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Abstract 54 

The International Weed Genomics Consortium is a collaborative group of researchers focused on 55 

developing genomic resources for the study of weedy plants. Weeds are attractive systems for 56 

basic and applied research due to their impacts on agricultural systems and capacity to swiftly 57 

adapt in response to anthropogenic selection pressures. Our goal is to use genomic information to 58 

develop sustainable and effective weed control methods and to provide insights about biotic and 59 

abiotic stress tolerance to assist crop breeding. Here, we outline resources under development by 60 

the consortium and highlight areas of research that will be impacted by these enabling resources. 61 

 62 

Introduction 63 

Each year globally, agricultural producers and landscape managers spend billions of US 64 

dollars [1, 2] and countless hours attempting to control weedy plants and reduce their adverse 65 

effects. These management methods range from low-tech (e.g., pulling plants from the soil by 66 

hand) to extremely high-tech (e.g., computer vision-controlled spraying of herbicides). 67 
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Regardless of technology level, effective control methods serve as strong selection pressures on 68 

weedy plants, and often result in rapid evolution of weed populations resistant to such methods 69 

[3-7]. Thus, humans and weeds have been locked in an arms race, where humans develop new or 70 

improved control methods and weeds adapt and evolve to circumvent such methods. 71 

Applying genomics to weed science will enable the development of more sustainable and 72 

effective control methods and offer a unique opportunity to study rapid adaptation and 73 

evolutionary rescue of diverse weedy species in the face of widespread and powerful selective 74 

pressures. Furthermore, lessons learned from these studies may also help to improve crop 75 

breeding efforts in the face of our ever-changing climate. While other research fields have used 76 

genetics and genomics to uncover the basis of many biological traits [8-11] and to understand 77 

how ecological factors affect evolution [12, 13], the field of weed science has lagged behind in 78 

the development of genomic tools essential for such studies [14]. As research in human and crop 79 

genetics pushes into the era of pangenomics, (i.e., multiple chromosome scale genome 80 

assemblies for a single species [15, 16]) publicly available genomic information is still lacking or 81 

severely limited for the majority of weed species. In fact, a recent review of current weed 82 

genomes identified just 26 weed species with sequenced genomes [17] – many assembled to a 83 

sub-chromosome level.  84 

The International Weed Genomics Consortium (IWGC) is an open collaboration between 85 

academic, government, and industry researchers focused on producing genomic tools for weedy 86 

species from around the world. Through this collaboration, our initial aim is to provide 87 

chromosome-level reference genome assemblies for at least 50 important weedy species from 88 

across the globe. Each genome will include annotation of gene models and repetitive elements 89 

and will be free to the public with no intellectual property restrictions. Species were chosen 90 
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based on member input, economic impact, and global prevalence (Figure 1). Additionally, future 91 

funding of the IWGC will focus on supplementing these reference genomes with tools that 92 

increase their utility. 93 

The IWGC held its first conference in Kansas City, Missouri, USA in September of 2021. At 94 

this meeting, guest speakers highlighted successful examples of using genomics to address 95 

questions in weed science [5, 18-20]. Training workshops taught commonly used bioinformatic 96 

pipelines, and oral and poster sessions showcased current research activities in weed genomics. 97 

At the conclusion of this meeting, attendees participated in a forward-looking discussion about 98 

the future of genomics in weed science and how the IWGC can help facilitate its successful 99 

implementation. In this paper, we summarize the goals of the IWGC and how we plan to provide 100 

support around the resources being developed to ensure they are widely accessible and utilized 101 

by the research community. We go on to highlight areas of research where these tools can be 102 

applied with hopes of attracting researchers from other fields to integrate weed science with the 103 

many other research areas where genomic tools are being successfully utilized, enabling new 104 

research towards adaptation, evolution, herbicide resistance, and genome biology. 105 

 106 

Development of Weed Genomics Resources by the IWGC 107 

Reference genomes and data analysis tools 108 

The first objective of the IWGC is to provide high quality genomic resources for 109 

agriculturally important weeds. The IWGC therefore created two main resources for information 110 

about, access to, or analysis of weed genomic data (Figure 1). The IWGC website [21] 111 

communicates the status and results of genome sequencing projects, information on training and 112 

funding opportunities, upcoming events, and news in weed genomics. It also contains details of 113 
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all sequenced species including genome size, ploidy, chromosome number, herbicide resistance 114 

status, and reference genome assembly statistics. The IWGC either compiles existing data on 115 

genome size, ploidy, and chromosome number, or obtains the data using flow cytometry and 116 

cytogenetics (Figure 1; Additional File 1). Through this website, users can create an account to 117 

access our second main resource, an online genome database called WeedPedia. WeedPedia 118 

hosts IWGC-generated and other relevant publicly accessible genomic data as well as a suite of 119 

bioinformatic tools. Unlike what is available for other fields, weed science did not have a 120 

centralized hub for genomics information, data, and analysis prior to the IWGC. Our intention in 121 

creating WeedPedia is to encourage collaboration and equity of access to information across the 122 

research community. 123 

WeedPedia is a cloud-based omics database management platform built from the software 124 

‘CropPedia’, and licensed from KeyGene (Wageningen, The Netherlands). The interface allows 125 

users to access, visualize, and download genome assemblies along with structural and functional 126 

annotation. The platform includes a genome browser, comparative map viewer, pangenome 127 

tools, RNA-sequencing data visualization tools, genetic mapping and marker analysis tools, and 128 

alignment capabilities that allow searches by keyword or sequence. Additionally, genes encoding 129 

known target sites of herbicides have been specially annotated, allowing users to quickly identify 130 

and compare these genes of interest. The platform is flexible, making it compatible with future 131 

integration of other data types such as epigenetic or proteomic information. As an online 132 

platform with a graphical user interface, WeedPedia provides user-friendly, intuitive tools that 133 

encourage users to integrate genomics into their research. We aspire for WeedPedia to mimic the 134 

success of other public genomic databases such as NCBI, CoGe, Phytozome, InsectBase, and 135 

Mycocosm to name a few. Additionally, all genome assemblies and annotations produced 136 
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through the IWGC will be uploaded to NCBI GenBank upon release (Table 1). WeedPedia 137 

currently hosts 36 reference genomes with additional genomes in the pipeline to reach a currently 138 

planned total of 50 reference genomes (Table 1). These genomes include both de novo reference 139 

genomes generated or in progress by the IWGC (31 species; Table 1), and publicly available 140 

genome assemblies of 19 weedy or related species (Table 2). As of June 2023, WeedPedia has 141 

over 250 registered users representing 27 countries spread across 6 continents.  142 

The IWGC reference genomes are generated in partnership with the Corteva Agriscience 143 

Genome Center of Excellence (Johnston, Iowa) using a combination of single molecule long read 144 

sequencing, optical genome maps, and chromosome conformation mapping. This strategy has 145 

yielded highly contiguous, phased, chromosome-level assemblies for 20 weed species, with 146 

additional assemblies currently in progress (Table 1). The IWGC assemblies have been 147 

completed as single or haplotype-resolved double-haplotype pseudomolecules in inbreeding and 148 

outbreeding species, respectively, with multiple genomes being near gapless. For example, the de 149 

novo assemblies of the allohexaploids Conyza sumatrensis and Chenopodium album, have all 150 

chromosomes captured in single scaffolds and most chromosomes being gapless from telomere 151 

to telomere. Complementary full-length isoform (IsoSeq) sequencing of RNA collected from 152 

diverse tissue types and developmental stages assists in the development of gene models during 153 

annotation. Finally, the use of PacBio Revio has enabled the re-sequencing of 80 relevant 154 

accessions, which is enabling initial pangenomic analysis for some of the IWGC-selected 155 

species.  156 

As with accessibility of data, a core objective of the IWGC is to facilitate open access to 157 

sequenced germplasm for all featured species. Historically, the weed science community has 158 

rarely shared or adopted standard germplasm (e.g., specific weed accessions). The IWGC has 159 
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selected a specific accession of each species for reference genome assembly (typically 160 

susceptible to herbicides). In collaboration with a parallel effort by the Herbicide Resistant Plants 161 

committee of the Weed Science Society of America, seeds of the sequenced weed accessions 162 

will be deposited in the United States Department of Agriculture Germplasm Resources 163 

Information Network [22] for broad access by the scientific community. The IWGC ensures that 164 

sequenced accessions are collected and documented to comply with the Nagoya Protocol on 165 

access to genetic resources and the fair and equitable sharing of benefits arising from their 166 

utilization under the Convention on Biological Diversity and related Access and Benefit Sharing 167 

Legislation [23]. As additional accessions of weed species are sequenced (e.g., pangenomes are 168 

obtained) the IWGC will facilitate germplasm sharing protocols to support collaboration. 169 

Further, to simplify the investigation of herbicide resistance, the IWGC will link WeedPedia 170 

with the International Herbicide-Resistant Weed Database [24], an already widely known and 171 

utilized database for weed scientists. 172 

 173 

Training and collaboration in weed genomics 174 

Beyond producing genomic tools and resources, a priority of the IWGC is to enable the 175 

utilization of these resources across a wide range of stakeholders. A holistic approach to training 176 

is required for weed science generally [25], and we would argue even more so for weed 177 

genomics. To accomplish our training goals, the IWGC is developing and delivering programs 178 

aimed at the full range of IWGC stakeholders and covering a breadth of relevant topics. We have 179 

taken care to ensure our approaches are diverse as to provide training to researchers with all 180 

levels of existing experience and differing reasons for engaging with these tools. Throughout, the 181 
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focus is on ensuring that our training and outreach result in impacts that benefit a wide range of 182 

stakeholders.  183 

Although recently developed tools are incredibly enabling and have great potential to replace 184 

antiquated methodology [26] and to solve pressing weed science problems [14], specialized 185 

computational skills are required to fully explore and unlock meaning from these highly complex 186 

datasets. Collaboration with, or training of, computational biologists equipped with these skills 187 

and resources developed by the IWGC will enable weed scientists to expand research programs 188 

and better understand the genetic underpinnings of weed evolution and herbicide resistance. To 189 

fill existing skill gaps, the IWGC is developing summer bootcamps and online modules directed 190 

specifically at weed scientists that will provide training on computational skills (Figure 1). 191 

Because successful utilization of the IWGC resources requires more than general computational 192 

skills, we have also created three additional targeted workshops that teach practical skills related 193 

to genomics databases, molecular biology, and population genomics (available at [27]). 194 

Engagement opportunities during undergraduate degrees has been shown to improve 195 

academic outcomes [28, 29]. Therefore, the IWGC sponsors opportunities for undergraduates to 196 

undertake 10-week Research Experiences for Undergraduates (REU). These REU include an 197 

introduction to bioinformatics, a plant genomics research project that results in a presentation, 198 

and access to career building opportunities in diverse workplace environments. To increase 199 

equitable access to conferences and professional communities, we supported early career 200 

researchers to attend the first two IWGC conferences in the USA as well as workshops and 201 

bootcamps in Europe and South America. These hybrid or in-person travel grants are 202 

intentionally designed to remove barriers and increase participation of individuals from 203 

backgrounds and experiences currently underrepresented within weed/plant science or genomics 204 
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[30]. Recipients of these travel awards gave presentations and gained the measurable benefits 205 

that come from either virtual or in-person participation in conferences [31]. Moving forward, 206 

weed scientists must amass skills associated with genomic analyses and collaborate with other 207 

area experts to fully leverage resources developed by the IWGC. 208 

 209 

Evolution of Weediness: Potential Research Utilizing New Weed Genomics 210 

Tools  211 

Weeds can evolve from non-weed progenitors through wild colonization, crop de-212 

domestication, or crop-wild hybridization [32]. Because the time span in which weeds have 213 

evolved is necessarily limited by the origins of agriculture, these non-weed relatives often still 214 

exist and can be leveraged through population genomic and comparative genomic approaches to 215 

identify the adaptive changes that have driven the evolution of weediness. The ability to rapidly 216 

adapt, persist, and spread in agroecosystems are defining features of weedy plants, leading many 217 

to advocate agricultural weeds as ideal candidates for studying rapid plant adaptation [33-36]. 218 

The insights gained from applying plant ecological approaches to the study of rapid weed 219 

adaptation will move us towards the ultimate goals of mitigating such adaptation and increasing 220 

the efficacy of crop breeding and biotechnology [14]. 221 

 222 

Biology and ecological genomics of weeds 223 

The impressive community effort to create and maintain resources for Arabidopsis thaliana 224 

ecological genomics provides a motivating example for the emerging study of weed genomics 225 

[37-40]. Arabidopsis thaliana was the first flowering plant species to have its genome fully 226 

sequenced [41] and rapidly became a model organism for plant molecular biology. As weedy 227 
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genomes become available, collection, maintenance, and resequencing of globally distributed 228 

accessions of these species will help to replicate the success found in ecological studies of A. 229 

thaliana [42-48]. Evaluation of these accessions for traits of interest to produce large phenomics 230 

data sets (as in [49-53]) enables genome-wide association studies and population genomics 231 

analyses aimed at dissecting the genetic basis of variation in such traits [54]. Increasingly, these 232 

resources (e.g the 1001 genomes project [42]) have enabled A. thaliana to be utilized as a model 233 

species to explore the eco-evolutionary basis of plant adaptation in a more realistic ecological 234 

context. Weedy species should supplement lessons in eco-evolutionary genomics learned from 235 

these experiments in A. thaliana. 236 

Untargeted genomic approaches for understanding the evolutionary trajectories of 237 

populations and the genetic basis of traits as described above rely on the collection of genotypic 238 

information from across the genome of many individuals. While whole-genome resequencing 239 

accomplishes this requirement and requires no custom methodology, this approach provides 240 

more information than is necessary and is prohibitively expensive in species with large genomes. 241 

Development and optimization of genotype-by-sequencing methods for capturing reduced 242 

representations of newly sequence genomes like those described by [55-57] will reduce the cost 243 

and computational requirements of genetic mapping and population genetic experiments. 244 

Additionally, the species sequenced by the IWGC do not currently have protocols for stable 245 

transformation, a key development in the popularity of A. thaliana as a model organism and a 246 

requirement for many functional genomic approaches. Functional validation of genes/variants 247 

believed to be responsible for traits of interest in weeds has thus far relied on transiently 248 

manipulating endogenous gene expression [58, 59] or ectopic expression of a transgene in a 249 

model system [60-62]. While these methods have been successful, few weed species have well-250 
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studied viral vectors to adapt for use in virus induced gene silencing and spray induced gene 251 

silencing is relatively ineffective without the use of nanocarriers [63], which require specialized 252 

equipment and expertise. Furthermore, traits with complex genetic architecture divergent 253 

between the researched and model species may not be amenable to functional genomic 254 

approaches using transgenesis techniques in model systems. Developing protocols for reduced 255 

representation sequencing, stable transformation, and gene editing/silencing in weeds will allow 256 

for more thorough characterization of candidate genetic variants underlying traits of interest. 257 

Beyond rapid adaptation, some weedy species offer an opportunity to better understand co-258 

evolution, like that between plants and pollinators and how their interaction leads to the spread of 259 

weedy alleles (Table S1). A suite of plant-insect traits has co-evolved to maximize the attraction 260 

of the insect pollinator community and the efficiency of pollen deposition between flowers 261 

ensuring fruit and seed production in many weeds [64, 65]. Genetic mapping experiments have 262 

identified genes and genetic variants responsible for many floral traits affecting pollinator 263 

interaction including petal color [66-69], flower symmetry and size [70-72], and production of 264 

volatile organic compounds [73-75] and nectar [76-78]. While these studies reveal candidate 265 

genes for selection under co-evolution, herbicide resistance alleles may also have pleiotropic 266 

effects on the ecology of weeds [79], altering plant-pollinator interactions [80]. Discovery of 267 

genes and genetic variants involved in weed-pollinator interaction and their molecular and 268 

environmental control may create opportunities for better management of weeds with insect-269 

mediated pollination. For example, if management can disrupt pollinator attraction/interaction 270 

with these weeds, the efficiency of reproduction may be reduced.  271 

A more complete understanding of weed ecological genomics will undoubtedly elucidate 272 

many unresolved questions regarding the genetic basis of various aspects of weediness. For 273 
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instance, when comparing populations of a species from agricultural and non-agricultural 274 

environments, is there evidence for contemporary evolution of weedy traits selected by 275 

agricultural management or were ‘natural’ populations pre-adapted to agroecosystems? Where 276 

there is differentiation between weedy and natural populations, which traits are under selection 277 

and what is the genetic basis of variation in those traits? When comparing between weedy 278 

populations, is there evidence for parallel versus non-parallel evolution of weediness at the 279 

phenotypic and genotypic levels? Such studies may uncover fundamental truths about weediness. 280 

For example, is there a common phenotypic and/or genotypic basis for aspects of weediness 281 

amongst diverse weed species? As genomic tools developed by the IWGC enable researchers to 282 

address these questions, knowledge gained will help predict the potential development of newly 283 

important weed species in new environments and cropping systems. 284 

 285 

Population and Comparative Genomics 286 

A fundamental attribute of locally adaptive genetic variation is that adaptive alleles are 287 

overrepresented in their home environment relative to elsewhere [81]. This is a key motivation of 288 

genotype-by-environment association (GEA) and selective sweep scan approaches, which allow 289 

researchers to resolve the molecular basis of multi-dimensional adaptation [82, 83]. GEA 290 

approaches, in particular, have been widely used on landscape-wide resequencing collections to 291 

quantify the genetic basis of climate adaptation (e.g., [40, 84, 85]), but have yet to be fully 292 

exploited to diagnose the genetic basis of the various aspects of weediness [86]. Armed with data 293 

on environmental dimensions of agricultural settings, such as focal crop, soil quality, herbicide 294 

use, and climate, GEA approaches can help disentangle how discrete farming practices have 295 

influenced the evolution of weediness and resolve broader patterns of local adaptation across a 296 
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weed’s range. Although non-weedy relatives are not technically required for GEA analyses, 297 

inclusion of environmental and genomic data from weed progenitors can further distinguish 298 

genetic variants underpinning weed origins from those involved in local adaptation. 299 

Even without environmental or phenotypic data, the application of selective sweep scan 300 

approaches to comparisons of weed and non-weed relatives facilitates powerful inference of 301 

weed adaptation on micro- or macro-evolutionary scales. Two recent within-species examples 302 

include weedy rice, where population differentiation between weedy and domesticated 303 

populations was used to identify the genetic basis of weedy de-domestication [87], and common 304 

waterhemp, where consistent allelic differences among natural and agricultural collections 305 

resolved a complex set of agriculturally adaptive alleles [88, 89]. A recent comparative 306 

population genomic study of weedy barnyardgrass and crop millet species has demonstrated how 307 

inter-specific investigations can resolve the signatures of crop and weed evolution [90] (also see 308 

[91] for a non-weed climate adaptation example). Multiple sequence alignments across numerous 309 

species provide complementary insight into adaptive convergence over deeper timescales, even 310 

with just one genomic sample per species (e.g., [92, 93]). Thus, the new IWGC weed genomes 311 

combined with genomes available for closely related crops (outlined by [14, 94]) and an effort to 312 

identify other non-weed wild relatives will be invaluable in characterizing the genetic 313 

architecture of weed adaptation and evolution across diverse species.   314 

 315 

Herbicide resistance 316 

Herbicide resistance is among the numerous weedy traits that can evolve in plant populations 317 

exposed to agricultural selection pressures. Over-reliance on herbicides to control weeds, along 318 

with low diversity and lack of redundancy in weed management strategies, has resulted in 319 
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globally widespread herbicide resistance [95]. To date, 268 herbicide-resistant weed species have 320 

been reported worldwide, and at least one resistance case exists for 21 of the 31 existing 321 

herbicide sites of action [24] – significantly limiting chemical weed control options available to 322 

agriculturalists. This limitation of control options is exacerbated by the recent lack of discovery 323 

of herbicides with new sites of action [96].  324 

Herbicide resistance may result from several different physiological mechanisms. Such 325 

mechanisms have been classified into two main groups, target-site resistance (TSR) [4, 97] and 326 

non-target-site resistance (NTSR) [4, 98]. The first group encompasses changes that reduce 327 

binding affinity between a herbicide and its target [99]. These changes may provide resistance to 328 

multiple herbicides that have a common biochemical target [100] and can be effectively 329 

managed through mixture and/or rotation of herbicides targeting different sites of action [101]. 330 

The second group (NTSR), includes alterations in herbicide absorption, translocation, 331 

sequestration, and/or metabolism that may lead to unpredictable pleotropic cross-resistance 332 

profiles where structurally and functionally diverse herbicides are rendered ineffective by one or 333 

more genetic variant(s) [60]. This mechanism of resistance threatens not only the efficacy of 334 

existing herbicidal chemistries, but also ones yet to be discovered. While TSR is well understood 335 

because of the ease of identification and molecular characterization of target site variants, NTSR 336 

mechanisms are significantly more challenging to research because they are often polygenic, and 337 

the resistance causing element(s) are not well understood [102].  338 

Improving the current understanding of metabolic NTSR mechanisms is not an easy task, 339 

since genes of diverse biochemical functions are involved, many of which exist as extensive 340 

gene families [100, 103]. Expression changes of NTSR genes have been implicated in several 341 

resistance cases where the protein products of the genes are functionally equivalent across 342 
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sensitive and resistant plants, but their relative abundance leads to resistance. Thus, regulatory 343 

elements of NTSR genes have been scrutinized to understand their role in NTSR mechanisms 344 

[104]. Similarly, epigenetic modifications have been hypothesized to play a role in NTSR, with 345 

much remaining to be explored [105-107]. Untargeted approaches such as genome-wide 346 

association, selective sweep scans, linkage mapping, RNA-sequencing, and metabolomic 347 

profiling have proven helpful to complement more specific biochemical- and chemo-348 

characterization studies towards the elucidation of NTSR mechanisms as well as their regulation 349 

and evolution [60, 108-115]. Due to their complexity and importance, the IWGC has begun 350 

addressing this subject by manually curating the annotation of NTSR genes and developing a 351 

standard nomenclature for the gene families often involved in NTSR. This standardization will 352 

allow researchers to quickly identify true orthologous genes between weedy species, which is a 353 

hurdle for current research of these complex and often vast gene families. 354 

High-quality weed genome assemblies and gene model annotations have helped and will be 355 

crucial for investigating the landscape of NTSR genes in weeds. They can also be used to predict 356 

the protein structure for herbicide target site and metabolism genes to predict the efficacy and 357 

selectivity of new candidate herbicides in silico to increase herbicide discovery throughput. 358 

Knowledge of the genetic basis of NTSR will aid the rational design of herbicides by 1) 359 

screening new compounds in the presence of newly discovered NTSR proteins during early 360 

research phases; 2) identifying conserved chemical structures that interact with these proteins; 361 

and 3) optimizing herbicide molecular design to lower potential for resistance evolution and 362 

increase potency/spectrum of control.  363 

Moving forward, genomic resources will be increasingly needed and used not only for the 364 

design of conventional small molecule herbicides, but also for next generation technologies for 365 
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sustainable weed management. Proteolysis targeting chimeras (PROTACs) have the potential to 366 

bind desired targets with great selectivity and degrade proteins by utilizing natural protein 367 

ubiquitination and degradation pathways within plants [116]. The combination of nanoparticles 368 

with oligonucleotides has recently shown potential to be used in spray applications towards gene 369 

silencing in weeds, which paves the way for a new, innovative, and sustainable method for weed 370 

management [117, 118]. Additionally, success in the field of pharmaceutical drug discovery in 371 

the development of molecules modulating protein-protein interactions offers another potential 372 

avenue towards the development of herbicides with novel targets [119, 120]. High-quality 373 

genomic references allow for the design of new weed management technologies like the ones 374 

listed here that are specific to – and effective across – weed species but have a null effect on non-375 

target organisms. The tools being developed by the IWGC will have a crucial role in enabling the 376 

development of next generation weed management strategies that will reduce our reliance on the 377 

few chemical control options currently available to agriculturalists. 378 

 379 

Genome Biology 380 

The genomes of weed species are as diverse as weed species themselves. Many weed species 381 

belong to unique plant families with no phylogenetically close model or crop species relatives for 382 

comparison. On all measurable metrics, weed genomes run the gamut. Some have smaller 383 

genomes like Cyperus spp. (~0.26 Gb) while others are larger, such as Avena fatua (~11.1 Gb) 384 

(Table 1). Some have high heterozygosity in terms of single nucleotide polymorphisms, 385 

repetitive DNA, and structural variants, such as the Amaranthus spp., while others are primarily 386 

self-pollinated and quite homozygous, such as Poa annua [121, 122]. Some are diploid such as 387 

Conyza canadensis and Echinochloa haploclada while others are polyploid such as C. 388 
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sumetrensis, E. crus-galli, and E. colona [90]. The availability of genomic resources in these 389 

diverse, unexplored branches of the tree of life allows us to identify consistencies and anomalies 390 

in the field of genome biology.  391 

The weed genomes published so far have focused mainly on weeds of agronomic crops, and 392 

studies have revolved around their ability to resist key herbicides. For example, genomic 393 

resources were vital in the elucidation of herbicide resistance cases involving target site gene 394 

copy number variants (CNVs). Gene CNVs of 5-enolpyruvylshikimate-3-phosphate synthase 395 

(EPSPS) have been found to confer resistance to the herbicide glyphosate in diverse weed 396 

species. To date, nine species have independently evolved EPSPS CNVs, and species achieve 397 

increased EPSPS copy number via different mechanisms [123]. For instance, the EPSPS CNV in 398 

Bassia scoparia is caused by tandem duplication, which is accredited to transposable element 399 

insertions flanking EPSPS and subsequent unequal crossing over events [124, 125]. In Eleusine 400 

indica, a EPSPS CNV was caused by translocation of the EPSPS locus into the subtelomere 401 

followed by telomeric sequence exchange [126]. One of the most fascinating genome biology 402 

discoveries in weed science has been that of extra-chromosomal circular DNAs (eccDNAs) that 403 

harbor the EPSPS gene in the weed species Amaranthus palmeri [127, 128]. In this case, the 404 

eccDNAs autonomously replicate separately from the nuclear genome and do not reintegrate into 405 

chromosomes, which has implications for inheritance, fitness, and genome structure [129]. These 406 

discoveries would not have been possible without reference assemblies of weed genomes, next-407 

generation sequencing, and collaboration with experts in plant genomics and bioinformatics. 408 

Another question that is often explored with weedy genomes is the nature and composition of 409 

gene families that are associated with NTSR. Gene families under consideration often include 410 

cytochrome P450s (CYPs), glutathione-S-transferases (GSTs), ABC transporters, etc. Some 411 
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questions commonly considered with new weed genomes include: how many genes are in each 412 

of these gene families, where are they located, and which weed accessions and species have an 413 

over-abundance of them that might explain their ability to evolve resistance so rapidly [19, 90, 414 

130, 131]? Weed genome resources are necessary to answer questions about gene family 415 

expansion or contraction during the evolution of weediness, including the role of polyploidy in 416 

NTSR gene family expansion as explored by [132]. 417 

 418 

Translational Research and Communication with Weed Management Stakeholders 419 

Whereas genomics of model plants is typically aimed at addressing fundamental questions in 420 

plant biology, and genomics of crop species has the obvious goal of crop improvement, goals of 421 

genomics of weedy plants also include the development of more effective and sustainable 422 

strategies for their management. Weed genomics assists with these objectives by providing novel 423 

molecular ecological and evolutionary insights from the context of intensive anthropogenic 424 

management (which is lacking in model plants), and offers knowledge and resources for trait 425 

discovery for crop improvement, especially given that many wild crop relatives are also 426 

important agronomic weeds (e.g. [133]). For instance, crop-wild relatives are valuable for 427 

improving crop breeding for marginal environments [134]. Thus, weed genomics presents unique 428 

opportunities and challenges relative to plant genomics more broadly. It should also be noted that 429 

although weed science at its core is a very applied discipline, it draws broadly from many 430 

scientific disciplines such as, plant physiology, chemistry, ecology, and evolutionary biology, to 431 

name a few. The successful integration of weed-management strategies, therefore, requires 432 

extensive collaboration among individuals collectively possessing the necessary expertise [135]. 433 

Consequently, a major objective of the IWGC is to ensure that basic findings arising from weed 434 
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genomics are translated to advances in weed management and crop breeding by collaborating 435 

broadly with breeders, applied weed scientists, outreach specialists, and practitioners.  436 

To accomplish this objective, the IWGC must facilitate communication of weed genomics 437 

findings to relevant stakeholders (Figure 1). With the growing complexity of herbicide resistance 438 

management, practitioners are beginning to recognize the importance of understanding resistance 439 

mechanisms to inform appropriate management tactics [14]. Although weed science practitioners 440 

do not need to understand the technical details of weed genomics, their appreciation of the power 441 

of weed genomics - together with their unique insights from field observations - will yield novel 442 

opportunities for applications of weed genomics to weed management. In particular, combining 443 

field management history with information on weed resistance mechanisms is expected to 444 

provide novel insights into evolutionary trajectories [e.g., 6, 136], which can be utilized for 445 

disrupting evolutionary adaptation. It can be difficult to obtain field history information from 446 

practitioners, but developing an understanding among them of the importance of such 447 

information can be invaluable. To address these aspects, the IWGC can provide funding, or at 448 

least coordinate teams, to build extension/education programs focused on weed genomics. 449 

Factsheets and easy-to-understand infographics can be developed and communicated to various 450 

stakeholders through traditional and electronic media.  451 

 452 

Conclusions 453 

Weeds are unique and fascinating plants, having significant impacts on agriculture and 454 

ecosystems; and yet, aspects of their biology, ecology, and genetics remain poorly understood. 455 

Weeds represent a unique area within plant biology, given their repeated rapid adaptation to 456 

sudden and severe shifts in the selective landscape of anthropogenic management practices. The 457 
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production of a public genomics database with reference genomes for over 50 weed species 458 

represents a substantial step forward towards research goals that improve our understanding of 459 

the biology and evolution of weeds. Future work is needed to improve annotations, particularly 460 

for complex gene families involved in herbicide detoxification, structural variants, and mobile 461 

genetic elements, given the evidence to date of the generation of adaptive genetic variation in 462 

weeds through structural variation. As reference genome assemblies become available; standard, 463 

affordable methods for gathering genotype information will allow for the identification of 464 

genetic variants underlying traits of interest. Further, development of methods for functional 465 

gene validation and hypothesis testing is needed in weeds to validate the effect of genetic 466 

variants detected through such experiments, including systems for transformation, gene editing, 467 

and transient gene silencing and expression. Future research should focus on utilizing weed 468 

genomes to investigate questions about the evolutionary biology, ecology, and genetics of weedy 469 

traits and weed population dynamics. The IWGC plans to continue the public-private partnership 470 

model to continue to host the WeedPedia database, integrate new datasets such as genome 471 

resequencing and transcriptomes, conduct trainings, and serve as a research coordination 472 

network to ensure that advances in weed science from around the world are shared across the 473 

research community (Figure 1). Bridging basic plant genomics with translational applications in 474 

weeds is needed to deliver on the potential of weed genomics to improve weed management and 475 

crop breeding. 476 

 477 
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 926 

Table 1. Genome assemblies of 31 weed species completed or ongoing by the International 927 

Weed Genomics Consortium. 928 

Scientific name Common name 
Haplotypes 
in Assembly 

Public 
Availability 

Date 
Ploidy x n 

Genome Size 
Estimate (Gbp) 

Amaranthus 
hybridus 

smooth pigweed 

1; 
Previous 
version 
[137] 

September 
2023 

diploid 16 16 0.509 [138] 

Amaranthus 
palmeri 

Palmer amaranth 
Previous 
version 
[137] 

June 2024 diploid 17 17 0.445 [139] 

Amaranthus 
retroflexus 

redroot pigweed  In progress diploid 16 16 0.592 [139] 

Amaranthus 
tuberculatus 

common waterhemp 

2; 
Previous 
version 
[137] 

November 
2023 

diploid 16 16 0.694 [139] 

Ambrosia 
artemisiifolia 

common ragweed  In progress 
diploid 

[140, 141] 
18 18 1.152 [142] 

Ambrosia 
trifida 

giant ragweed  
December 

2023 
diploid 
[140] 

12 12 1.872 [143] 

Apera spica-
venti 

loose silkybent 2 August 2023 diploid 7 7 4.622 

Avena fatua wild oat 1 August 2023 
hexaploid 

(Additional 
file 1) 

7 21 11.248 

Chenopodium 
album 

common 
lambsquarters 

1 July 2023 hexaploid 9 27 1.59 
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Cirsium arvense Canada thistle  In progress diploid 17 17 1.415 

Convolvulus 
arvensis 

field bindweed  In progress diploid+ 12+ 12+ 0.652 [142] 

Conyza 
bonariensis 
(Erigeron 
bonariensis) 

hairy fleabane  In progress 
hexaploid 

[144] 
9 27 2.043 [145] 

Conyza 
sumatrensis 
(Erigeron 
sumatrensis) 

Sumatran fleabane 1 May 2023 hexaploid 9 27 1.874 

Cyperus 
esculentus 

yellow nutsedge 2 July 2023 diploid 54 54 0.588 [146] 

Cyperus 
rotundus 

purple nutsedge 2 
December 

2023 
diploid 54 54 0.49 [146] 

Digitaria 
insularis 

sourgrass 1 
September 

2023 
tetraploid 9 18 1.529 

Digitaria 
ischaemum 

hairy crabgrass  In progress tetraploid 9 18 
Unknown, in 

progress 

Echinochloa 
colona 

junglerice (weedy 
genotype) 

See crop 
genotype 

assembly by 
[90] 

In progress hexaploid 9 27 1.372 [146] 

Euphorbia 
esula 

leafy spurge  In progress 
hexaploid+ 
[based on 
147, 148] 

10+ 60+ 2.3 [149] 

Euphorbia 
heterophylla 

wild poinsettia  July 2024 
diploid 
[150] 

14 14 
Unknown, in 

progress 

Leptochloa 
chinensis 

Chinese sprangletop 
2; 

See also 
[151] 

August 2023 diploid 10 10 0.454 

Lolium rigidum annual ryegrass 
2; 

See also 
[152] 

August 2023 
diploid 

(Additional 
file 1) 

7 7 2.41 
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Orobanche 
cernua 

nodding broomrape  In progress diploid 19 19 1.421 [153] 

Orobanche 
crenata 

crenate broomrape  In progress diploid 19 19 2.787 [153] 

Orobanche 
minor 

small broomrape  In progress diploid 19 19 1.792 [153] 

Parthenium 
hysterophorus 

ragweed parthenium  In progress 
diploid 
[154] 

17 17 
Unknown, in 

progress 

Phalaris minor 
little seed canary 
grass 

1 August 2023 
tetraploid 

(Additional 
file 1) 

7 14 5.851 

Raphanus 
raphanistrum 

wild radish 
Previous 
versions 

[155, 156] 
In progress diploid 9 9 0.515 [155] 

Salsola tragus Russian thistle 2 July 2023 
tetraploid 

(Additional 
file 1) 

9 18 1.319 

*Sorghum 
halepense 

johnsongrass 2 
September 

2023 
tetraploid 10 20 1.752 

Verbascum 
blattaria 

moth mullein 1 
December 

2023 
diploid 15 15 0.344 [157] 

 929 

Table 1. Genome assemblies of 31 weed species completed or ongoing by the International 930 

Weed Genomics Consortium. All completed genomes are platinum assembly quality, defined as 931 

having chromosome-length scaffolds (i.e., 1-3 scaffolds per chromosome) for the assembly, 932 

unless indicated by *. Genome size estimated from flow cytometry or published references as 933 

indicated. + indicates that verification is currently in progress for cytogenetic information. 934 

 935 

Table 2. Genomic information for 19 weed species produced without assistance by the 936 

International Weed Genomics Consortium. 937 
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Scientific name Common name x n 
1n Genome Size 

Estimate (Gbp) 

Genome Assembly 

Size (Gbp) 

Alopecurus 

myosuroides 
blackgrass 7 7 3.56 [158] 

3.4-3.56 [131, 

158] 

Bassia scoparia kochia 9 9 0.969 [159] 0.970 [159] 

Bromus tectorum cheatgrass 7 7  2.48 [86] 

Chenopodium 

formosanum 

(domesticated 

genotype of C. 

album) 

Djulis 9 27 1.69 [160] 1.59 [160] 

Conyza 

canadensis 
horseweed 9 9 0.425 [161] 0.426 [161] 

Echinochloa 

colona (crop 

genotype) 

junglerice 9 27 1.18 [90] 1.13 [90] 

Echinochloa crus-

galli 
barnyardgrass 9 27 1.4 [162] 1.34 [90] 

Echinochloa 

oryzicola (syn. E. 

phyllopogon) 

late watergrass 9 18 1.0 [162] 0.95 [90] 

Eleusine indica goosegrass 9 9  0.510 [126] 

Ipomoea purpurea common 15 15 0.81 [113] 0.60 [113] 
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morning-glory 

Lolium perenne 
perennial ryegrass 

 
7 7  

2.63 (Bushman 

and Robbins, pers. 

comm.) 

Oryza sativa f. 

spontanea 
weedy rice 12 12  0.37 [163] 

Poa annua annual bluegrass 7 14 1.78 [122] 1.89 [164] 

Poa infirma 
early meadow-

grass 
7 7 1.17 [165] 1.13 [165] 

Poa supina supine bluegrass 7 7 0.66 [165] 0.64 [165] 

Setaria viridis green foxtail 9 9 0.40 [166] 0.40 [166] 

Striga asiatica red witchweed 12 12 0.6 [167] 0.47 [167] 

Striga 

hermonthica 
purple witchweed 10 20 1.48 [168] 0.96 [168] 

Thlaspi arvensis field pennycress 7 7 0.5 [169] 0.53 [169] 

 938 

Table 2. Genomic information for 19 weed species produced without assistance by the 939 

International Weed Genomics Consortium. Haploid (1n) genome size estimations are either 940 

calculated through flow cytometry or k-mer estimation. 941 

 942 

Figure 1. Process by which the International Weed Genomics Consortium operates. 943 

 944 

Additional Files 945 
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Additional File 1 (.docx). Methods and results for visualizing and counting the metaphase 946 

chromosomes of (1A): diploid Lolium rigidum; (1B): hexaploid Avena fatua; (1C): diploid 947 

Phalaris minor; and (1D): tetraploid Salsola tragus.  948 

 949 

Additional File 2 (.docx). List of completed and in-progress genome assemblies of weed species 950 

pollinated by insects. 951 
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