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Abstract

Individuals, organs, tissues, and cells age in diverse ways throughout the lifespan.

Epigenetic clocks attempt to quantify differential aging between individuals, but they

typically summarize aging as a single measure, ignoring within-person heterogeneity.

Our aim was to develop novel systems-based methylation clocks that, when assessed

in blood, capture aging in distinct physiological systems. We combined supervised and

unsupervised machine learning methods to link DNA methylation, system-specific

clinical chemistry and functional measures, and mortality risk. This yielded a panel of 11

system-specific scores– Heart, Lung, Kidney, Liver, Brain, Immune, Inflammatory,

Blood, Musculoskeletal, Hormone, and Metabolic. Each system score predicted a wide

variety of outcomes, aging phenotypes, and conditions specific to the respective

system, and often did so more strongly than existing epigenetic clocks that report single

global measures. We also combined the system scores into a composite Systems Age

clock that is predictive of aging across physiological systems in an unbiased manner.

Finally, we showed that the system scores clustered individuals into unique aging

subtypes that had different patterns of age-related disease and decline. Overall, our

biological systems based epigenetic framework captures aging in multiple physiological

systems using a single blood draw and assay and may inform the development of more

personalized clinical approaches for improving age-related quality of life.
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Introduction

The geroscience hypothesis states that directly targeting the biology of aging can

improve human health and delay the onset of multiple chronic diseases. Yet, to truly test

this hypothesis, reliable biomarkers must be developed that reflect valid age-related

changes and responses to interventions.1 “Epigenetic clocks”, based on DNA

methylation (DNAm), are among the most studied aging biomarkers to date. Multiple

versions have been developed, some to predict different age-related outcomes.2–4 Most

utilize information on a few hundred CpGs to report a single biological age value for

each individual that is meant to reflect how the individual’s degree of biological aging

compares to a reference population. For a number of epigenetic clocks, discordance

between predicted and observed age has been shown to be biologically meaningful, as

it is predictive of age-related morbidity and mortality, and correlates with other

age-related phenotypes.5–7 More recently, DNAm markers have been built to predict

longitudinal changes in clinical indicators of aging, referred to as pace of aging, and

these too show associations with age-related health outcomes.8,9

Existing DNAm clocks report an individual’s overall degree or pace of aging as a single

value, capturing the heterogeneity between individuals. However, there is also

heterogeneity in the aging process within individuals, at various levels of biological

organization. For instance, there is variation in the rate of aging between organ

systems, organs, tissues, and even cells.10–13 Existing blood-based DNAm clocks do not

address system-specific differences in aging. Though blood methylation is utilized in

numerous aging studies due to ease of access, it remains unclear how much

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.07.13.548904doi: bioRxiv preprint 

https://paperpile.com/c/8CDWAP/OFkH
https://paperpile.com/c/8CDWAP/EbF6+M0Ga+wi30
https://paperpile.com/c/8CDWAP/bCa6+su8Z+L6hc
https://paperpile.com/c/8CDWAP/RcP8+K2N7
https://paperpile.com/c/8CDWAP/FoyG+QeCj+EOPB+3p1R
https://doi.org/10.1101/2023.07.13.548904


information about various other organ systems can be gleaned from blood methylation

alone. Attempts have been made to build DNAm biomarkers that capture some cardiac

or metabolic disease risk, though they tend to only be targeted to a single system.14–16

Another important caveat is that physiological systems can function or decline

independently of each other, as well as in concert through their interactions. This gives

rise to a third type of heterogeneity in aging - heterogeneity in aging that manifests in

the overall pattern of decline across physiological systems. This is important for

geroscience applications and for the prevention of multimorbidity via targeting biological

aging, as diseases are often caused by a combination of malfunctioning in specific

biological systems. For example, arthritis involves musculoskeletal deterioration and

inflammation; while stroke may be caused by a combination of cardiovascular,

metabolic, inflammatory, and neurological factors. These patterns across physiological

systems may give rise to aging subtypes that predispose an individual to a subset of

specific aging conditions.

Failing to capture the different levels of heterogeneity in the aging process has practical

consequences for the assessment of aging patients and populations. Two individuals

can have different DNAm profiles that produce the exact same epigenetic age as

calculated by blood-based epigenetic clocks, yet they may be physiologically

deteriorating in entirely different systems. Additionally, two individuals may have the

exact same age of a system as calculated by blood-based methylation clocks yet they

may be predisposed to different diseases depending on the co-occurrence of aging

across other systems in their body. Not only will this refinement of aging indicators help
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predict disease-specific differential risks across individuals, but our understanding of

heterogeneity in aging is also a key step in the eventual development of targeted

interventions based on personalized aging characteristics.

The overarching aim of this study was to construct systems-specific aging scores from

DNA methylation data derived from whole blood. While clinical biomarkers and

functional measures themselves provide direct assessment of specific physiological

systems, we reasoned systems-specific methylation predictors would have two major

advantages: 1) it is a single standardized assay that is comparable between studies,

whereas the set of clinical biomarkers and functional measures can markedly differ

between aging studies, and 2) DNA methylation is closer to root causes of aging17. Our

study demonstrates it is possible to capture heterogeneity across many physiological

systems using a single blood DNA methylation test, in turn predicting decline and

disease specific to each system, as well as clustering individuals into diverse yet distinct

epigenetic aging subtypes.

Results

Systems Age Pipeline for modeling systems-specific aging

Systems Age was constructed in a five step process (Figure 2, Methods). Briefly, we

first mapped clinical chemistry and hematology biomarkers available in the Health and

Retirement study (HRS) to specific biological systems (Supplementary Table 1). In

addition to blood-based measures, we incorporated relevant functional assessments

and disease status. Second, we performed principal component analysis (PCA) on

measures within each system to identify latent signals captured by system-specific
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principal components (PCs). Third, we predicted these system PCs using methylation

PCs selected via elastic net regression within HRS. We utilized methylation PCs for

predicting these measures given that use of PCs over individual CpGs increases

test-retest reliability without sacrificing validity18 (Supplementary Figure 3). Fourth, we

calculated the predicted DNAm system PCs (using the models trained in HRS) in the

Framingham heart Study (FHS) and trained a mortality prediction model for each

system via elastic net Cox penalized regression. We referred to the resulting scores as

‘system scores’, meant to estimate aging in a particular system. Finally, we trained an

elastic net Cox model by incorporating PCs from all systems into a unified whole body

score called ‘Systems Age’. Both individual system scores and overall System Age were

scaled to the expected age range for interpretability. Given the complexity of the

training, we wanted to determine which clinical chemistry and functional biomarkers

contributed the most to each of the system scores to aid in interpretation. For this

purpose we associated each system score with its corresponding biomarkers in HRS to

highlight the biomarkers which had the greatest impact on the specific scores

(Supplementary Figure 1).

System scores capture meaningful and specific aging signals

Specificity of system scores was assessed in an independent sample from 3 cohorts of

the Women’s Health Initiative (WHI BAA23, AS311 and EMPC, total N = ~5,600).

Details about each cohort are available in the Methods section. Cohorts were stratified

by race (except WHI AS311, which included few black and hispanic participants), for a

total of 7 groups. Results from multivariate analyses adjusting for chronological age
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were meta-analyzed via a fixed effects model with inverse variance weights (Figure 3 as

well as Supplementary Table 2 and 3). We tested associations with disease incidence

(using cox proportional hazard models), disease prevalence (using logistic regression

models), and functional parameters of aging (using Ordinary Least Squares regression

models).

Our results suggested high levels of specificity of system scores to the expected organ

system (Figure 4 as well as Supplementary Table 3 and 4). This was true across

baseline and future conditions as well as functional phenotypes and diseases. For

functional phenotypes at baseline, the Brain score showed the strongest association

with cognitive function (meta z-score = 3.51), and the Musculoskeletal score had the

strongest association with physical function (meta z-score = 8.53). The Heart score was

most strongly associated with time-to-CHD events (meta z-score = 8.29) as well as

with time to myocardial infarction (meta z-score = 6.30). The Lung score was most

strongly associated with time to lung cancer (meta z-score = 9.69) with the Heart score

coming a close second (meta z-score = 9.49), which shares risk factors such as

smoking with cardiovascular disease. For time to stroke, Heart score (meta z-score =

3.40) was the most strongly associated, with the Metabolic score coming a close

second (meta z-score = 3.35). The blood score was most strongly associated with time

to Leukemia (meta z-score = 4.88).

In almost all conditions and disease outcomes, we observed the expected

directionality–with increased age indicators associated with increased risk. The one
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exception to this was reproductive organ cancers, in which we observed negative

associations with all of the systems. Hormone (meta z-value = -3.04) and Blood (meta

z-value = -2.22) were the most negatively associated with breast and endometrial

cancer, respectively.

For diseases at baseline, Musculoskeletal was most strongly associated with diabetes

(meta z-value = 10.90) and arthritis (meta z-value = 5.15). Hormone had the strongest

association with thyroid disease (meta z-value = 2.65) and for cataract, both Heart

(meta z-value = 3.16) and Liver (meta z-value = 3.12) had the strongest associations.

Finally, the total comorbidities variable at baseline was most strongly associated with

Inflammation (meta z-value = 7.65).

Compared to existing clocks, system scores better capture the multifactorial

nature of aging

We compared system scores and Systems Age to previously trained epigenetic clocks

using meta z-scores (Figure 4, Supplementary Figure 2, Supplementary Table 2, 3, 4, 5,

6 and 7), estimated in the same manner as was done for system scores in the previous

section (Figure 3). We focused on three prominent epigenetic clocks that have

previously been demonstrated to be strongly associated with aging outcomes:

PCPhenoAge, DNAmGrimAge and DunedinPACE.

The most relevant system scores had a higher meta Z-score based on effect sizes to

existing epigenetic clocks for 10 of the 14 diseases. For example, system scores had
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stronger associations with diabetes at baseline (Musculoskeletal meta z-score 10.90;

DunedinPACE 8.96), time to leukemia (Blood meta z-score 4.88; PCPhenoage 2.74),

cognitive function (Brain meta z-score 3.51; PCPhenoAge 2.95), cataract at baseline

(Liver meta z-score 3.12; PCPhenoAge 2.59), time to breast cancer (Hormone absolute

meta z-score 3.01;PCPhenoage 1.32), time to endometrial cancer (Blood absolute meta

z-score 2.22; PCPhenoage 1.19), arthritis at baseline (Musculoskeletal meta z-score

5.15; DunedinPACE 4.96), time to myocardial infarction (Heart meta z-score 6.30;

DNAmGrimAge 6.09), time to CHD (Heart meta z-score 8.29; DNAmGrimAge 8.11), and

time to colorectal cancer (Blood meta z-score 2.08; DNAmGrimAge 1.88). For the

remaining 4 diseases and conditions, the clocks were a close second to existing clocks–

physical function (musculoskeletal meta z-score 9.46; DunedinPACE 9.47), time to

stroke (Heart meta z-score 3.40; DunedinPACE 3.45), thyroid disease at baseline

(Hormone meta z-score 2.65; DNAmGrimAge 2.92), and time to lung cancer (Lung

meta z-score 9.69; DNAmGrimAge 12.11). For the three whole body metrics, system

specific scores had second highest Z-scores including for time to death or Mortality

(Heart meta z-score 15.17; DNAmGrimAge 16.81), total comorbidities at baseline

(Inflammation meta z-score 7.65; DunedinPACE 9.08), and disease free at baseline

(Heart meta z-score 3.98; DunedinPACE 4.28).

To determine whether system scores were significantly better at outcome prediction

than existing epigenetic clocks, we performed receiver operating characteristic curve

(ROC) analysis (Figure 5, Supplementary Tables 13 and 14) on each cohort comparing

the best system score to the different clocks. The system scores had a significantly
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better area under the curve compared to some clocks when it came to prediction of

/associations with Mortality (3.55 and 3.84 Meta z-score for Heart compared to

DunedinPACE and PCPhenoAge ROC, respectively), total comorbidities at baseline

(2.39 and 2.17 Meta z-score for Inflammation compared to DNAmGrimAge and

PCPhenoAge respectively), CHD (2.15 Meta z-score for Heart compared to

PCPhenoAge), MI (2.5 Meta z-score for Heart compared to PCPhenoAge), leukemia

(5.63 and 6.13 Meta z-score for Immune compared to DunedinPACE and

DNAmGrimAge respectively), lung cancer (3.13 and 3.92 Meta z-score for Lung

compared to DunedinPACE and PCPhenoAge respectively), cognitive function (2.99,

3.87, and 3.23 Meta z-score for Brain compared to DunedinPACE, DNAmGrimAge, and

PCPhenoAge respectively), physical function (3.53 and 2.50 Meta z-score for

MusculoSkeletal compared to DNAmGrimAge and PCPhenoAge respectively), arthritis

(3.62 and 3.43 Meta z-score for MusculoSkeletal compared to DNAmGrimAge and

PCPhenoAge respectively), and diabetes (2.66, 5.17, and 5.66 Meta z-score compared

to DunedinPACE, DNAmGrimAge, and PCPhenoAge respectively). We did not find

statistically significant improvements for cataracts or stroke.

Overall, these results suggest that having different scores for each system may more

precisely capture disease relevant risk and facilitate personalized interventions

compared to a single global metric.

Systems Age: the golden mean

When training clocks, each may be biased towards predicting specific aspects of aging

based on the combination of variables and datasets used for training. Since each
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systems score showed superior or equivalent associations with specific diseases and

aging phenotypes, we hypothesized that combining them into a single Systems Age

score would lead to a more uniform prediction across all diseases and aging

phenotypes. Indeed, we found that Systems Age was not biased to a specific dimension

of aging and performed well across a variety of diseases and conditions. Of the 14

different conditions we tested for which every clock showed significant associations

(Figure 3, Supplementary figure 2, Supplementary Table 2, Supplementary Table 3 and

Supplementary File 1), Systems Age had the strongest associations of all clocks for four

conditions, including cataract (Systems Age 3.06; PCPhenoAge 2.59), CHD (Systems

Age 8.43; DNAmGrimAge 8.11), myocardial infarction (Systems Age 6.36;

DNAmGrimAge 6.09), and leukemia (Systems Age 2.95; PCPhenoAge 2.74). For 8 of

the conditions, Systems Age was second best, as in the case for time to stroke

(Systems Age 3.33; DunedinPACE 3.45), disease free at baseline (Systems Age 3.87;

DunedinPACE 4.28), physical function (Systems Age 8.91; DunedinPACE 9.47),

cognitive function (Systems Age 2.68; PCPhenoAge 2.95), time to death (Systems Age

15.35; DNAmGrimAge 16.81), thyroid disease at baseline (Systems Age 2.56;

DNAmGrimAge 2.92), arthritis at baseline (Systems Age 3.23; DNAmGrimAge 4.96),

and time to lung cancer (Systems Age 9.18; DNAmGrimAge 12.19). DunedinPACE and

DNAmGrimAge did perform best with a few of the conditions (3 and 6 resp.) but was

ranked last, second to last, or was not significant in nearly all others (11 and 8 resp.),

indicating they were biased towards certain dimensions of aging .
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To determine whether Systems Age was significantly better at outcome prediction than

existing epigenetic clocks, we performed ROC analysis (Figure 5, Supplementary

Tables 11 and 12) on each cohort comparing Systems Age to the different clocks

(similar to above for system specific scores). ROC analysis Z-scores followed similar

trends to the association analysis, but in some cases the improvement was not

significantly higher. Nevertheless, Systems Age did outperform other clocks significantly

in many outcomes including mortality (3.89 and 4.32 Meta z-score compared to

DunedinPACE and PCPhenoAge respectively), comorbidities at baseline (2.05 and 1.97

Meta z-score compared to DNAmGrimAge and PCPhenoAge respectively), CHD (2.49

Meta z-score compared to PCPhenoAge), MI (2.78 Meta z-score compared to

PCPhenoAge), lung cancer (2.94 and 4.09 Meta z-score compared to DunedinPACE

and PCPhenoAge respectively), cognitive function (2.43 Meta z-score compared to

DNAmGrimAge), physical function (3.10 Meta z-score compared to DNAmGrimAge)

and arthritis (2.36 Meta z-score compared to DNAmGrimAge).

Overall, this suggests the Systems Age training paradigm enables more uniform and

unbiased prediction across many dimensions of aging compared to existing

state-of-the-art clocks.

Capturing aging signal beyond smoking

Smoking is well known to affect DNA methylation and epigenetic clocks, 21 as well as

disease incidence (especially cardiopulmonary diseases and cancer), aging

phenotypes, and mortality. To determine the degree, smoking impacts the associations

with clocks, we calculated meta z-scores for system score and existing clocks while
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adjusting for smoking status (Supplementary Figure 2, Supplementary Table 4 and

Supplementary Table 5). For example, the Metabolic system score was strongly

associated with stroke, and this association changed minimally when adjusting for

smoking status (meta z-score 3.35 as compared to meta z-score 3.20 when adjusted for

smoking status). On the other hand, GrimAge’s association with time to stroke

decreased by more than 50% and was no longer significant when adjusting for smoking

(meta z-score 2.75 as compared to meta z-score 1.23 when adjusted for smoking

status). Reduced associations with CHD and time to myocardial infarction were also

observed across all clocks after adjusting for smoking (as expected given that smoking

is a major risk factor for heart disease), but Systems Age and Heart score retain much

of their association after smoking status adjustment (meta Z-score in CHD before and

after smoking status adjusted for Heart 8.29 vs 6.57, Systems Age 8.43 vs 6.77,

DNAmGrimAge 8.11 vs 5.80; meta Z-score in myocardial infarction before and after

smoking status adjusted for Heart 6.30 vs 5.04, Systems Age 6.36 vs 5.18,

DNAmGrimAge 6.09 vs 4.34). Similar impacts of smoking were seen for time to lung

cancer and time to death. For other diseases and aging phenotypes, Systems Age and

system scores retained their prediction after adjusting for smoking, indicating they

captured epigenetic signals beyond just cigarette exposure. We also performed an

analysis among never smokers (Supplementary Figure 2 as well as Supplementary

Table 6 and 7) finding that system scores performed the best across all the conditions in

which at least one score was significant.
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System scores capture distinct dimensions of aging

Systems do not work independently of each other. Some systems are closely related,

sharing many associations with a given disease, condition, or aging phenotype. Indeed,

looking at correlations between different age-adjusted system scores across the WHI

cohorts (Figure 6a and Supplementary table 8), we found some systems to be highly

correlated with each other, such as Heart and Lung (r = 0.759), or Inflammation and

Musculoskeletal (r = 0.716). Hierarchical clustering revealed that Heart and Lung

formed a cluster, Liver, Brain and Blood formed a second cluster, and Metabolic,

Inflammation, and Kidney formed a third cluster. The latter two clusters formed a

super-cluster that also included Heart and Musculoskeletal. Given these patterns, we

hypothesized that there is predictive value in examining not just heterogeneity within a

system or across systems, but also to test whether individuals can be grouped based on

their system scores to generate aging subtypes with distinct predisposition to aging

related diseases and conditions.

To test this, we first examined whether there existed individuals with the same

chronological age and overall Systems Age yet different age-accelerated system

scores. One example of this was observed for three individuals (Figure 6b), with the

same chronological age, Systems Age, gender, and race. However, they had entirely

different patterns of system scores.

To test whether these patterns of system scores constituted biologically relevant aging

subtypes, we clustered individuals using adaptive hierarchical clustering in the WHI
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EMPC cohort. This analysis identified 9 unique groups or clusters, with each cluster

showing distinct patterns across the different system aging scores, as well as different

associations with the prevalence or future occurrence of certain diseases (Figure 6c and

5d, Supplementary table 9 and 10). For example, Cluster 8 and 9 were found to have a

high mean Lung aging score (Lung age accelerations 1.06 and 0.71) and a higher

prevalence of future lung cancer events (pval: 0.01, 0.04). These groups also had an

overrepresentation of smokers (pval: 0.001, 0.009), indicating they captured smoking

pathophysiology. As expected, their distinct clustering stemmed from other

pathophysiology: Group 8 had fewer obese individuals (p= 0.01) while Group 9 was

enriched for future CHD events (p = 0.02). All of this indicated that the 2 groups were

capturing distinct aging subtypes within smokers. At the same time, Cluster 3

demonstrated an increased prevalence of MI (p= 0.02) yet it showed low Lung aging

and decreased prevalence of smokers (p= 0.03). It also demonstrated increased

Metabolic (average age acceleration 0.55) and Inflammation (average age acceleration

0.34) aging. Thus, while Cluster 3 and 9 are both at risk for cardiovascular diseases, the

risk stems from different sources (smoking vs. metabolic and inflammatory aging).

Overall, the system's scores were capturing relevant aging subtypes that had distinct

behavioral and genetic patterns predisposing individuals to certain types of aging

phenotypes and diseases.

Discussion

In the past decade, various epigenetic clocks have been developed to predict

chronological age, composite measures of biological age, single-cell epigenetic age,
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and aging in various tissues.22–24 Yet, what remained missing was a method to capture

aging in different biological systems, independently and interactively, using a single

blood test. While it was unclear to what extent signals in other organ systems could be

captured in blood DNAm, our results suggest that this is possible. Systems Age is the

first measure to capture heterogeneity in aging across different biological systems using

a single assay performed on samples from a single blood draw.

We showed that Systems Age scores were not only predictive of a wide variety of aging

conditions and phenotypes at both baseline and follow-up, but were also specific to the

pathophysiology of their intended system. For example, the Heart score was most

associated with heart disorders CHD and MI,25 as well as overall mortality reflecting that

cardiovascular disease is the leading cause of mortality worldwide.26 Heart was also

strongly associated with thyroid disease, lung cancer, stroke, cataracts, reduced

physical function, and total comorbidities, reflecting disease and treatment

complications, shared risk factors, and shared pathophysiology.27–32 However, Heart

demonstrated specificity in that it was only very weakly associated with diseases such

as baseline arthritis or time-to-leukemia (instead these were most strongly associated

with Musculoskeletal and Blood respectively).33 Likewise, the Inflammation score was

strongly associated with time-to-CHD34, baseline arthritis35 and baseline physical and

cognitive functioning 36,37, which are expected based on known pathophysiology.

Inflammation was the most strongly associated system with total number of

comorbidities at baseline, consistent with inflammation driving many diseases of

aging.38 The Brain score was associated with baseline cognitive functioning and
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time-to-stroke, but much less with most other phenotypes. The Musculoskeletal score

was strongly associated with physical function and baseline arthritis as expected, as

well as total comorbidities and baseline diabetes which can worsen musculoskeletal

function,39,40 but was far less predictive of other phenotypes than other system scores.

Thus, blood DNA methylation data alone can be used to derive many different specific

aging scores for various physiological systems, rather than just a single blood-specific

or whole-body aging process.

We also observed unexpected results, such as negative associations of epigenetic

aging with breast cancer risk in women, with the strongest negative association being

Hormone. However, prior literature has shown that epigenetic clock acceleration is

associated with a younger age at menopause.41 Simultaneously, later menopause has

been linked to higher risk of reproductive organ cancers.20,42 Thus, women who

epigenetically age faster may in fact have lower chances of getting reproductive organ

cancer. In moving forward, there may be a further need to develop reproductive system

specific scores for different sexes as well as expand the Hormone score.

Given the interconnectedness of aging, it was unclear prior to our study whether a given

aging phenotype would be better predicted by epigenetic clocks that detected more

global aging signals, or clocks trained on a limited set of clinical biomarkers specifically

related to that phenotype. Our results demonstrated the advantages of the latter

approach. Other recently developed clocks that strongly associated with specific aging

conditions and phenotypes included PCPhenoAge (trained on a composite biological
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age measure that involves multiple systems), DNAmGrimAge (trained using smoking

and proteins each involved in multiple systems), and DunedinPACE (trained on

longitudinal changes across many systems).6–8 Thus, these clocks are intended to

capture global aging signals that are not limited to any particular system. For 10 of the

14 system specific phenotypes and diseases we tested, the most relevant system score

had higher meta-Z scores than all three of these clocks. ROC analysis demonstrated

that many of these improvements were statistically significant. While the relevant

system score did not surpass the predictive ability of all existing clocks for other

outcomes, the system scores were nearly as predictive, while being interpretable and

granular - they reveal which systems are related to which phenotypes. Another

advantage of system scores became apparent when looking across many phenotypes

simultaneously. For example, DNAmGrimAge predicted mortality, cardiovascular

outcomes, lung cancer, and thyroid dysfunction particularly well, but was less predictive

of cognitive function, comorbidities, arthritis, diabetes or leukemia risk. Interestingly,

PCPhenoAge showed nearly the opposite pattern as DNAmGrimAge. DunedinPACE’s

pattern of association resembled a mixture between PCPhenoAge and DNAmGrimAge,

but was still not predictive of some phenotypes like thyroid dysfunction and leukemia

risk. This suggested that epigenetic clocks that are directly trained to predict global

proxies of aging can introduce biases in which aging phenotypes they are related to. In

contrast, Systems Age showed more uniform prediction across all phenotypes, showing

either the strongest or second-strongest associations with 12 of the 14 conditions,

compared to the other three clocks. Thus, Systems Age appeared to not be strongly

biased by a particular dimension of aging, which is likely the result of first training
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predictors of mortality in each physiological system independently before combining

them. In further support of this idea, system scores and Systems Age remain highly

associated with all these phenotypes after correction for smoking.

In addition to heterogeneity at the systems level, we examined the heterogeneity that

arose due to the interaction of different systems. Interestingly, some system scores

were more correlated with each other than others. Heart and Lung were highly related,

consistent with their common vulnerability to smoking, shared pulmonary circulation and

combined function in oxygenating the body. The Liver and Blood scores showed strong

correlations, potentially reflecting the liver’s blood filtration function and production of

blood products. Both Liver and Blood were highly correlated with Brain, potentially

reflecting known contributions of anemia and altered levels of liver products to brain

aging46–49. Metabolic, Inflammation, and Kidney were highly correlated, reflecting

numerous links between metabolism and inflammation50 as well as the inclusion of IL-6

and CRP in both systems, and the contributions of both to kidney aging51,52. The

super-cluster involving Heart, Musculoskeletal, Liver, Blood, Brain, Metabolic,

Inflammation, and Kidney can be similarly ascribed to numerous known interactions

between systems as well as shared risk factors. Of note, while the correlations between

systems do likely reflect true physiological interactions, it is also possible that some of

the correlation structure can be attributed to similar mechanisms by which they impact

the blood methylome and vice versa.
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We defined subtypes as groups of individuals with similar systems specific aging scores

that have an over or under representation of specific diseases and conditions. We

showed the existence of 9 such distinct clusters or aging subtypes that had

predisposition to very distinct diseases and conditions. Demonstration of the existence

of aging subtypes has already been documented in the literature.10 However, we

provided evidence that these distinct groups can be observed even when using a single

assay–in our case, DNA methylation assessed in blood. In the future, information on

longitudinal changes will be critical for further defining age subtypes and their relevant

disease risks. This could facilitate sub-classification of aging conditions and eventually

inform targeted therapies based on aging subtypes.

Previous attempts have been made at capturing system-specific aging using

metabolomic53, proteomic , clinical biomarker54 , and other multi-Omic 55 data; however,

the translatability of these models to clinic and wider application is a challenge given the

limitations with usage of these data types in clinic due to technological limitations56 or

harmonization across 100s of clinical biomarkers. Here we were able to accomplish a

similar goal, while only relying on a single assay. Thus, the standardization offered by

DNA methylation data generation allows for both potential wide-spread usage and ease

of cross-comparison across experiments. Additionally, with recent developments, the

decrease in cost of epigenetic data generation further shows its versatility as a superior

source of biological information.
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Systems Age as a framework for capturing heterogeneity shows a lot of promise, yet

limitations remain. Due to lack of clinical measures for certain domains, we were not

able to capture certain systems that are known to be affected by aging. Take for

example, reproductive aging which has been shown to be a critical dimension of aging

but was only captured indirectly in our framework. Clearly, there is a need for

reproductive systems specific scores, something that can be developed in later

iterations of such frameworks. Additionally, while we were able to approximate

metabolic and hepatic aging, there is no score that shines light on aging in other

digestive organ systems such as stomach, pancreas, colon and more. All of these organ

systems have distinct aging related conditions which are unfortunately not captured in

the present scores. Similarly, sensory aging such as those pertaining to vision, hearing,

and sensation are not captured in the system scores. All of these are potential future

system scores that can be built into the framework. It is also important to note that one

could add more clinical biomarkers and phenotypes to the systems, and there are other

ways to map biomarkers to systems. Rather, it is unknown how robust these system

scores are to changes in the systems biomarkers used for training and thus there needs

to be further testing done to shine light on these aspects. Another important future

direction for Systems Age could be to detangle genetic predisposition to aging in certain

systems as opposed to environmental effects on aging of systems. A very clear

example of this is smoking, which leads to accelerated aging in certain systems and

predisposition to specific aging related diseases. Conversely, There may also be

genetic factors, which predispose certain systems to be more or less vulnerable than

others. 57 Another caveat along the same lines is that it is unknown why DNAm in blood
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reflects aging in other physiological systems, and what is the molecular relationship

between the clinical biomarkers, disease states and blood DNAm. It could reflect shared

genetic variation, exposures, age-related patterns between tissues. Alternatively it could

involve intercellular signaling influencing DNAm in blood (either directly through

epigenetic regulators or via changes in blood cell proportions), or blood DNAm reflecting

processes by which immune cells affect aging in those systems. Further analysis needs

to be performed to understand these relationships better. Finally, Systems Age uses

only clinical data to first generate scores that are then predicted from epigenetic data.

Other data types, such as proteomics, metabolomics, or imaging, may be highly

informative when it comes to capture more diverse dimensions of aging.

Overall, we highlight the importance of capturing heterogeneity in aging while also

building a reusable framework for quantifying multifactorial aging phenotypes. We show

that this level of dimensionality can be estimated from a single data source–in this case

DNA methylation in blood. The scores built using our approach perform as well, or in

many cases better than, presently available epigenetic clocks, while simultaneously

providing the potential to identify individuals with distinct aging subtypes for clinical

healthcare and drug development purposes.
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Methods

Datasets used for training Systems Age

Two different longitudinal studies were used for training Systems Age: the Health and

Retirement Study (HRS) and Framingham Heart Study (FHS). We previously utilized

and described methylation data from these datasets in a separate study (Higgins-Chen

et al. 2022). Briefly, as stated on their website, HRS is a nationally representative

sample of Americans over age 50 years. HRS had biomarker information available for

9,933 participants of which Infinium Methylation EPIC BeadChip data was available for

4,018 individuals (Crimmins, Thyagarajan, and Levine 2021). Out of the 4018

individuals only 3,593 had clinical data (age range 51–100 years) which were used for

training of Systems Age. All participants provided written informed consent. The study

was approved by the Institutional Review Board (IRB) at the University of Michigan

(HUM00061128).

FHS includes 2,748 FHS Offspring cohort participants attending the eighth exam cycle

(2005–2008) and 1,457 Third Generation cohort participants attending the second exam

cycle (2005–2008), who consented to provide their DNA for genomic research (Kannel

et al. 1979; Splansky et al. 2007). DNA methylation was assayed with the Infinium

HumanMethylation450 BeadChip and is available in dbGaP (accession no.

phs000724.v7.p11). For the purpose of training Systems Age FHS Offspring data was

used but for scaling of system scores and systems age to age range both the Offspring
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and Third generation data was used. Deaths of FHS participants occurring before 1

January 2014 were ascertained by routine contact with participants, surveillance at the

local hospital, local obituaries and queries to the National Death Index dates. Causes of

death were reviewed by an endpoint panel of three investigators. The study protocol

was approved by the IRB at Boston University Medical Center. All participants provided

written informed consent at the time of each examination visit.

Dataset Total number

of samples

Female Age Deaths and

follow-up

HRS

biomarkers

9,933 52% 63.1 ± 14.4 NA

HRS

methylation

4018 41% 69.6 ± 9.7 NA

FHS

methylation

3935 47% 58.49 ± 13.2 319 with 6.8 ±

2.2 years

Table 1: Datasets used for Systems Age training, including information on total number

of samples, female percentage, age distribution, deaths and follow-up years.

Systems Age pipeline
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Term Definition

Methylation PCs Principal components generated by
performing PCA on methylation data with
125K CpGs from HRS

System biomarker PCs Principal components generated by
performing PCA on groups of Biomarkers
in HRS

DNAm system PCs Methylation PC based surrogates of
system biomarker PCs

System scores Cox elastic net regression model scores
generated by combining DNAm system
PCs for each system

System score PCs Principal components generated by
performing PCA on the 11 system scores
plus a chronological age prediction score
in FHS

Systems Age Whole body aging score generated by
combining system score PCs using a cox
elastic net regression model

Glossary 1: terms used to describe Systems Age and intermediate values derived

during Systems Age calculation

Step 1: Grouping biomarkers into systems

We utilized molecular and cellular biomarker data from the Health and Retirement Study

(HRS) 2016 Venous Blood Study (VBS), for which a subset also has paired DNA

methylation data. We assessed the available biomarkers, and manually annotated them

as biomarkers for specific physiological systems, totaling 11 systems. To each system

we added functional biomarkers (e.g. grip strength) and system-specific disease and

condition history (e.g. history of stroke or chronic lung disease).
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Our goal was to develop epigenetic aging clocks that are interpretable in terms of

physiological systems for clinical and epidemiological applications. Thus, for manual

annotation, we required biomarkers to fulfill at least one of two criteria to be assigned to

a system: 1) Is there evidence that the biomarkers predict risk of age-related diseases

for that physiological system? 2) Would a clinician utilize the biomarker in assessing the

status of that physiological system? Annotations were done by multiple team members

supported by literature searches to validate disease prediction and clinical

interpretations. The team included a gerontologist (M.E.L.) and a physician-scientist

(A.H.C.). Most of the biomarkers were transformed and thresholded such that their

distribution is more normal. The biomarker-to-system mapping, dataset-specific variable

names, and transformations used can be found in Supplementary Table 1.

There is no gold standard list of biomarkers for each physiological system and there is

often not a clear delineation between systems because of their biological integration.

We do not claim that these are the only 11 systems or the only correct mapping of the

Biomarkers to these 11 systems. The Systems Age pipeline can be easily adapted to

other biomarker-to-system mappings. Our work here is intended as a proof-of-concept

that omics clocks can capture aging in specific physiological systems, and thus the most

important validation of our chosen mappings is the high specificity of the System scores

in our WHI validation dataset, rather than the exact list of starting biomarkers.

Step 2: Principal component analysis of system biomarkers and DNA methylation data
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We previously found that performing principal component analysis (PCA) and then

using principal components (PCs) as input into supervised machine learning models

produces more robust and reliable epigenetic clocks (Higgins-Chen et al. 2022) . PCA

removes collinearity, reduces dimensionality of the data, and better separates signal

from technical noise. Thus, for each system, we performed PCA on the selected system

biomarkers. Before performing PCA, the biomarkers were first transformed to have a

normal distribution as described in supplementary table 1 as well as scaled before

inputting into the prcomp function (stats 4.1.1) in R. In parallel, we performed PCA on

DNA methylation data as previously described (Higgins-Chen et al. 2022), utilizing

125,175 CpGs that 1) are in all of our training and validation data and 2) present on

commercially available methylation arrays including the Infinium HumanMethylation450

BeadChip and Infinium Methylation EPIC BeadChip. Practically, this was done using the

prcomp function in R. This yielded two sets of PCs (see Glossary 1 for terms): 1)

system biomarker PCs (the number of PCs per system is equivalent to the number of

biomarkers for each system, since number of samples is greater than number of

features) and 2) 4,017 DNA methylation PCs (one less than number of samples, since

the number of samples is less than number of features). We did not filter out

low-variance PCs (for example using scree plots or random matrix theory methods).

Low-variance PCs can still capture relevant variation for prediction (Jolliffe 1982; Yan et

al. 2020; Aschard et al. 2014; Tarashansky et al. 2019), while those that are irrelevant

are removed or minimized at later supervised machine learning steps. Thus, when

predicting system biomarker PCs from DNA methylation PCs (Step 3), we can predict
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both dominant, shared signals between biomarkers (high-variance PCs) as well as more

subtle variations.

Step 3: Building DNAm surrogates of system PCs

We utilize elastic net regression to train a model using methylation PCs to predict each

system biomarker PC using the glmnet 4.1-4 package in R. We refer to the resulting

models as DNAm system PCs. This was done as described previously (Higgins-Chen et

al. 2022). The L1 to L2 regularization ratio was 1 (α = 0.5), the λ tuning parameter was

selected via tenfold cross-validation, and the final methylation PC was excluded as it is

not meaningful in cases where the number of samples is less than the number of

features. Not all system PCs are predicted well using methylation PCs. We retained

DNAm system PCs with at least 20 DNAm PCs being used at the minimum mean

cross-validated error in the model and at least 5 DNAm PCs at the cross-validated error

one standard error from the minimum mean cross-validated error in the model. This

allows us to take only well predicted DNAm system PCs to the next step.

Step 4: Building system scores

To build system scores we first calculate DNAm system PCs in FHS based on

parameters previously trained in HRS (first calculating methylation PCs, then predicting

system PCs). Then, for each system separately, we predicted mortality using DNAm

system PCs in a Cox elastic net mortality prediction model using the glmnet 4.1-4
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package. The L1 to L2 regularization ratio was 1 (α = 0.5), the λ tuning parameter was

selected via tenfold cross-validation. This yielded 11 separate mortality prediction

models that we term system scores, and can serve as a measure of mortality-related

deterioration of each system.

Step 5: Building Systems Age

To build Systems Age, we first perform PCA on the DNAm system scores and age

prediction score using the prcomp(stats 4.1.1) function in R, as the system scores and

age prediction score are partially correlated with one another.

The age prediction score is built specifically to predict chronological age and was

trained in HRS. The DNAm PCs in HRS were first used to predict chronological age.

The scores thus generated were then used to predict chronological age again but

instead now using a second degree polynomial function fitted to the 5 year interval

averages of the predicted chronological age score (previous step) predicting for the 5

year interval averages of chronological age. The score obtained from the second

degree polynomial is referred to as age prediction in our model.

Using all system score PCs, we then predict mortality using another Cox elastic net

mortality prediction model using glmnet 4.1-4 package in R. The L1 to L2 regularization

ratio was 1 (α = 0.5), the λ tuning parameter was selected via tenfold cross-validation,

Again, using PCs as input is intended to reduce redundancy, increase reliability, and
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allow for more subtle variations in system scores to have an important role in the overall

model.

Step 6: Scaling scores to age range

The 11 system scores and Systems Age are first standardized to have mean 0 and

standard deviation 1. They are then scaled to match the mean and standard deviation of

chronological age for the 3935 samples from FHS Offspring and Gen3 cohorts.

Association meta-analysis in Women’s Health Initiative cohorts

The Women’s Health Initiative (WHI) is a long-term national health study (The Women’s

Health Initiative Study Group 1998). WHI is funded by the National Heart, Lung, and

Blood Institute, or NHLB and ran from the early 1990s to 2005. Post 2005, there have

been Extension Studies, which continue to collect data on health outcomes annually.

We used 3 WHI cohorts which had methylation data available. In each WHI cohort

(Table 2) we calculated system scores then regressed all epigenetic aging clocks on

chronological age using a linear regression model and defined clock age acceleration

as the corresponding residual. We then calculated associations between these clock

accelerations and different diseases and aging phenotypes in all WHI cohorts. We

stratified the cohorts by race (except WHI AS311 where analysis of the Black and

Hispanic populations would be underpowered), for a total of 7 groups. Depending on

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.07.13.548904doi: bioRxiv preprint 

https://paperpile.com/c/UITStF/0K3l
https://paperpile.com/c/UITStF/0K3l
https://doi.org/10.1101/2023.07.13.548904


condition and disease we either built linear regression models (cognitive function,

physical function, comorbidities and more), cox prediction models (Lung Cancer, Breast

Cancer, Leukemia, CHD, MI and more) or logistic regression models (Thyroid disease,

Diabetes, Arthritis, Cataract and more) to look at associations with the age accelerated

scores. An example of the formula used is as follows: Cognitive function ~ AgeAccel +

Age. In certain cases, additional factors such as Education level (for Cognitive function)

were also added to the models. Sex was not a covariate as all WHI participants are

female. We combined the associations from the different cohorts and racial groups in a

fixed effects model meta-analysis with inverse variance weights, obtaining

meta-analysis Z-scores for the associations (package metafor 2.4-0, function rma and

forest). Forest plots, z-scores, heterogeneity p-values and other meta-analysis results

are provided in Supplementary Figure 2 and 4 and Supplementary Tables 2-7.

WHI
cohort

Number
of

samples

White Black Hispanic Current
Smokers

Past
smokers

BAA23 2107 998 676 433 213 756

AS311 855 760 70 25 73 393

EMPC 2167 1207 606 354 181 840

Table 2: WHI cohorts used for testing with racial distribution, percent current and

percent past smokers

We performed additional analyses adjusting for smoking status by adding smoking

status (present smoker, ex-smoker or never smoked) into the linear (package stats
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4.0.2, function lm), Cox (package survival 3.2-11, function coxph) and logistic models

(package stats 4.0.2, function glm(family=”binomial”) ). We also examined non-smokers

separately. A list of the variables used from WHI are shown in Table 3. It is important to

note that even though multiple disease variables were available we could not test for a

majority of the variables because they were underpowered. Rather, for many of the

variables we calculated z-scores and showed them in our supplementary data.

Variables which had insufficient N have not been listed below. (Table 3)

Condition Variable used Available in Additional notes

Cognitive

Function

100 - F393MSE Form 39 - Cognitive

Assessment

F393MSE score

mapped using the

year at which blood

was drawn for

methylation

Physical

function

100 - PHYSFUN Form 38 - Daily Life PHYSFUN score

mapped using the

year at which blood

was drawn for

methylation

Mortality DEATHALL,

ENDFOLLOWALLDY

Adjudicated

Outcomes as of

Corrected for time

to date at which
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Mar 6, 2021 blood for

methylation was

drawn

CHD CHD, CHDDY Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for

methylation was

drawn

MI MI, MIDY Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for

methylation was

drawn

Lung Cancer LUNG, LUNGDY Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for

methylation was

drawn

Breast

Cancer

BREAST, BREASTDY Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for
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methylation was

drawn

Endometrial

Cancer

ENDMTRL,

ENDMTRLDY

Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for

methylation was

drawn

Leukemia LEUKEMIA,

LEUKEMIADY

Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for

methylation was

drawn

Skin Cancer MELANOMA,

MELANOMADY

Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for

methylation was

drawn

Colorectal

Cancer

COLORECTAL,

COLORECTALDY

Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for

methylation was
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drawn

Stroke STROKE, STROKEDY Adjudicated

Outcomes as of

Mar 6, 2021

Corrected for time

to date at which

blood for

methylation was

drawn

Thyroid

Disease

THYROID Form 30 Medical

History

At baseline

Cataract CATARACT Form 30 Medical

History

At baseline

Arthritis ARTHRIT Form 30 Medical

History

At baseline

Diabetes DIAB Form 30 Medical

History

At baseline

Any condition NACOND Form 30 Medical

History

At baseline

Total

Comorbidities

Calculated using all

available variables in

Form 30 such as

CVDEVER, DIAB, ALS,

Form 30 Medical

History

At baseline
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ARTHRIT, THYROID,

CANC_F30 and more

Smoking

status

SMOKING Form 34 - Personal

Habits

Age AGE Demographics and

Study Membership

Corrected for time

to date at which

blood for

methylation was

drawn

Table 3: WHI variables used for testing associations of scores

ROC meta-analysis in Women’s Health Initiative cohorts

For performing ROC meta analysis, we first converted all our variables to binary format.

Continuous variables such as cognitive function and physical function were converted to

binary variables by marking the lowest quintile as diseased and the rest as healthy. For

total comorbidities we marked greater than 2 comorbidities as diseased. For time to

event variables such as mortality, CHD, MI and more, we censored at t=6,000 days. The

censoring time was determined manually by looking at the longest follow-up times for

event-free individuals. Models for ROC analysis were built including the score along

with age. Each ROC curve for a clock was either compared with Systems Age or best

system score using roc.test() function in the pROC package in R. Meta-analysis was
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then performed by analyzing Z-scores comparing each clock to Systems Age or best

system score for all cohorts using Stouffer’s method.

Calculating different clocks

In addition to Systems Age, we calculated a large number of additional existing clocks

for comparison. We used the following packages or sources to do so (Table 4).

Clock Package/Source

PC clocks (Higgins-Chen et al. 2022) PC-clocks R package -

https://github.com/MorganLevineLab/PC-

Clocks

Methylation clocks except DunedinPACE

and GrimAge (Thrush et al. 2022)

methylCIPHER R package -

https://github.com/MorganLevineLab/met

hylCIPHER

DunedinPACE (Belsky et al. 2022) DunedinPACE R package -

https://github.com/danbelsky/DunedinPA

CE

GrimAge (Lu et al. 2019) Pre-calculated values as provided on the

WHI server

Table 4: Packages used for calculating epigenetic clocks
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Aging Subtypes and overrepresentation of diseases in subtypes

Age-adjusted system scores were used to perform adaptive hierarchical clustering using

the Dynamic Tree Cut library (dynamicTreeCut 1.63-1, function cutreeDynamicTree) in

R. Parameters used other than default settings included minModuleSize which was set

at 100. Based on the most stable node distance, 9 clusters were identified. Average

score for each system for each cluster was plotted on polar spider plots. An over

representation analysis comparing occurrence of disease in the cluster compared to the

whole population was performed using Fisher’s exact test. Binary disease status

variables were used without transformation, continuous variables such as cognitive

function and physical function were converted into binary variables by marking values

lesser than 1 standard deviation from mean as disease states. For time-to-event

variables, the model was built only for individuals who were alive until the 7 year

follow-up or died because of the condition.

Association of Biomarkers with System specific scores in HRS

We wanted to show how the different Biomarkers used in training were associated with

the methylation based system scores. For this purpose we built linear regression

models associating the system score with each biomarker. The z-score of association

was then plotted on the y axis for each score in supplementary figure 1.
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Test-retest reliability analysis

Reliability was calculated as described before (Higgins-Chen et al. 2022). Briefly,

reliability was calculated in GSE55763 which consisted of 36 whole-blood samples

measured in duplicate (age range 37.3 to 74.6). We used the icc function in the irr R

package version 0.84.1, using a single-rater, absolute-agreement, two-way

random-effects model (Koo and Li 2016).
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Figure 1 : Hierarchy of heterogeneity in aging. Heterogeneity in aging starts at the very

cellular and subcellular levels due to genetic and environmental factors. These

variations in aging go on to accumulate at the tissue, organ and the biological system

level causing differences in the rates of aging of different systems within an individual.

These systems do not behave independently of each other and this leads to certain

common patterns of deterioration across systems giving rise to aging subtypes.

Eventually, all of these variations accumulate at the whole body level to cause variations

in overall aging rates across individuals. Most epigenetic aging clocks typically focus on

the whole body aging level of heterogeneity, Systems Age attempts to capture both the

systems level heterogeneity and aging subtypes other than the whole body aging itself.

Image created using Biorender.com.
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Figure 2: Analysis pipeline: Step 1 - Grouping Biomarkers into systems; Step 2 -

Deconvoluting systems into principal components; Step 3 - Building DNAm surrogates

of system PCs using ElasticNet regression; Step 4 - Building system scores by

combining system PCs using Cox ElasticNet regression; Step 5 - Building Systems Age

by combining system scores using Cox ElasticNet regression. Training done in HRS and

FHS datasets while testing for specificity and aging subtypes done in WHI. Image

created using Biorender.com.
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Figure 3 : Meta-analysis associations (z-scores calculated using a race stratified

analysis of 3 WHI datasets) for specific diseases and aging phenotypes with system

score age accelerations depicted with text size and color. Additionally the system(s) with
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the highest positive association (or lowest in case of negative association) is bolded and

the organ colored on the human figure. N for functional phenotypes ranges between

1172 and 5127. For time to disease events and disease prevalence at baseline, total N

as well as number of events or individuals with diseases has been provided (in

brackets). Total N for the time to disease events and disease prevalence at baseline is

typically around 5000. For functional phenotypes at baselines Ordinary Least Squares

regression model was used, for time to disease events cox proportional hazard models

were used and for disease prevalence at baseline logistic regression models were used.

Models built for each racial group separately and then meta-analyzed via a fixed effects

model with inverse variance weights. Exact z-scores as well as heterogeneity p-values

and other phenotypes are given in supplementary table 2 and 3. Image created using

Biorender.com.
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Figure 4: Meta-analysis associations (z-scores calculated using a race stratified

analysis of 3 WHI datasets) for specific diseases and aging phenotypes with age

accelerations of different clocks, Systems Age and the best system score plotted for

smoking status adjusted (in darker shades) and no smoking status adjusted (lighter

shades). N for functional measures ranges between 1172 and 4145. For time to disease

events and disease prevalence at baseline, total N as well as number of events or

individuals with diseases has been provided (in brackets). Total N for the time to

disease events and disease prevalence at baseline is typically around 5000. For

functional measures at baseline Ordinary Least Squares regression model was used,

for time to disease events cox proportional hazard models were used and for disease

prevalence at baseline logistic regression models were used. Models built for each

racial group separately and then meta-analyzed via a fixed effects model with inverse

variance weights. Exact z-scores as well as heterogeneity p-values are given in

supplementary table 2, 3, 4 and 5. Plots generated using Prism 9.
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Figure 5: ROC analysis comparing each clock to Systems Age or best system score.

Z-scores were calculated using cohort stratified meta analysis using Stouffer’s method

on 3 WHI cohorts: EMPC, AS311 and BAA23. Scores with no significant difference have

been crossed out. Significance is defined as absolute z-scores with values greater than

1.96. Plots generated using Prism 9.
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Figure 6: Discovering Aging Subtypes. A) Correlations between system scores across

all WHI cohorts corrected for batch effects (N = 5129). Exact correlations provided in

supplementary table 8 B) Three chronological age matched individuals with the same

race and gender as well as similar age-accelerated Systems Age having very different

age-accelerated system scores. C) Overrepresentation analysis of presence or absence

of diseases amongst individuals from 9 different clusters. P Values have been

calculated using fisher's exact test and are available in supplementary table 9. D) Mean

age accelerated score has been depicted for each cluster using a spider plot and is also

available in supplementary table 10. Image created using Biorender.com.
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