Abstract
Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. Firstly, we observed simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Secondly, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide better understanding for various immune dynamics in therapy and disease.
Competing Interest Statement
Specific aspects of the described technology have been patented.
Footnotes
We have added additional items in the discussion explaining the reasoning behind the cytokine selection, grouping, choice of PBMCs as study system (instead of purified cell populations), and changed two figures (4 and 6) in terms of data representation.