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Abstract

Immunopeptidomics plays a crucial role in identifying targets for immunotherapy and vaccine
development. Because the generation of immunopeptides from their parent proteins does not
adhere to clear-cut rules, rather than being able to use known digestion patterns, every
possible protein subsequence within human leukocyte antigen (HLA) class-specific length
restrictions needs to be considered during sequence database searching. This leads to an
inflation of the search space and results in lower spectrum annotation rates.
Peptide-spectrum match (PSM) rescoring is a powerful enhancement of standard searching
that boosts the spectrum annotation performance. Low abundant peptides often occur in the
field of immunopeptidomics, which is why the highly sensitive timsTOF instruments are
increasingly gaining popularity. To improve PSM rescoring for immunopeptides measured
using timsTOF instruments, we trained a deep learning-based fragment ion intensity
prediction model. 302,105 unique synthesized non-tryptic peptides from the ProteomeTools
project were analyzed on a timsTOF-Pro to generate a ground-truth dataset, containing 93,227
MS/MS spectra of 74,847 unique peptides, that was used to fine-tune an existing Prosit
model. By applying our fragment ion intensity prediction model, we demonstrate up to 3-fold
improvement in the identification of immunopeptides. Furthermore, our approach increased
detection of immunopeptides even from low input samples.

Introduction

The adaptive immune system can eradicate pathogen-infected and cancerous cells by
recognising peptides bound to major histocompatibility complex (MHC) molecules present on
the cell surfaces. Even in the absence of infectious agents or cancerous transformation, the
continuous yet dynamic process of peptide presentation informs the adaptive immune system
about the health state of cells 1. In immunopeptidomics, MHC-bound peptides—commonly
termed immunopeptides—are isolated and characterized using mass spectrometry (MS). In
recent years MS-based immunopeptidomics has been used to discover T cell targets against
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tumors, autoimmune diseases, and pathogens 2–5. The identification of these targets is
important for the development of immunotherapies, including the development of
personalized vaccines and adoptive T cell transfers 6. As even a single immunopeptide could
elicit an immune response 7, potential targets can be based on a single peptide-spectrum
match (PSM). This underscores the importance of the specificity of PSM annotations.

Unfortunately, it remains challenging to identify immunopeptides from MS data. Because the
generation of immunopeptides from their parent proteins lacks clear-cut rules, rather than
being able to use known digestion patterns, every possible protein subsequence within human
leukocyte antigen (HLA) class-specific length restrictions needs to be considered. As a result,
there is a substantial inflation of the search space, leading to an increased false positive rate
and a low peptide identification sensitivity 8. In immunopeptidomics the search space is often
expanded further by incorporating somatic mutations, pathogen genomes, and novel
unannotated open reading frames (nuORFs) to be able to detect immunopeptides originating
from these sources as well. A recent study highlights the significance of nuORFs as an
underexplored source of MHC-I-presented, tumor-specific peptides that hold potential as
targets for immunotherapy 9.

To minimize false positives and improve identification rates, PSM rescoring can be used. This
involves post-processing results from an unfiltered database search using tools such as
Percolator 10, to use multiple PSM features to distinguish between correct and incorrect PSMs.
Recently, driven by powerful prediction tools, there has been significant interest in using
additional features for PSM rescoring. One example is using MS/MS spectrum prediction tools
to generate spectral features based on the similarity between experimental and predicted
fragment ion intensities. This approach is especially relevant for immunopeptidomics, where
the use of specialized fragment ion intensity prediction tools has yielded promising results
11–13. For example, the use of Prosit led to a more than two-fold increase in the identification of
HLA ligands 12.

A timsTOF mass spectrometer (Bruker) combines two stages of trapped ion mobility
spectrometry (TIMS) with a quadrupole and a high-resolution time-of-flight (TOF) mass
analyzer. This configuration introduces an additional dimension, the collisional cross section,
that can separate isobaric peptides. During a single TIMS scan, multiple precursors can be
selected as a function of ion mobility, while the first TIMS accumulates ions for the next TIMS
scan. This scan mode, termed parallel accumulation-serial fragmentation (PASEF), increases
MS/MS rates more than ten-fold without any loss in sensitivity 14.

In the context of immunopeptidomics, it is critical to use highly sensitive instrumentation due
to the relatively low abundance of immunopeptides. A timsTOF-based approach has been
shown to significantly increase HLA peptide identifications compared to immunopeptidomics
using an Orbitrap mass spectrometer 15. Furthermore, it has been demonstrated that
optimization of the timsTOF acquisition method improves HLA peptide identification rates 16.
Moreover, a recent study has revealed that MS/MS spectra from timsTOF instruments exhibit
more reproducibility at low abundances compared to MS/MS spectra from Orbitrap
instruments 17. Notably, when analyzing a hybrid proteome mixture using different
instruments, substantial differences in fragment ion intensities were observed between
timsTOF Pro and Orbitrap QE HF-X mass spectrometers 18. While PSM rescoring has been
proven to be highly effective for immunopeptides measured on an Orbitrap 12, the considerable
dissimilarity in MS/MS spectra produced by timsTOF and Orbitrap instruments necessitates
the development of fragment ion intensity prediction models that are optimized for predicting
timsTOF data.
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In this study we measured 302,105 unique synthesized non-tryptic peptides from the
ProteomeTools project 19 on a timsTOF-Pro to fine-tune the existing Prosit model 12. The
integration of fragment ion intensity predictions into PSM rescoring of search results
significantly improved the identification rate of HLA peptides measured on a timsTOF. In
addition, we rescored timsTOF data from low-input samples and successfully identified
immunopeptides derived from nuORFs.

Results

Measuring non-tryptic peptides on a timsTOF

The ProteomeTools project is a large-scale effort in which peptides were synthesized and
analyzed. Initially it contained measurements of 330,000 synthetic tryptic peptides covering
essentially all canonical human proteins 19. Subsequently, the project expanded to include
post-translational modifications 20 and non-tryptic peptides 12. This valuable dataset was used
to train the deep neural network, Prosit, for the prediction of retention time (RT) and fragment
ion intensity 21. However, all measurements conducted in previous studies were performed on
Orbitrap and ion trap instruments.

The considerable dissimilarity in MS/MS spectra generated by timsTOF and Orbitrap
instruments for the same peptide (Fig. 1, Supplementary Fig. S1) underscores the need to
develop fragment ion intensity prediction models optimized for timsTOF data. To address this,
we measured 302,105 unique synthesized non-tryptic peptides from the ProteomeTools
project 12. Our measurements encompassed a range of collision energies from 20.81 eV to
69.77 eV. Consequently, we compiled a dataset consisting of 93,227 non-tryptic MS/MS
spectra, complemented by 184,552 previously published tryptic MS/MS spectra from 138,227
unique synthetic tryptic peptides 22. This extensive dataset, comprising a total of 277,779
MS/MS spectra and 216,934 unique peptides, serves as a unique training dataset for the
development of machine learning tools tailored to timsTOF instruments (Supplementary Fig.
S2).

Figure 1. Mirror plot of the singly charged non-tryptic synthetic ProteomeTools19 peptide
VEDPVTVEY measured on a timsTOF (top;
mzspec:PXD043844:HLAI_p2_97_178_p2-D1_S1-D1_1_6866.mgf:index:2341:VEDPVTVEY/1
) and on an Orbitrap (bottom;
mzspec:PXD021013:02446d_GD1-TUM_HLA_133_01_01-3xHCD-1h-R4:scan:
32024:VEDPVTVEY/1) instrument. The spectral similarity measured by the normalized
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spectral contrast angle based on annotated fragments between the two spectra is 0.68.
This illustrates how different timsTOF MS/MS spectra can look compared to Orbitrap data.
This randomly chosen peptide was measured several times on the Orbitrap, after which the
spectrum with the highest similarity to all other Orbitrap spectra for this peptide was
selected (the medoid spectrum). In the timsTOF data the displayed MS/MS spectrum was
the only measurement of this peptide. SA = normalized spectral contrast angle.

Optimized Prosit model improves prediction accuracy of tryptic and non-tryptic
peptide timsTOF MS/MS spectra

To optimize the Prosit fragment ion intensity prediction model towards timsTOF instruments,
we fine-tuned the HCD Prosit 2020 model using the 277,779 MS/MS spectra compiled in this
study, split into training, validation, and test sets (Fig. 2a). The HCD Prosit 2020 model was
selected because higher-energy collisional dissociation (HCD) is a non-resonant activation
technique like the collision induced dissociation conducted in a TOF instrument 23. The HCD
Prosit 2020 model was originally trained on approximately 30 million MS/MS spectra,
consisting of 9 million MS/MS spectra of non-tryptic peptides 12 and 21 million previously
published tryptic MS/MS spectra 19,21). The comparison between the HCD Prosit 2020 model
and the newly developed timsTOF Prosit 2023 model (Fig. 2b-d) reveals a substantial
improvement in normalized spectral contrast angle (SA) between predicted and experimental
timsTOF MS/MS spectra for non-tryptic peptides (SA ≥ 0.9 for 26.3% of spectra, compared to
2.4% with HCD Prosit 2020) and for tryptic peptides (SA ≥ 0.9 for 42.1% of spectra, compared
to 0.2% with HCD Prosit 2020). The timsTOF Prosit 2023 model demonstrates consistent
performance across different precursor charges and collision energies, with only a minor
influence of these factors on the predicted fragment ion intensities (Pearson correlation
coefficients of -0.19 and 0.22 for the precursor charge and the collision energy, respectively;
Supplementary Fig. S3a,c). We observed a moderate influence of the peptide length on the
predicted fragment ion intensities indicating that accurate fragment ion intensity prediction is
more challenging for longer peptides (Pearson correlation coefficient of -0.38; Supplementary
Fig. S3b). We observed only a minimal bias towards C- and N-terminal amino acids
(Supplementary Fig. S4a-b).

It is important to note that the applied collision energy has a profound impact on the
information content of the obtained MS/MS spectra 24 (Supplementary Fig. S1). To optimize
the transfer learning, the collision energies of the training, validation, and test set were
calibrated according to the collision energies the HCD Prosit 2020 model would expect. To
achieve this, robust linear models were trained on the training set, stratified by precursor
charge state and tryptic status, and then applied on the training, validation, and test sets (see
Methods).
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Figure 2. Deep learning framework Prosit for tryptic and non-tryptic peptide fragment ion
intensity prediction. a The 277,779 MS/MS spectra from tryptic and non-tryptic peptides
measured on timsTOF instruments were split into training, validation, and test sets and
used to fine-tune Prosit. b Violin plots comparing the prediction accuracy of the timsTOF
Prosit 2023 model against the previously published HCD Prosit 2020 model 12 for
non-tryptic (MHC-I, MHC-II, LysN, and AspN) and tryptic peptides. c Mirror plot of the
randomly chosen singly charged non-tryptic synthetic peptide GVDAANSAAQQY measured
on a timsTOF (top;
mzspec:PXD043844:HLAI_p2_97_178_p2-D1_S1-D1_1_6866.mgf:index:3378:GVDAANSAAQ
QY/1) and the predicted spectrum for this peptide at the aligned collision energy with the
HCD Prosit 2020 model (bottom). d Mirror plot of the same measurement (top;
mzspec:PXD043844:HLAI_p2_97_178_p2-D1_S1-D1_1_6866.mgf:index:3378:GVDAANSAAQ
QY/1) and the predicted spectrum for this peptide at the aligned collision energy with the
timsTOF Prosit 2023 model (bottom). Fragment ions are labeled in red and blue for y and b
ions, respectively. The mirror plot was generated using spectrum_utils version 0.4.1 25. SA =
normalized spectral contrast angle.
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PSM rescoring boosts immunopeptide identification on timsTOF

We hypothesized that integrating fragment ion intensity predictions into PSM rescoring of
search results would improve the identification rate of HLA peptides measured on a timsTOF,
similar to what was previously observed for tryptic and non-tryptic peptides measured on
other instruments 12. To investigate this, we reanalyzed data from a recently published
benchmarking study on timsTOF-based immunopeptidomics for tumor antigen discovery 15.
The study compared timsTOF-based immunopeptidomics to immunopeptidomics using
Orbitrap technology and demonstrated a significant increase in the identification of
immunopeptides from various benign and malignant primary samples of solid tissue and
hematological origin.

In this analysis, the dataset was reprocessed with MaxQuant and all proposed PSMs were
PSM rescored by integrating Prosit’s fragment ion intensity predictions and retention time
predictions, using Oktoberfest 26. We compared results from MaxQuant + Percolator vs
MaxQuant + Prosit + Percolator, respectively, the feature sets can be found in Supplementary
Table S1 and S2. This allowed us to evaluate PSM rescoring of timsTOF data using the
timsTOF 2023 model and PSM rescoring of Orbitrap data using the CID 2020 model for HLA-I
and HCD 2020 model for HLA-II (Fig. 3a-d). PSM rescoring of the Orbitrap data resulted in on
average 2.2-fold more unique HLA-I peptides and 1.4-fold more unique HLA-II peptides. PSM
rescoring timsTOF data resulted in comparable results, with on average 2.7-fold more unique
HLA-I peptides and 1.8-fold more unique HLA-II peptides. Because the current Prosit models
were not trained on peptides containing free cysteine side chains or other amino acid
modifications that may be identified on immunopeptides, 8% of potential target PSMs (of
which 99% would not survive the posterior error probability < 0.01 filter) were lost because
they could not be rescored.

To evaluate the effect of the fragment ion intensity prediction model, PSM rescoring was
performed on the timsTOF data with all three models. To isolate the benefit of fragment ion
intensity information during rescoring, RT prediction-based features were excluded during this
analysis (Supplementary Table S1). We observed that PSM rescoring with the timsTOF 2023
model consistently resulted in a higher gain compared to PSM rescoring with the other two
models (Fig. 3e-f, Supplementary Fig. S5). As expected, the timsTOF Prosit 2023 model
resulted in a higher gain of identifications compared to the HCD Prosit 2020 and the CID Prosit
2020 model. A possible explanation as to why PSM rescoring with the HCD Prosit 2020 model
consistently resulted in a higher increase compared to PSM rescoring with the CID Prosit 2020
model, is that both HCD and timsTOF have a beam-type fragmentation and are thus more
similar compared to CID 23. The evaluation of the effect of the different fragment ion intensity
prediction models on PSM rescoring of the Orbitrap data achieved similar results, with the CID
Prosit 2020 model consistently resulting in a higher gain of identifications in the HLA-I dataset
and the HCD Prosit 2020 model consistently resulting in a higher gain of identifications in the
HLA-II dataset (Supplementary Fig. S6).
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Figure 3. Gained, shared, and lost peptide identifications for different sample types to
compare PSM rescoring on Orbitrap data with PSM rescoring on timsTOF data. In general
PSM rescoring was able to boost the confidence in peptide identifications, retaining true
PSMs, gaining new PSMs, and losing only a small number of previously incorrect PSMs. a
On average PSM rescoring of HLA-I Orbitrap data with the CID Prosit 2020 model resulted in
a 2.2-fold increase (with 27,023 shared, 28,890 gained, and 486 lost unique peptides). b On
average PSM rescoring of HLA-I timsTOF data with the timsTOF Prosit 2023 model resulted
in a 2.7-fold increase (with 41,822 shared, 62,962 gained, and 521 lost unique peptides). c
On average PSM rescoring of HLA-II Orbitrap data with the HCD Prosit 2020 model resulted
in a 1.4-fold increase (with 30,081 shared, 12,187 gained, and 537 lost unique peptides). d
On average PSM rescoring of HLA-II timsTOF data with the timsTOF Prosit 2023 model
resulted in a 1.8-fold increase (with 47,201 shared, 26,852 gained, and 787 lost unique
peptides). e To evaluate the effect of the fragment ion intensity prediction model on PSM
rescoring, the RT prediction-based features were excluded. On average PSM rescoring of
HLA-I timsTOF data with the timsTOF Prosit 2023 model resulted in a 2.8-fold increase (with
39,606 shared, 59,458 gained, and 549 lost unique peptides). On average PSM rescoring of
HLA-I timsTOF data with the HCD Prosit 2020 model resulted in a 2.5-fold increase (with
39,296 shared, 52,520 gained, and 859 lost unique peptides). On average PSM rescoring of
HLA-I timsTOF data with the CID Prosit 2020 model resulted in a 2.2-fold increase (with
38,431 shared, 43,748 gained, and 1,724 lost unique peptides). f To evaluate the effect of
the fragment ion intensity prediction model on PSM rescoring, the RT prediction-based
features were excluded. On average PSM rescoring of HLA-II timsTOF data with the
timsTOF Prosit 2023 model resulted in a 1.5-fold increase (with 46,439 shared, 25,443
gained, and 918 lost unique peptides). On average PSM rescoring of HLA-II timsTOF data
with the HCD Prosit 2020 model resulted in a 1.5-fold increase (with 45,393 shared, 24,250
gained, and 964 lost unique peptides). On average PSM rescoring of HLA-II timsTOF data
with the CID Prosit 2020 model resulted in a 1.5-fold increase (with 46,088 shared, 21,899
gained, and 1,269 lost unique peptides). RCC = renal cell carcinoma; HNSCC = head and
neck squamous-cell carcinoma; PBMC = peripheral blood mononuclear cell; CLL = chronic
lymphocytic leukemia.

Hence, PSM rescoring of timsTOF data drastically improved the identification rate of
immunopeptides. To further evaluate how PSM rescoring performs when different proteases
are used, we performed a reanalysis of samples cleaved with either trypsin, AspN, or GluC 27.
These three proteases have distinct cleavage sites, with trypsin cleaving at the C-terminal side
of lysine and arginine residues 28, AspN mainly cleaving at the N-terminal side of aspartic acid
residues 29, and GluC mainly cleaving at the C-terminal side of glutamic acid residues 29.

PSM rescoring of the samples cleaved with AspN, GluC, and trypsin resulted in 1.5-fold,
1.7-fold, and 1.4-fold increases in unique identified peptides, respectively (Supplementary Fig.
S7a). The performance of the timsTOF Prosit 2023 model was stable across all proteases,
with a median spectral angle of 0.77, 0.78, and 0.80 for samples cleaved with AspN, GluC, and
trypsin, respectively (Supplementary Fig. S7b).

PSM rescoring boosts the identification rate of relevant immunopeptides in low-input
samples

To enable the detection of rare and clinically relevant antigens from a limited cell input,
Phulphagar et al. 30 developed a high-throughput single-shot MS-based immunopeptidomics
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workflow using the timsTOF single-cell proteomics system (SCP). This workflow was applied
to sample inputs ranging from 1 million to 40 million A-375 cell equivalents, a melanoma cell
line which expresses the following HLA-I genes: A*01:01, A*02:02, B*57:01, B*44:03, C*16:02,
and C*06:02.

This experiment was reprocessed to evaluate how PSM rescoring with the timsTOF Prosit
2023 model would perform on data from low-input samples. Individual spectrum peak files
were searched against a compiled database consisting of the human reference proteome,
common laboratory contaminants, curated small open reading frames (ORFs), and novel
unannotated ORFs (nuORFs) supported by ribosomal profiling 9. All proposed PSMs by
MaxQuant were subsequently rescored using Oktoberfest. The results showed an average
increase in identified HLA-I ligands across different input sizes, ranging from 1.3-fold at 1
million cell equivalents to 1.9-fold at 40 million cell equivalents (Fig. 4a, Supplementary Fig.
S8a). Interestingly, we observed a consistent median spectral angle around 0.85 across all cell
equivalents, supporting the finding that MS/MS spectra from timsTOF instruments are
reproducible at low abundances 17 (Supplementary Fig. S8b).

To validate the peptide identifications obtained through PSM rescoring, we employed Gibbs
clustering 31 on the gained, shared, and lost peptides separately. We then compared the cluster
motifs with the known binding motifs of the HLA alleles expressed by the cells. The selection
of motifs shown in Figure 4b was based on the cluster with the highest Kullback-Leibler
distance. The Kullback-Leibler distance provides a measure of similarity between clusters,
thus identifying the cluster that differs the most from the other clusters found. Notably, we
observed that the clusters with the highest Kullback-Leibler distances to the other clusters
among the shared and gained peptides exhibited a striking resemblance to the motif of
A*01:01. Conversely, the motifs of the clusters of the lost peptides did not correspond to any
of the motifs of the HLA types present in the cell line (Fig. 4b, Supplementary Fig. S9). The
motifs of the other clusters based on the gained and shared peptides were consistent with
other HLA alleles present in the cell, namely A*02:02, B*44:03, and B*57:01 (Supplementary
Fig. S9).

To further validate the peptide identifications obtained through PSM rescoring, we assessed
the predicted binding affinity of the gained, shared, and lost peptides. Using thresholds
provided by NetMHCpan 32 for weak binders and strong binders, we found that 88% of
peptides gained after PSM rescoring were weak binders of at least one of the HLA types
present in the cell, with 80% being a strong binder (Fig. 4c). For the shared peptides this was
89% and 85%, and for the lost peptides this was 44% and 24%, respectively. This implies that
56% of the peptides lost after PSM rescoring were predicted to not bind any of the HLA
molecules present in the cell.

Among the identified immunopeptides, a subset of 2,509 peptides (3%) originated from nuORF
source proteins (Fig. 4d). Recent studies have provided evidence that peptides derived from
noncanonical proteins can be displayed on HLA-I molecules 33,34. These nuORFs may arise
from transcripts that are currently annotated as non-protein coding, including the 5′ and 3′
untranslated regions, overlapping yet out-of-frame alternative ORFs in annotated
protein-coding genes, long noncoding RNAs, or pseudogenes 9. HLA peptides derived from
noncanonical proteins can expand the repertoire of potential immunotherapy targets in
cancer. Notably, we did not observe significant changes in the ratio of nuORFs after PSM
rescoring, indicating a robust FDR control in proteogenomics. In addition, more than twice as
many nuORF source proteins were identified after PSM rescoring the 40 million cell equivalent
samples, which are of great interest. Furthermore, we examined the binding affinity of
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peptides originating from nuORFs and found that 90% of peptides can be considered a weak
binder to at least one of the HLA types present in the cell, with 81% being a strong binder. This
suggests that these peptides are actually presented by the cell.
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Figure 4. PSM rescoring timsTOF SCP immunopeptidomics data. a Mean and standard
deviation showing the identification rates of 1 million to 40 million A-375 cell equivalents.
Above each bar the fold change is shown between MaxQuant + Percolator and MaxQuant +
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Prosit + Percolator. b Peptide motif plots of 1,406 unique peptides confidently identified to
be present in the cell line expressing allele A*01:01 35, and peptide motif plots of 16,641
unique gained peptides, 13,208 unique shared peptides, and 447 unique lost peptides
resulting from PSM rescoring of the 1 million to 40 million A-375 cell equivalents. Amino
acids are colored according to their physicochemical properties (red acidic, blue basic, black
hydrophobic, purple neutral, and green polar amino acids). c Cumulative distribution
function (CDF) plot illustrating the distribution of the shared, gained, and lost peptides
across the log10 percentile rank (%Rank) calculated with NetMHCpan version 4.1 32. The
cut-off values for strong binders (SB) and weak binders (WB) are indicated in red. d Mean
unique nuORF source proteins contributing to the HLA-I immunopeptidome of 1 million to
40 million A-375 cell equivalents 9.

Discussion

The identification of immunopeptides is critical for the advancement of vaccine and
immunotherapy development. Previous studies have shown that using fragment ion intensity
predictions in rescoring can greatly increase the identification rate of HLA ligands 11–13. In this
study, we established an extensive dataset consisting of MS/MS spectra from synthetic
non-tryptic and tryptic peptides measured on a timsTOF instrument. This dataset served as
the foundation for training the novel timsTOF Prosit 2023 model. By employing this model for
PSM rescoring of MaxQuant results from immunopeptides measured on a timsTOF, we
achieved a nearly 3-fold increase in the identification of HLA-I peptides. Based on previous
studies 11,12,36, we expect improvement when applied to other search engines as well. In
addition, we demonstrated the effectiveness of our model for PSM rescoring of low sample
inputs measured using a timsTOF SCP instrument, resulting in improved identification rates.
Importantly, the immunopeptides identified after rescoring are likely to be HLA binders, as
supported by the motif analysis and binding affinity assessment, providing an orthogonal
validation of our method. Moreover, PSM rescoring led to an almost 2-fold increase in the
identification of unique nuORF source proteins, which hold the potential to serve as valuable
targets for immunotherapy 33,34.

To ensure the timsTOF Prosit 2023 model’s strong predictive capabilities towards
immunopeptides, we generated MS/MS spectra from synthesized non-tryptic peptides to
compile the training data. This enabled the model to generalize over different peptide types,
whereas machine learning models that are solely trained on tryptic data often fail to do so, for
example, by exhibiting a bias towards C-terminal arginine or lysine residues. A potential
limitation could be that while our current model only predicts fragment ion intensities for
canonical y and b ions, non-tryptic peptides exhibit distinct MS/MS characteristics compared
to tryptic peptides, often displaying strong internal ion series and neutral losses. However, as
PSM rescoring using Prosit has demonstrated robustness against the presence of a large
number of neutral loss or internal ion series 12, we do not expect this to be overly detrimental.
In addition to the analysis of immunopeptidomics data, our model holds promise for
numerous other biological and biomedical applications. One such area is deep proteome
sequencing, where multiple proteases are used to enhance proteomic coverage 37, particularly
in regions with suboptimal trypsin cleavage sites, such as membrane-spanning domains and
splice junctions. Our model can effectively enhance the confidence of peptide identifications in
such studies, enabling valuable insights into alternative splicing and facilitating a
comprehensive exploration of its impact on the proteome.
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Another potential application of our timsTOF ground-truth dataset could be to develop a CCS
prediction model for non-tryptic peptides. Similar to fragment ion intensity and RT predictions,
CCS predictions can be used as features during PSM rescoring 38. Some CCS prediction
models already exist 22,39–41, including a recent model trained on immunopeptides 40.

It is important to note that the applied collision energy has a profound impact on the
information content of the obtained MS/MS spectra 24. Thus, collision energy calibration is
needed for accurate fragment ion intensity predictions. The impact of collision energy in the
timsTOF instrument is a bit more complicated compared to its impact in the Orbitrap. During
IMS, ions are subjected to a series of collisions. This kinetic energy can be transferred to
internal energy, similarly to what takes place during the activation of ions in collision-induced
dissociation. Because IMS energizes the peptides significantly, the use of lower collision
energies is advised 24. Similarly to what has been observed for retention time alignment 42, we
expect a benefit from collision energy alignment to account for the run-to-run fluctuations.

Although currently the timsTOF Prosit 2023 model is dependent on MaxQuant, as it relies on
the search engine to sum the MS/MS scans, in the future, it will be further extended to support
other search engines as well and become search engine agnostic, similar to how Oktoberfest
has recently extended applicability of Prosit Orbitrap predictions beyond MaxQuant. The
timsTOF Prosit 2023 model is available on Koina (Prosit_2023_intensity_timsTOF,
https://koina.proteomicsdb.org) and can be used via Oktoberfest.

Methods

Data acquisition

Synthetic non-tryptic peptides data acquisition
Within the ProteomeTools project, 302,105 unique non-tryptic peptides were synthesized,
comprising 168,688 HLA class I, 73,464 HLA class II, 31,744 AspN, and 31,435 LysN
sequences. For detailed information on the peptide origins, please refer to the original
publication by Wilhelm et al. 12. Peptide pools for synthesis and measurement contained
roughly 1000 peptides each. Near-isobaric peptides (±10 p.p.m.) were distributed across
different pools of similar length to avoid ambiguous masses in pools wherever possible. Ten
microliters of the stock solution were transferred to a 96-well plate and spiked with two
retention time standards (Pierce Retention Time Standard and PROCAL 43) at 100 fmol per
injection. An equimolar amount of approximately 50 fmol of each peptide was injected into an
Evosep One HPLC system (Evosep) coupled to a hybrid TIMS-quadrupole TOF mass
spectrometer (Bruker Daltonik timsTOF Pro) via a nano-electrospray ion source (Bruker
Daltonik Captive Spray). The 100 samples per day (SPD) method was used. The Endurance
Column 15 cm x 150 μm ID, 1.9 μm beads (EV1106, Evosep) was connected to a Captive
Spray emitter (ZDV) with a diameter 20 μm (1865710, Bruker) (both from Bruker Daltonics).

The timsTOF Pro was calibrated according to the manufacturer’s guidelines. The source
parameters were: capillary voltage 1500 V, dry gas 3.0 l/min, and dry temp 180°C. The
temperature of the ion transfer capillary was set to 180°C. The column was kept at 40°C. The
data-dependent Parallel Accumulation–Serial Fragmentation (PASEF) method was used to
select precursor ions for fragmentation with 1 TIMS-MS scan and 10 PASEF MS/MS scans, as
described by Meier et al. 14. The TIMS-MS survey scan was acquired between 0.70 and 1.70
Vs/cm2 and 100–1,700m/z with a ramp time of 100 ms. Them/z and ion mobility information
was used to select precursors with charges ranging from 1–3. No polygon was used for
precursor ion selection. Dynamic exclusion was used to avoid re-selecting of precursors that
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reached a target value of 20,000 a.u. The timsTOF Pro was controlled by the OtofControl 6.0
software (Bruker Daltonik GmbH). The collision energy was increased as a function of
decreasing ion mobility (ranging from 0.76–1.68 Vs/cm2), starting from 20 eV to 70 eV.

Synthetic tryptic peptides data acquisition
The “proteotypic” synthetic peptide set from ProteomeTools 19, covering confidently and
frequently identified proteins (124,875 peptides covering 15,855 human annotated genes),
was obtained by Meier et al. 22. The data was downloaded from the PRIDE repository with
identifier PXD019086.

As per Meier et al., LC–MS was performed on an EASY-nLC 1200 (Thermo Fisher Scientific)
system coupled to timsTOF Pro mass spectrometer (Bruker Daltonik, Germany) via a
nano-electrospray ion source (Bruker Daltonik Captive Spray). Approximately 200 ng of
peptides were separated on an in-house 45 cm × 75 µm reversed-phase column at a flow rate
of 300 nL/min in an oven compartment heated to 60°C. The column was packed in-house with
1.9 µm C18 beads (Dr. Maisch Reprosil-Pur AQ, Germany) up to the laser-pulled electrospray
emitter tip. Mobile phases A and B were water and 80%/20% ACN/water (v/v), respectively,
and both buffered with 0.1% formic acid (v/v). The pooled synthetic peptides were analyzed
with a gradient starting from 5% B to 30% B in 35 min, followed by linear increases to 60% B
and 95% in 2.5 min each before washing and re-equilibration for a total of 5 min.

The timsTOF Pro was operated in data-dependent PASEF 44 mode with 1 survey TIMS-MS and
10 PASEF MS/MS scans per acquisition cycle. They analyzed an ion mobility range from
1/K0 = 1.51 to 0.6 Vs/cm2 using equal ion accumulation and ramp time in the dual TIMS
analyzer of 100 ms each. Suitable precursor ions for MS/MS analysis were isolated in a
window of 2 Th for m/z < 700 and 3 Th for m/z > 700 by rapidly switching the quadrupole
position in sync with the elution of precursors from the TIMS device. The collision energy was
lowered stepwise as a function of increasing ion mobility, starting from 52 eV for 0–19% of the
TIMS ramp time, 47 eV for 19–38%, 42 eV for 38–57%, 37 eV for 57–76%, and 32 eV until the
end. The m/z and ion mobility information was used to exclude singly charged precursor ions
with a polygon filter mask. Dynamic exclusion was used to avoid re-sequencing of precursors
that reached a target value of 20,000 a.u.

Preparation of the training data

The raw Bruker data from synthetic peptides from ProteomeTools 19 were analyzed with
MaxQuant version 2.1.2.0 45. Individual spectrum peak files were searched against
pool-specific databases 46. Default parameters were used, unless mentioned otherwise:
carbamidomethylated cysteine was specified as a fixed modification and methionine
oxidation as a variable modification. The minimal sequence length was set to 7 and the
maximum sequence length was set to the maximum length of peptides in the pool. The
precursor tolerance was set to 40 ppm and only the top PSM was used per spectrum. PSMs
were filtered at a 0.01 posterior error probability (PEP). Only peptides expected in the pool,
including full-length and N-terminally truncated peptides, were selected. All PSMs, even for the
same peptide, with an Andromeda score ≥ 70 were included.

Unprocessed spectra were extracted from the raw Bruker files with OpenTIMS 47, using the
precursorID from the accumulatedMsmsScans.txt and the frameID from the
pasefMsmsScans.txt MaxQuant output files. Frame-level scans were summed based on the
scan number from msms.txt with MasterSpectrum version 1.1 48. The y and b ions were
annotated for fragment charges ranging from 1 to 3.
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The data were split into three distinct sets with each peptide and subsequence of a peptide
only included in one of the three: training (80%, 153,809 tryptic PSMs and 77,577 non-tryptic
PSMs), validation (10%, 16,483 tryptic PSMs and 7,778 non-tryptic PSMs), and test (10%,
14,262 tryptic PSMs and 7,872 non-tryptic PSMs). For each PSM in the training set, MS/MS
spectra were predicted with the HCD Prosit 2020 model across collision energies ranging from
5 to 45 eV. The SA was calculated between the observed spectra and the predicted spectra,
and the collision energy corresponding to the top-scoring predicted spectra was selected as
the optimal collision energy. This process was performed separately for each peptide type
(tryptic, non-tryptic) and precursor charge state (1-3). A robust linear model was trained using
RANSAC regression in scikit-learn version 1.2.2 49 to predict the difference between the
reported collision energy and the optimal collision energy, based on the peptide mass.

To calibrate the validation and test set, the collision energy difference was predicted for each
peptide mass, and this difference was applied to obtain the aligned collision energy. The
models used for the collision energy calibration are available on the MassIVE repository
(MSV000092456).

Prosit 2023 model training

The HCD Prosit 2020 model 12 was fine-tuned using the training set. To control for overfitting,
the validation set was used with early stopping, employing a patience of 5 epochs. The test set
was used after the model was fully trained to evaluate its generalization and potential biases.

The model architecture remained unchanged, and the normalized spectral contrast loss 21 was
used as a loss function. We used the Adam optimizer 50 with a cyclic learning rate algorithm 51.
During training, the learning rate cycled between a constant lower limit of 0.00001 and an
upper limit of 0.0002 which is continuously scaled by a factor of 0.95 with the ‘’triangular”
mode. The model was trained with a batch size of 2000 on an Nvidia V100 GPU. The model
improved significantly in predicting fragment ion intensity during the initial epochs, as depicted
in Supplemental Figure S8, and converged at epoch 28 with a median SA of 0.86.

General PSM rescoring pipeline

Before PSM rescoring, all spectrum peak files were searched using MaxQuant version 2.0.3.1
with default parameters unless specified otherwise: carbamidomethylated cysteine was
specified as a fixed modification and methionine oxidation as a variable modification. The
minimum peptide length was set to 8 amino acids and the maximum peptide length depended
on the HLA class, with a length set to 16 amino acids for HLA-I and 30 amino acids for HLA-II.
Specific settings for the individual datasets are detailed below.

The unfiltered search results, including decoy PSMs, were used as an input for the PSM
rescoring with Oktoberfest version 0.6.0 26. In brief, unprocessed MS/MS spectra
corresponding to the identifications were extracted from the raw Bruker files and the y and b
ions were annotated at fragment charges 1 up to 4. Collision energies were calibrated by
predicting the top 100 scoring PSMs for each charge state with a collision energy range
between 5 and 45 eV. The SA was calculated between the observed spectra and the predicted
spectra and the optimal collision energy was determined by selecting the collision energy
corresponding to the top-scoring predicted spectra. A robust linear model was trained using
RANSAC regression in scikit-learn version 1.2.2 49 to predict the difference between the
reported collision energy and the optimal collision energy, based on the peptide mass.
Subsequently, this model was used to determine the optimal collision energy. Both retention
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time and fragment ion intensities were predicted and features were generated (Supplementary
Table 1) to add to Percolator 52, which was used for the PSM and peptide FDR estimation.

Application of Prosit and PSM rescoring to external datasets

Re-analysis of the comparison dataset
To compare the PSM rescoring performance on Orbitrap versus timsTOF data, we utilized a
comparison dataset comprising both HLA-I and HLA-II peptides measured on an Orbitrap and
on a timsTOF. For detailed information on data acquisition, please refer to the original
publication by Gravel et al. 15. In brief, 10 samples were measured in technical triplicate (two
technical replicates for the HNSCC sample) on the Orbitrap Fusion Lumos mass spectrometer
(Thermo Fisher Scientific, Waltham, USA) and on the timsTOF Pro (Bruker Daltonik, Germany).
The fragmentation methods used for the Orbitrap instrument were resonance-type
collision-induced dissociation (CID) at a normalized collision energy of 35% for HLA-I peptides
and higher-energy collisional dissociation (HCD) at a normalized energy of 30% for HLA-II
peptides. The data was downloaded from the PRIDE repository with identifier PXD038782.

Individual spectrum peak files were searched against a database containing 20,598 human
UniProt entries downloaded from https://www.ebi.ac.uk/reference_proteomes/ on 23/03/2023
46. Carbamidomethylated cysteine was not included as a fixed modification, because cysteine
was not carbamidomethylated during sample processing. Before PSM rescoring all PSMs
containing free cysteine side chains were removed. The Orbitrap data was searched with a
precursor tolerance of 20 ppm and the timsTOF data with a precursor tolerance of 40 ppm. To
perform PSM rescoring on the Orbitrap data we employed the 2020 CID Prosit model with a
collision energy set to 35 for HLA-I peptides, and the 2020 HCD Prosit model with collision
energy set to 30 for the HLA-II peptides. For timsTOF data, PSM rescoring was performed
using the timsTOF Prosit 2023 model with the calibrated collision energies.

To evaluate the effect of the fragment ion intensity prediction model, PSM rescoring was
performed on the timsTOF data with the different models. To isolate the benefit of fragment
ion intensity information during rescoring, RT prediction-based features were excluded during
this analysis. The features abs_rt_diff, lda_scores, pred_RT, and iRT were removed from the list
of features detailed in Supplementary Table 1.

Re-analysis of a dataset with multiple proteases
To investigate whether samples digested with trypsin, GluC, or AspN benefit from PSM
rescoring, we rescored a timsTOF Pro dataset that was digested using different proteases. For
detailed information on data acquisition, please refer to the original publication by Fossati et
al. 27. In brief, for spectral library generation 500 ng for each fraction were acquired using DDA
PASEF. The number of missed cleavages was fixed to 2, using cysteine carbamidomethylation
as fixed modification, and N-terminal acetylation and methionine oxidation as variable
modifications. Individual spectrum peak files were searched against a combined human-Mtb
database encompassing the Mycobacterium Tuberculosis proteome (4,081 entries,
downloaded from Uniprot on 12/02/2021) and Homo Sapiens proteome (20,397 entries,
downloaded on 07/01/2021). The data were downloaded from the PRIDE repository with
identifier PXD025671.

Re-analysis of an immunopeptidomics dataset measured on timsTOF SCP
To investigate whether low input samples benefit from PSM rescoring, we rescored a timsTOF
SCP dataset. For detailed information on data acquisition, please refer to the original
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publication by Phulphagar et al. 30. In brief, HLA-I peptides were directly enriched from 1 million
to 40 million A-375 cell equivalents by single shot injections on timsTOF SCP. Each sample
was measured in technical triplicate (four technical replicates for the 40 million sample).
Individual spectrum peak files were searched against a compiled database comprised of the
human reference proteome Gencode 34
(ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_34) with 47,429 non
redundant protein-coding transcript biotypes mapped to the human reference genome
GRCh38, 602 common laboratory contaminants, 2043 curated small ORFs (lncRNA and
upstream ORFs), 237,427 novel unannotated ORFs (nuORFs) supported by ribosomal profiling
nuORF DB v1.037, for a total of 287,501 entries 9. The data were downloaded from the PRIDE
repository with identifier PXD040740.

To validate the peptide identifications acquired through PSM rescoring, gained, shared, and
lost peptides were clustered with GibbsCluster version 2.0 31 with parameters for MHC class I
ligands of length 8-13. Based on the Kullback-Leibler distance in function of the number of
clusters, the optimal number of motifs in the data was selected. For each motif the
position-specific scoring matrix was extracted and put into Seq2logo version 2.0 53 to get the
position-specific frequency matrix of the Kullback-Leibler logos. All logos were visualized using
the Python package Logomaker version 0.8 54. The logos from gained, shared, and lost
peptides were plotted next to the logos of the HLA-types present in the cell line to which they
had the lowest Kullback-Leibler distance. For the HLA motif, peptide lists of the large
monoallelic HLA class I cell line study by Sarkizova and Klaeger et al. 35 were used.

For each peptide we calculated the binding affinity to every HLA allele present in the cell line,
using NetMHCpan version 4.1 32. For each peptide the best, i.e. lowest, percentile rank value
was retained. A percentile rank cutoff of 2 was used for weak binders and 0.5 for strong
binders 32.

Data Availability

The MS datasets are available via the PRIDE and MassIVE repositories with the identifier
MSV000092456 (non-tryptic timsTOF dataset, also accessible with PXD043844), PXD019086
(tryptic timsTOF dataset; reanalysis available on MSV000092462), PXD038782 (comparison
dataset; reanalysis available on MSV000092461), PXD025671 (multiple proteases dataset;
reanalysis available on MSV000093954), and PXD040740 (SCP dataset; reanalysis available
on RMSV000000693.1). All protein databases used in this study are deposited alongside the
result files.

Code Availability

Source code and scripts are available on GitHub at https://github.com/wilhelm-lab/koina,
https://github.com/wilhelm-lab/oktoberfest, and
https://github.com/adamscharlotte/timsTOF-immunopeptide-prediction.
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