Abstract
The rapid evolution of SARS-CoV-2 to variants with improved transmission efficiency and reduced sensitivity to vaccine-induced humoral immunity has abolished the protective effect of licensed therapeutic human monoclonal antibodies (mAbs). To fill this unmet medical need and protect vulnerable patient populations, we isolated the P4J15 mAb from a previously infected, vaccinated donor, with <20 ng/ml neutralizing activity against all Omicron variants including the latest XBB.2.3 and EG.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. Although SARS-CoV-2 mutants escaping neutralization by P4J15 were selected in vitro, these displayed lower infectivity, poor binding to ACE2, and the corresponding ‘escape’ mutations are accordingly rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, we show that P4J15 confers complete prophylactic protection. We conclude that the P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug.
Competing Interest Statement
CF, GP, PT and DT are co-inventors on a patent application that encompasses the antibodies and data described in this manuscript (EP 22199188.8). DT and GP are amongst the founders of and own equity in Aerium Therapeutics, which has rights to and is pursuing the development of the antibodies described in the publication and has a Sponsored Research Agreements with the Lausanne University Hospital (CHUV) and the Ecole Polytechnique Fédérale de Lausanne (EPFL). The remaining authors declare no competing interests.