adult astrocytes, neurons, oligodendrocytes, microglia, and endothelial cells. B) \textit{Itgb8} is expressed in oligodendrocytes (OLIG2+; PDGFRα+), OPCs (OLIG2+), astrocytes (SOX9, GFAP+/−), and neurons (NEUN+) in adulthood, as shown by immunohistochemical overlap with a \textit{Itgb8-TdT} reporter line. C) Deletion of \textit{Itgb8} using various cell-lineage restricted Cre and CreER mouse lines does not result in changes in motor behavior, unlike deletion with \textit{Nestin-Cre}, which results in profound motor dysfunction. D) Deletion of \textit{Itgb8} using various cell-lineage restricted Cre and CreER mouse lines does not result in changes in microglial homeostasis or associated astrocyte activation, unlike deletion with \textit{Nestin-Cre}. Scale bars in B,D=100μm.

Supplemental Figure 2. Recombination analysis of \textit{Cre} and \textit{CreER} mouse lines used to delete \textit{Itgb8}.

A) Cre-dependent nuclear GFP \textit{Cre}-reporter line \textit{SunTag} crossed to indicated \textit{Cre} or \textit{CreER} line, and brain sections from adult mice were stained for nuclear-localized markers of neurons (NEUN), oligodendrocytes and OPCs (OLIG2), or astrocytes (SOX9); images taken from motor cortex. B) Quantification of cell marker colocalization with SUN1GFP recombination report. 6 animals were quantified for \textit{NestinCre}, \textit{Olig2Cre}, \textit{SynCre} and \textit{Aldh1L1CreER} and 3 for \textit{hGFAPCre}. 3 images per mouse were quantified from the cerebral cortex. Scale bar =100μm.

Supplemental Figure 3. Analysis of cell-type specific \textit{Itgb8} expression.

A) Single-cell RNA-seq analysis of \textit{Itgb8} expression in the developing brain taken from. Individual columns represent clustered categories of cell types. B) \textit{Itgb8} in situ hybridization (ISH) at indicated time points taken from Allen Brain Atlas (https://mouse.brain-map.org). C) Analysis of \textit{Itgb8-TdT} expression in E14.5 mouse brain stained for radial glia nuclei (SOX9, white) and radial glia processes (NESTIN, green). Scale bar in C=500μm.

Supplemental Figure 4. Cre-recombination and phenotypes in \textit{Itgb8}fl/fl;\textit{Olig2}Cre mice.

A) Coronal brain sections from indicated E14.5 mice stained for tdT (Cre recombination, red) and microglia/macrophages (IBA1, white); B) microglia (P2RY12 in green, see arrowheads) and immature macrophages (CD206 in magenta); C) hemorrhage (red blood cells marked by TER119 in red and vascular endothelium marked by CD31 in blue); tdT (red) and D) apical progenitors (SOX9, green). Note lack of recombination of apical progenitors and also lack of microglia or vascular/hemorrhage phenotypes in these mice. Scale bar in A=150μm, scale bar in B=100μm.

Supplemental Figure 5. Gene ontology and transcriptional analysis of TGFβ mutant models.

A-B) Gene ontology analysis of A) sorted microglia and B) bulk-Seq from different TGFβ mutant models. Putative genes involved in differential neuromotor phenotypes in TGFβ mutants were selected based on differential expression in distinct mouse models. Overrepresentation analysis was performed in each set separately as indicated by respective colors. C) Expression changes of genes driving enrichment of selected GO terms. Levels are shown as Log2FoldChange for microglia and whole brain from all analyzed mutants. Scale bar in B=100μm. Scale bar in B=25μm for higher magnification image.

Supplemental Figure 6. Epistatic analysis of \textit{ApoE} contribution to the \textit{Tgfbr2} conditional mutant microglial phenotype.

A) Diagram describing potential pathway interaction between upregulated ApoE in the \textit{Tgfbr2} conditional mutant model and the downstream MGnD/DAM microglial phenotype. B) Analysis of effect of simultaneous deletion of \textit{ApoE} and microglial \textit{Tgfbr2}. No change was seen in \textit{ApoE}−/−; \textit{Tgfbr2}−/−;\textit{Cx3cr1}Cre versus \textit{ApoE}−/−; \textit{Tgfbr2}−/−;\textit{Cx3cr1}Cre in dysmature morphology, P2RY12 expression loss, CD206 upregulation. Scale bar in B=100μm. Scale bar in B=25μm for higher magnification image.
Figure 1: Deletion of Itgb8 in early embryonic radial glia disrupts microglial maturation

A

Itgb8 expression (E14.5 mouse brain)

<table>
<thead>
<tr>
<th>NPCs/RG microglia \ Endothelial mural cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
</tr>
</tbody>
</table>

B

Itgb8-TdTom

B’

ITGB8-Td/T/NESTIN/SOX9

C

ITGB8 expression

E10: hGFAPCre

E14: NestinCre

E16: Emx1Cre

neuroepithelial cell

neuron radial glia

astro-/ oligodendrocyte

D

CD31/IBA1/TdTom

E

CD31/TER119

F

P2RY12/CD206

G

RG-Brainbow/Nestin Cre

H

microglia precursor (CD206+)

RG endfeet

mature microglia (CD206-/P2RY12+)

RG basal process

GFP/CD206/P2RY12

GFP/CD206/P2RY12
Figure 2: Emx1-Cre deletion of Itgb8 results in anatomically restricted blockage of microglial differentiation.

A: Gene expression heatmap

<table>
<thead>
<tr>
<th>Progenitors</th>
<th>Embryonic Phase</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Itgb8MG</td>
<td></td>
</tr>
</tbody>
</table>

B: Gene expression comparison

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Control</th>
<th>Itgb8MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

C: Immunohistochemistry (Itgb8FF, Emx1Cre)

- Itgb8FF, Emx1Cre
- P2RY12/CD206

D: Immunohistochemistry (P2RY12/LGALS3)

E-G: Gene expression heatmap overlays

- TEM119/BA1
- APOE/BA1
- CLEC7A/BA1

H: Gene expression heatmap overlays

- Aging
- SOD1
- Alzheimer's
- DAM
- LDAM
- LPS
- LogFC

Note: The image contains a table and multiple gene expression heatmaps with corresponding gene expression comparisons. The data is presented in a structured format, allowing for easy analysis and comparison of gene expression patterns across different conditions and clusters.
Figure 3: Microglial dysmaturation due to Tgfb1 deletion in microglia/macrophages

A Tgfb1 expression
(E14.5 mouse brain)

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPCs/RG</td>
<td>NE</td>
</tr>
<tr>
<td>Mg/Macs</td>
<td></td>
</tr>
<tr>
<td>Endothelial</td>
<td></td>
</tr>
<tr>
<td>Mural cell</td>
<td></td>
</tr>
</tbody>
</table>

B CD31/TER119
Cx Str

C CD31/IBA1

D IBA1/P2RY12

Tgfb1+/−

Tgfb1−/−

Tgfb1+/− Cx3cr1Cre

Tgfb1+/− Tie2Cre

Tgfb1+/− PdgfbCre
Figure 4: Microglia provide their own TGFβ1 to promote and maintain homeostasis.

A

![Graphs showing Tgfβ1, P2ry12, and Pf4 expression](image)

B

![Immunofluorescence images showing CD31/TER119, IBA1/P2RY12, Tgfβ1, Tgfβ1/IB4, and Cx3cr1CreER:A14](image)

C

![Immunofluorescence images showing Tgfβ1CreER:P2RY12CreER, Tgfβ1/P2RY12CreER](image)

D

![Immunofluorescence images showing CD31/TER119, CD31/IB4, IBA1/P2RY12](image)

E

![Immunofluorescence images showing Tgfβ1CreER:P2RY12CreER, Tgfβ1/P2RY12CreER, and Cx3cr1CreER:P4.30](image)

F

Tgfβ1 expression (adult mouse brain)

- astrocyte
- neuron
- oligo.
- microglia
- vascular

FPKM

0 100 200 300

G

![Immunofluorescence images showing Tgfβ1/IB4/Tdt, P2RY12/Tdt, and CX3cr1CreER(P4.30)](image)
Figure 5. Disruption of non-canonical TGFβ signaling in microglia drives disease-associated gene expression.

A) Schematic representation of TGFβ signaling and its regulation by SMAD proteins.

B) Heatmap showing expression levels of TGFβ target genes in different mouse models.

C) Scatter plot illustrating the correlation between TGFβ signaling and disease-related gene expression.

D) Heatmap depicting the expression of homeostatic and inflammatory genes in different brain regions.

E) Gene expression profiles in the cortex, corpus callosum, and striatum of different mouse models.

F-H) Immunofluorescence images of microglia in different brain regions, highlighting the expression of TGFβ and CX3CR1.
Supplemental Figure 1: Deletion of Itgb8 in adulthood does not disrupt microglial homeostasis.

A. Itgb8 expression (adult mouse)

<table>
<thead>
<tr>
<th>Type</th>
<th>FPKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>astrocyte</td>
<td>NE</td>
</tr>
<tr>
<td>neuron</td>
<td>NE</td>
</tr>
<tr>
<td>oligo.</td>
<td>NE</td>
</tr>
<tr>
<td>microglia</td>
<td>NE</td>
</tr>
<tr>
<td>vascular</td>
<td>NE</td>
</tr>
</tbody>
</table>

B. Itgb8-tdTom

C. Genetic lines

- control
- Itgb8-/-;NestinCre
- Itgb8-/-;Olig2Cre
- Itgb8-/-;Aldh111CreERT2
- Itgb8-/-;Syn1Cre
- Itgb8-/-;UbcCreER

D. Schematic representation of genetic lines

- Itgb8-/-;NestinCre
- Itgb8-/-;NestinCre
- Itgb8-/-;Olig2Cre
- Itgb8-/-;Aldh111CreERT2
- Itgb8-/-;Syn1Cre
- Itgb8-/-;UbcCreER

- IBA1/CD31
- TER119/CD31
- TMEM119/CD206
- GFAP/SOX9

- P2RY12

- BA1/CD206
Supplementary Figure 2. Recombination analysis of Cre and CreER mouse lines used to delete ltb8.

A

<table>
<thead>
<tr>
<th>Neurons</th>
<th>Oligodendrocytes</th>
<th>Astrocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>nGFP/NEUN</td>
<td>nGFP/OLIG2</td>
<td>nGFP/SOX9</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Neurons</th>
<th>Oligo's</th>
<th>Astro's</th>
</tr>
</thead>
<tbody>
<tr>
<td>NestinCre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hGFAPCre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olig2Cre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syn1Cre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldh1l1CreER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Figure 3: Analysis of cell-type specific Itgb8 expression

A

Itgb8 expression (scRNAseq E14.5 mouse cortex)

- layer-specific neurons
- progenitor-like
- interneurons
- non-cortical
- non-neuronal

B

<table>
<thead>
<tr>
<th>E11.5</th>
<th>E13.5</th>
<th>E15.5</th>
<th>E18.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itgb8 ISH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

rostral → caudal

TdT

E14.5 *Itgb8-IRES-tdTom*

TdT / NESTIN / SOX9
Supplemental Figure 4: Cre-recombination and phenotypes in Il1bgfl/fl, Olig2Cre mice.
Supplemental Figure 5: Gene ontology and transcriptional analysis of TGFβ mutant models.

A) Sorted MG

DE in Smad2/3 only
Adaptive immune response
Protein deubiquitination

DE in all
Immune response
Ganglioside synthesis

DE in Tgfβ1-Tgfr2
Vacuolar acidification
CNS myelination

B) Whole brain

DE in Smad2/3 only
Calcium transport
Protein translation

DE in all
Regulation of phagocytosis
TLR3/7 signaling

DE in Tgfβ1-Tgfr2
Glucocorticoid secretion
Synaptic pruning

C) Heatmaps

Regulation of phagocytosis
TLR3/7
Synaptic pruning
A

↓TGFβ → ↑APOE

? ↓

MGN/DAM phenotype and associated neuromotor dysfunction

B

[Images of immunohistochemical staining with labels IBA1/APOE/DAPI, IBA1/APOE/DAM, IBA1/DAPI, P2RY12/CD206/DAPI]