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Summary 
Conscious reportability of visual input is associated with a bimodal neural response in 
primary visual cortex (V1): an early-latency response coupled to stimulus features and a 
late-latency response coupled to stimulus report or detection. This late wave of activity, 
central to major theories of consciousness, is thought to be driven by prefrontal cortex 
(PFC), responsible for “igniting” it. Here we analyzed two electrophysiological studies in 
mice performing different stimulus detection tasks, and characterize neural activity profiles 
in three key cortical regions: V1, posterior parietal cortex (PPC) and PFC. We then developed 
a minimal network model, constrained by known connectivity between these regions, 
reproducing the spatio-temporal propagation of visual- and report-related activity. 
Remarkably, while PFC was indeed necessary to generate report-related activity in V1, this 
occurred only through the mediation of PPC. PPC, and not PFC, had the final veto in enabling 
the report-related late wave of V1 activity. 
 
Keywords: cortical feedback dynamics, computational neuroscience, report, access 
consciousness, primary visual cortex, modeling, visual processing 
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Introduction 
A long-standing objective in the investigation of the neural mechanisms of consciousness is 
to characterize the signatures of perceived compared to non-perceived sensory stimuli at 
the level of neurons and their interactions1,2. A milestone in the study of sensory-evoked 
responses in the visual system has been the observation of a bimodal neural response in the 
primary visual cortex: an early-latency response coupled to stimulus presentation and a 
late-latency response that is only observed when agents report the detection of a visual 
stimulus3–5. In spite of an ongoing debate on the functional role of this late activity 
component in conscious perception2,6–8, there is agreement that it remains strongly 
correlated with conscious report. Furthermore, this hallmark of visual detection is preserved 
across species, and has been the subject of circuit-level investigations in both non-human 
primates4,5, ferrets9 and mice10–13.  

The cortical origin of the late, report-related activity observed in V1 has been 
pinpointed to frontal areas. Experiments performed across species observed that correlates 
of sensory detection behavior (which also carry categorical information about the 
behavioral relevance of the detected stimuli) first originate in prefrontal areas and only later 
appear in association and sensory areas3,5,9,12. A recent study even demonstrated that 
activity in a secondary motor area (a cortical subdivision that, in mice, is  considered to be 
part of the prefrontal cortex14) is necessary for this late activity to emerge in mice10. 
However, it is currently not understood how late, report-related activity reaches sensory 
regions and whether, besides originating in prefrontal regions, it is also shaped by other 
cortical regions, and if so how. For instance, it is debated whether prefrontal regions directly 
trigger late, report-related activity in primary sensory cortices, or whether this is (also) 
mechanistically driven by intermediate regions, such as association areas in the parietal and 
temporal lobes5,15–18. Addressing this question is important to better characterize how 

patterns of cortical activity that have been linked to conscious report are generated and 
propagate through cortical regions, and is consequential for arbitrating between major 
theories of consciousness19–21.  

Nevertheless, it is currently unfeasible to fully dissect the circuit-level architecture 
underlying the origin and propagation of neural activity. Several options (chiefly 
optogenetics) are available to modulate the activity of individual cortical areas11,22,23, but 
this approach is unsuitable to causally manipulate individual connections between regions. 
On the other hand, projection-specific optogenetic inactivation is only moderately effective 
on synaptic terminals or has relatively low temporal dynamics24. The alternative approach of 
silencing the activity of feedback-projecting neurons, while achieving high efficacy and fast 
temporal specificity, inevitably modifies the activity of source cortical regions as well25,26. 
For these reasons, we decided to develop a minimal model of neural dynamics27,28, which 
allowed us to test the contribution of individual feedback pathways to generating and 
propagating report-related activity across the cortical network. Compared to previous 
studies following a similar approach for studying report-related activity in the human 
brain29–32, we leveraged the recently established availability of functional and structural data 
in mice11,12,33,34 to develop a computational model with anatomically faithful connectivity 
strengths between cortical regions and capable of reproducing patterns of spiking activity 
observed in mice performing perceptual tasks. We developed a model network composed 
of mouse primary visual cortex (V1), posterior parietal cortex (PPC) and prefrontal cortex 
(PFC). We found that, while PFC is necessary to generate report-related activity in V1, this 
effect can only be exerted through association areas such as PPC, which determine its 
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characteristics and has the final “veto” for initiating report-related activity in V1. Thus, an 
interplay between frontal and parietal cortical regions is required to effectively integrate 
neural correlates of perception with ongoing sensory-evoked activity. 
 

Results 
 
Detection of visual stimuli is coupled to large-scale activity patterns in dorsal cortex 

We first aimed to replicate and expand earlier reports that visual detection in mice 
correlates with a bimodal response pattern in V111 and with the emergence of report-
related activity across multiple cortical regions5,9,10,12,13,35. To this aim, we first analyzed 
neuronal activity collected in head-fixed mice performing an audio-visual change detection 
task11,23 (Fig. 1A). Mice were trained to report the change in the orientation of the 
presented visual stimulus, by performing – for instance – a left lick, and a change in the 
pitch of the presented auditory stimulus by performing a right lick (with contingencies 
counterbalanced across mice, see Materials and Methods for details). In this report we only 
focus on the processing of the visual stimuli. Multi-area laminar probe recordings were 
performed in the primary visual cortex (V1), posterior parietal cortex (PPC) and anterior 
cingulate cortex (ACC) (Fig. 1B). We computed stimulus-evoked spiking responses across the 
three areas as a function of the saliency of the visual stimulus (threshold or max change) 
and based on whether a stimulus was detected (hit trial) or not (miss trial). Trials from the 
max change condition will be referred to as “high saliency” and trials from the threshold 
condition as “low saliency” from here on. Of relevance, previous studies indicated that 
neuronal responses in both PPC and V1 did not show major deviations based on whether 
licking responses to full-field visual stimuli had to be done towards a detector positioned 
towards the left or right side of a mouse’s snout11,23.  

In V1, we observed a bimodal pattern of activity: an early-onset wave of sensory-
evoked activity, lasting until about 200 ms after stimulus onset, followed by a late-onset 
wave which was mainly encoding whether a trial was a hit or miss (cf. 11, Fig. 1C). Early 
sensory-evoked activity did not differ between hit and miss trials, but firing rates were 
positively correlated with the saliency of visual stimuli (Fig. 1C). Instead, late activity 
encoded both whether a trial was a hit or miss, as well as whether the sensory input was 
strong or weak (Fig. 1C, cf. 11). Activity in PPC and ACC mainly encoded differences between 
hit and miss trials, although a generalized increase in firing rates could be observed as a 
consequence of the presentation of sensory stimuli (Fig. 1C, cf. 23).   

To verify that these results were not specific to our experimental protocol, we also 
analyzed recordings from a previously published experiment12. In this paradigm, mice had to 
identify which of two visual stimuli presented in the right and left hemifield had the highest 
contrast, and rotate a wheel to move the highest-contrast sensory stimulus toward the 
center of the screen (Fig. 1D). We computed sensory-evoked responses as a function of both 
stimulus contrast (difference between the contrast of the two presented Gabor patches) 
and hit/miss responses, for trials in which the highest-contrast stimulus was shown in the 
hemifield of view contralateral to the recorded hemisphere. We analyzed neuronal 
responses in areas corresponding to those we also recorded [V1; VISa and VISam (not 
shown), which are two secondary visual cortices spatially overlapping with PPC; ACC], as 
well as in a region broadly defined as supplementary motor cortex (MOs), where report-
related activity has been shown to originate10 – Fig. 1B. Results were in line with those that 
we observed in our dataset. V1 showed a bimodal pattern of activity, with an early sensory-
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evoked response (that however, in contrast with our dataset, did not encode stimulus 
saliency) followed by a report-related bump in activity (Fig. 1E). Activity in higher-order 
regions followed the early response displayed in V1 and was only report-related. These 
results suggest that the spatiotemporal progression of visual- and report-related activity is 
mostly independent from the details of the task being performed. 

Earlier findings5,9,10 indicated that report-related activity showed an earliest peak in 
prefrontal regions, followed by PPC and V1. Our results suggest a similar picture for what 
pertains higher-order regions, with prefrontal areas (ACC, MOs)14 showing earlier 
indications of hit/miss differences compared to PPC. The relative timing of the appearance 
of report-related activity in V1 is, however, less clear (cf. Fig. 1C and 1E), but is overall very 
close to that observed in prefrontal regions5,9,10. Thus, while prefrontal regions remain the 
most likely candidate for the origin of report-related activity – as supported by the causal 
experiments performed by Allen et al. (2017)10 – the mechanistic pathway via which this 
form of activity reaches other cortical areas remains unclear. 

 
A minimal network model reproduces the spatio-temporal propagation of visual- and 

report-related activity 

In order to understand the possible network-level mechanisms underlying the 
spatiotemporal propagation of visual- and report-related activity across cortical areas, we 
developed a minimal mean-field computational model of the cortical network that: (i) uses 

available connectomic data27,28,36–38 and (ii) is calibrated using in vivo recordings. The model 
includes three cortical areas: V1, PPC and PFC (see Fig. 2A). The activity in each area is 
modeled with a firing-rate neural-mass model comprising one excitatory and one inhibitory 
population. Firing rate models of this type are a well-tested tool to describe macroscopic 
neuronal dynamics, as they average single-neuron spike rates27,28,36–38. Within each mass, 
the synaptic dynamic has a tunable dispersion time, and oscillatory dynamics are possible 
because of the coupling between the excitatory and inhibitory population39. We also 
adopted a classical nonlinear sigmoidal firing rate for each neuronal population (see STAR 

Methods for a complete description), which is standard for neural mass models in the 
literature27,28,36–38. 

The model comprises a total of six neuronal populations, two in each cortical area, 
which feature local as well as long-range connections. More precisely, the excitatory-
inhibitory pair in each cortical area are fully connected. In addition, there are long-range 
excitatory connections to and from each cortical area. Crucially, connection strengths 
between areas were taken from recent experimental data34 (see highlighted entries Fig. 2B). 
In particular, we employed values of directed connection density between V1, secondary 
visual areas A and AM (which are considered the mouse homologue of PPC23,40–42) and MOs 
(which is considered as a component of PFC14 and is thought to be the key cortical area 
mainly in view of generating report-related activity10,12). All other model parameters were 
calibrated (see STAR Methods) to enable the excitatory nodes to reproduce patterns of 
activity comparable to those observed in vivo, as reported in earlier sections. During the 
tuning procedure all parameters in the model (characteristic rise/decay times, activation of 
the nonlinear firing rate functions, and local excitatory-inhibitory coupling strengths) were 
calibrated, while the inter-areal connections were kept fixed, because we had direct access 
to experimental data on these parameters. In this way we could test to what extent the 
generation and propagation of report-related activity is shaped by cortico-cortical 
connectivity. 
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We modelled a visual stimulus via an applied transient step current, with varying 
intensity, on the excitatory population of V1 (see Fig. 2A, and Iapp time traces in Fig. 2C-E), 
and monitored the elicited cortical firing rate response in excitatory and inhibitory 
populations of V1, PPC, and PFC (whose time traces are also seen in Fig. 2C-E). To calibrate 
the model, we applied a visual input lasting for 500 ms to the excitatory V1 node and 
replicated the following experimental results. First, when subjected to a sufficiently strong 
stimulus, V1 activity displayed an early-onset response peaking around 100-200 ms (before 
the termination of the visual stimulus) that then dropped to lower values – Fig. 2C. This 
reproduces the adaptation to stimuli typically observed in the visual cortex (Fig. 1) – see e.g. 
4,11,12,43. Second, high-amplitude visual stimuli evoked a bimodal V1 response, that is, an 
early-onset peak of activity followed by a later peak – Fig. 2E. This second peak was absent if 
the stimulus had a low-amplitude (low salience stimulus) and accounts for the report-
related activity observed in vivo (cf. hit trials in Fig. 1).  

Following this tuning procedure we observed that, when the network was subjected 
to stimuli of various intensity for 500ms, it displayed a strongly nonlinear response for the 
late peak of report-related activity: for smaller inputs (�max � 1.1��) V1 was activated, but 
the signal did not significantly propagate in the network and did not trigger a second, 
feedback-dependent bump in activity (see excitatory nodes in row 2-4 of Fig. 2C). For higher 
input strengths ��max � 2��	, the network displayed the late activity bump in many, but 
not all, realizations – cf. Fig. 2D,E. To run the model, we first set the initial value of the firing 

rate in each of the excitatory and inhibitory population, that is, we set initial conditions prior 
the initiation of the stimulus. In the simulation each population is set to a random initial 
state with a small variance. In particular, we found that initial conditions varying within 10-2 
spikes/s, simulating noisy initial data, trigger or suppress the occurrence of the late activity 
bump.   

This is in line with experimental findings showing that, when subject to a sufficiently 
large stimulus, large late-latency activity arises with high probability, but not with certainty5. 
The probabilistic nature of this response is analysed in detail in later sections. Before 

addressing this aspect, we observed the dynamics in each neuronal population, and noted 
that the occurrence of a late-latency activity bump appears to be feedback-induced. The 
external stimulus activated V1 which, in turn, following a feed-forward chain, activated PPC 
and PFC. The activity in the latter areas reached a peak (indicated with a vertical time-
marker in Fig. 2D-E) before decaying owing to local (intra-population) inhibition. The time 
marker aligned remarkably well with the small late-latency activity in V1, signaling the onset 
of a feedback mechanism (from PFC and PPC back to V1, see schematic in Fig. 2A). In 
realizations in which the late activity bump occurred, it was again PFC and PPC that 
displayed a peak preceding the late, report-related activity in V1, in line with a feedback 
mechanism. This claim will be further substantiated in the following sections. 

Thus the model, using a set of nominal parameters, was able to qualitatively 
reproduce the types of activity we observed in vivo. While the model was specifically tuned 
to reproduce V1 activity, we also obtained comparable patterns of activity in PPC and PFC, 
indicating that the model could be used to study the mechanisms underlying the 
propagation of activity across cortical areas during sensory-motor transformations. In 
particular, we focused on studying the role of feedback connections in the genesis of the 
late activity bump, i.e. of report-related activity. 

We highlight that the time courses of the activity of excitatory nodes are strongly 
determined by the inhibitory ones: in Fig 2D-E it is visible that inhibitory nodes in each 
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cortical area activate after the corresponding excitatory node, and this determines the rise-
and-fall behavior in the latter. It is known that neurotransmitter release in excitatory and 
inhibitory populations are affected by time-scale separation between signals44. Our model 
achieves the delayed inhibitory activation using time-scale separation between excitatory 
and inhibitory rising times (see discrepancies in the parameters 
�  and 
�  in STAR Methods). 
However, we also must point out that, for the purposes of this study, we did not calibrate 
the dynamics of inhibitory nodes to match experimental results, but only tuned their 
parameters so that excitatory nodes would show realistic behaviors. For this reason, we will 
only focus on excitatory nodes in the rest of the manuscript. 
 

The likelihood of late activity bumps is influenced by variations in internal state 

As we have seen above, when the network is in the nominal setup and the visual stimulus is 
sufficiently high, a late activity bump occurs with a given probability, upon perturbing the 
initial state of the system. We investigated systematically this scenario by running 100 
simulations during which the initial state of the excitatory V1 population was picked 
randomly and uniformly between 0 and 0.05 spikes/s, thereby imposing a small variance in 
the internal state (see Fig. 3A) that is in line with experimental observations linking cortical 
state fluctuations to perception45–49. We observed that early V1 responses elicited by either 
small (�max � 1��) or large (�max � 3��) input currents were not affected by such small 
variations, as trajectories were grouped together as simulation time progressed. On the 
other hand, intermediate currents (�max � 1.8  2��) considerably propagated the initial 
uncertainty: a late activity bump occurred often, but the fine details of the trajectory could 
differ. These findings further support the conclusion that the network in the nominal setup 
supports robustly self-generated late-latency activity bumps. However, more delicate 
questions arise: given a fixed set of network parameters, how often does the network 
generate such a bump? And further: how do changes in the network parameters affect this 
likelihood? To address these questions, we developed first a mathematical index to track 
late-latency V1 activity. 

We therefore introduced a cumulative (integral) spiking measure S, with the view of 
determining the likelihood of late-latency activity in V1. For each of the V1 traces seen in 
Fig. 3A, we counted the average cumulative number of spikes occurring after the early 
activity bump in V1 (STAR Methods). More precisely, we disregarded the trajectory before 
the reference time  ����� � 250ms, because this is the characteristic time in which the early 
activity bump occurs3,11, and then we calculated the area under the curve (proportional to 
the average number of population spikes) between ����� and the end of the simulation, �	�
 � 1000ms, during which the late activity bump may occur. We expected trajectories 
with �max � 1.1�� (see Fig. 3A) to have a very small cumulative spike number S, because 
they did not display a late activity bump. Indeed, the histogram in Fig. 3B with �max � 1.1�� 
shows that in all such trajectories fewer than 0.05 spikes were observed in V1, on average, 
after the early activity bump, in the time interval [250ms, 1000ms]. On the contrary, a fully 
saturated response, in which firing rate reach the maximum value allowed by the model’s 
equations (Fig. 3A, �max � 3��), is characterized by a large S, and indeed the histogram in 
Fig 3B (with �max � 3��) shows that all such trajectories had more than 0.35 spikes after 
the first bump, on average. Finally, a late activity bump was characterized by an 
intermediate value of S: with  �max � 1.8  2�� we observed a clear separation in the 
histogram of S. Therefore, we can use the value of S to define, empirically, the occurrence of 
a late activity bump (Fig. 3B). We thus classified a V1 activity trace by the corresponding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


value of S: we labeled traces with 0 � � � 0.2, as displaying only the early activity bump, 
traces with 0.2 � � � 0.35 (green band in Fig. 3B and 3C) as displaying both the early and 
late activity bumps and those with � � 0.35 as displaying an overshoot (see also Fig. 3A). 

Based on the fraction of trajectories whose S value falls in each of these three bands, 
we estimated the probability of having only the early activity bump  as P1b, both the early 
and late activity bumps as P2b and overshoot as Pov. For example, from the histograms in Fig. 
3B with stimulus ���� � 2mA, we estimated that the nominal network displays both an early 

and late activity  bump with probability �� � 71%, an overshoot with probability ��� � 5%, and an early activity bump only or inactivity with probability ��� � 24%.  
 

Late-latency activity relies on network feedback 

Armed with a quantitative index to inspect the likelihood of late-latency activity, we 
investigated how this likelihood changes upon variations in the network topology. As we 
shall see below, this analysis revealed that the late-latency activity is feedback-induced.  

With the view of imposing changes in the network connectivity, we introduced a 
morphing parameter � (see STAR methods). When � � 1, the network is in its nominal state 
(the one studied so far); when � � 1, selected network links are strengthened; when � � 1, 
those links are weakened; finally, when � � 0 the links are absent. The name morphing 
parameter suggests that with this index we can continuously transform the nominal 
network to intensify weaken, or even suppress certain links. Therefore, we introduced a tool 
to causally study to what extent the specific strength of an inter-area connection enables 
the emergence of a regime in which a sensory input to V1 can (with a certain probability) 
determine the occurrence of a late, report-related bump in activity. 
We first used the morphing parameter to vary the feedback link from PFC to PPC (Fig. 4A), 

signposted with a red arrow in the network schematic (mathematically, the PFC�PPC 

connection was scaled by factor �). We repeated the experiment of Fig. 3A-B for various 

values of the morphing parameter (� between 0 and 1.5) and recorded the probability of a 

single early bump �1� , both early and late bumps �� , and overshoot ��� .  We used ��  to 

derive the heatmap showed in Fig. 4A: the lighter colors correspond to a higher probability 

of a late activity bump, while darker colors denote lower probability thereof. We also used 

isolines to indicate where the probability of a single bump ���  crosses 99% (green isoline) 

and where the probability of overshoot ��� crosses 99% (orange isoline).  

The overall information we gathered from the heatmap in Fig. 4A can be summarized 
as follows. First, the network produced a late activity bump robustly with respect to changes 
in the PFC�PPC feedback link: light yellow areas (late-bump probabilities close to 100%) 
were found in a variety of network configurations (for various values of �). Second, there 
are regimes, labelled “ov” and “1b”, where the feedback-bump was absent, but either an 
overshoot (ov) or an early bump only (1b) were found with probability greater than 99%, 
respectively. Third, the network could produce a late activity bump even when the feedback 
link PFC�PPC was weakened with respect to the nominal condition, provided that the 
strength of the impinging stimulus was increased; this can be deduced from the yellow area 
in Fig. 4A “curving upwards” towards higher values of �max . Finally, the feedback pathway 
PFC�PPC was an important player in triggering late-latency activity. While the network 
could compensate for the weakening of this link with a higher input to produce a late-
latency bump, network configurations in which that link was either too weak or too strong 
failed to produce a late activity bump. 
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A markedly different behavior was observed when we perturbed the feedback link 
PPC�V1 (Fig. 4B). From Fig. 4B it can be seen that the likelihood of a late activity bump was 
strongly affected by changes in this feedback link. Small deviations from the nominal value 
of the link caused the late activity bump to disappear quickly. While the network could 
tolerate a weaker PFC�PPC link (Fig. 4A), even the slightest weakening of the PPC�V1 link 
caused a complete suppression of the feedback bump. This data revealed that the 
experimentally-derived anatomical connectivity used in the nominal conditions (� � 1) was 
crucial to obtain a late activity bump. 

On the contrary, the network’s activity was only minimally affected by changes to 
the feedback link PFC�V1. Fig. 4C shows that feedback bumps could be produced with high 
probability even when this link was absent (� � 0), in case the strength of the input was 
increased (compensating for the reduced PFC�V1 link). 

For the experiments in Figs. 4A-C we perturbed one link at a time, but the morphing 
parameter can also be varied on multiple links simultaneously. In Fig. 4D, for instance, we 
strengthened or weakened all the feedback pathways at once. These manipulations showed 
that late-latency bumps cannot exist without (or with too much) feedback. Therefore, it is 
the interplay between the various feedback pathways that generates the late-latency bump. 
This was further confirmed by the results displayed in Figs. 4E-F, showing that a network in 
which the PFC or PPC nodes were progressively isolated (transforming the architecture into 
a two-node network) did not display robust late activity bumps.  

In summary, the analyses performed using the morphing parameter shed light on 
the fact that the late activity bump is dependent on feedback connections. Upon external 
stimulation, V1 is activated and a feedforward pathway excites PPC and PFC. From these 
two areas, a late-latency activity bump appears in V1, mainly owing to an indirect pathway 
from PFC to PPC and then to V1. It turns out that direct feedback from PFC to V1 is instead 
not crucial for feedback bumps to be observed in V1, because the impact of reducing this 
link can be easily compensated by increasing stimulus strength.   
 

Discussion 
In this project we set out to elucidate how report-related late activity patterns observed in 
cortex may mechanistically emerge as a function of the anatomically-constrained 
connectivity between sensory, association and prefrontal cortices.  

We presented evidence of two crucial stages in the processing of visual information 
during perceptual decision making in mice, replicating and extending previous work in both 
humans and animals3,5,10–12,32,50. Neural recordings collected from two independent labs 

using two different tasks revealed that V1 firing rate at 100 ms after stimulus change was 
uniquely modulated by the saliency of the stimulus and not by the decision made by the 
mouse11 (Fig. 1C,E). In contrast, a second, later wave of V1 activity reflected a combination 
of stimulus saliency and decision outcome. This late wave of activity was stronger for hits 
than for misses and coincided with increased report-related activity in both posterior 
parietal and frontal cortex.   

Next, we set out to model the interactions between the three cortical regions that 
we considered, to understand the mechanisms giving rise to the observed neural dynamics. 
Crucially while designing the model connection strengths between V1, PPC and PFC were 
implemented from recent experimental data to match the currently known anatomical 
connectivity profiles between these regions. Thus, connectivity between cortical regions 
was imposed as a fixed constraint onto neural activity. Previous studies on the origin of 
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report-related activity were either incorporating a limited set of cortical areas but did not 
constrain inter-area connectivity to experimentally-derived connectivity3,5, or included most 
cortical regions but only globally varied inter-areal coupling strength29–31. Our approach 
allowed to mechanistically test the role of all combinations of single and multiple feedback 
connections with realistic strengths, something not feasible in whole-brain models. We 
cannot exclude that including additional areas known to play a role in top-down modulation 
of sensory areas51–53 might have partially modified the results we obtained. However, the 
fact that model behavior echoed the neural data observed indicates that the model’s 
architecture and the free model parameters were enabling physiologically-plausible 
sensory-evoked activity for a given, anatomically-based inter-areal connectivity matrix. 
Nevertheless, it is important to briefly discuss the possible role of different areas. First, the 
anterior cingulate cortex (ACC) sends stronger feedback projections to V1 compared to 
other subdivisions of PFC such as MOs14,51. However, even though ACC has been shown to 
significantly modulate V1 activity54,55, report-related activity has consistently been found to 
first appear in other PFC subdivisions compatible with MOs9,10,12,56,57. Second, while we 
focused on PPC, other temporal association areas have been implicated in visual 
perception58. However, at least in rodents, medial association areas such as PPC, that have 
been hypothesized as the rodent homologue of the dorsal stream59,60, are more strongly 
connected to prefrontal areas compared to temporal association cortices33,34. Finally, 
although we cannot exclude a role of thalamic nuclei in mediating long-range top-down 

modulation, the thalamus seems to mainly play a modulatory role and not directly be 
involved in information transfer52,53. 

There were at least three notable observations in our model behavior. First, 
increasing the input strength to V1 led to both stronger early activity waves (~100 ms) as 
well as an increased likelihood of a second late wave of activity (~400 ms), as observed in 
our data and in previous studies 3,4. Stronger V1 input also directly led to increased late 
activity in PPC and PFC, that in general anticipated the late wave of activity in timing 
observed in V1.   

Second, we show that the initial baseline or pre-stimulus condition of each neural 
node strongly determines the likelihood of the late activity wave of activity to occur. In fact, 
we observed a regime of model parameters in which there was a clear nonlinear threshold 
for “igniting” this late wave of activity, in line with theoretical predictions from the Global 
workspace model of conscious access30,31,50,61. This is in line with recent observations that 
variations in behavioral and cortical state, associated with ongoing fluctuations in pre-
stimulus neural activity, strongly determine the likelihood that a stimulus will be reported 
(or consciously accessed) and that late report-related neural activity in cortex is 
observed45,46,48,62,63 .  

Third, not only do we show that late activity in V1 is driven, as hypothesized earlier50, 
by feedback from higher-order regions, but also, more specifically, that although PFC is 
necessary to generate report-related activity in V1, it exerts its final influence on V1 only 
indirectly, through PPC. In our model, therefore, while PFC activity is necessary towards the 
buildup and initiation of the late, report-related bump in V1 activity, it is PPC that has the 
final veto and determines its characteristics. Removing the feedback connection from PFC to 
V1 had very limited influence on model behavior and the occurrence of a late activity wave 
could still be observed when stimulus input strength was increased. Thus, an interplay 
between frontal and parietal cortical regions is required, and most efficient, for eliciting late 
feedback activity in early sensory cortex4. This observation is important because, in the 
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Global Neuronal Workspace Model, frontal cortex has always been considered the site 
responsible for igniting the network, and hence threshold setting64 – but see 8. It was 
hypothesized that once the threshold for conscious report in PFC is crossed, PFC sends 
information to other brain regions, including parietal cortex. We provide evidence for a 
possible different division of labor between frontal and parietal regions, in which frontal 
cortex acts as fast accumulator of sensory evidence, and parietal cortex as a much slower 
one65,66 – but see67. In this scenario, PFC starts to quickly feed stimulus evidence to parietal 
cortex, but activity in PFC quickly reaches a ceiling level. When activity in PFC reaches such a 
level, this is not sufficient to elicit a report-related wave of activity. In contrast, parietal 
cortex keeps on accumulating evidence from both sensory and prefrontal regions over time. 
Once activity in the PPC crosses a certain threshold (which can happen only if both V1 and 
PFC provide it with input activity), this triggers a report-related feedback wave of activity to 
V1 and other cortical areas. This scenario is a direct consequence of the known 
anatomically-constrained connectivity between areas33,34, and specifically from the fact that 
PPC has a much stronger feedback connection to V1 compared to PFC.  

In conclusion, our study provides a mechanistic hypothesis on the cortical pathway 
via which report-related activity, a hallmark of conscious access, is generated in the fronto-
parietal cortex and then reaches sensory areas. Future experimental work will be required 
to validate our results in vivo. Furthermore, it will be important to disentangle potentially 
different mechanisms underlying the genesis of the different sub-components of late-onset 

activity in V1. In fact, recent studies suggest that this component of V1 activity correlates 
not only with report, but also with spontaneous and sensory-induced motor 
behavior11,12,68,69. Finally, it is worth noting that the primary focus of our study lied in 
unraveling the mechanisms implicated in conscious access, associated with cognitive and 
behavioral responses to sensory stimuli (e.g., hits versus misses). Therefore, we did not aim 
to target the neural mechanisms of "phenomenal consciousness": the subjective 
phenomenological aspects of conscious experience70. In this light, it is rather 
uncontroversial that the fronto-parietal network is involved in conscious access or report, 

although exactly how so has been severely underspecified as we have highlighted before. 
The role of this network in phenomenal experience, and how this takes form in across the 
cortex, on the other hand, are strongly debated and a matter of ongoing investigation2,6,7,71–

73. In fact, several theories of consciousness (e.g. integrated information theory74 or 
predictive processing accounts75,76 – see 21 for a review) emphasize the role of posterior 
association cortices (of which PPC is part) in the generation of phenomenal consciousness, 
and consider late activity to be only an reflection of conscious access, or of the subsequent 
motor actions. Thus, to what extent late, report-related activity reflects conscious 
processing, and what roles the different cortical regions implicated in its genesis play, 
remain open questions. A way to potentially investigate these issues is by employing so-
called no-report paradigms77, developed to isolate phenomenal experience from its 
functional consequences, such as report and decision-making, and pursue an 
interdisciplinary approach combining experiments and modeling. Whether this is possible 
and a fruitful approach, both theoretically as well as experimentally, is an important avenue 
for future scientific investigation.  
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Figure Legends 

 
Figure 1: Neuronal correlates of perceptual decision making in the mouse cortex. A. 
Schematic of the experimental configuration of the audio-visual change detection paradigm 
for head-fixed mice. Modified from ref. 23. B. Schematic representation of the relevant 
cortical areas represented on a flattened cortical surface. Acronyms are used for the major 
subdivision of the dorsal cortex following standard nomenclature12,60,78. Highlighted in color 
are the areas from which data was analyzed.  V1: primary visual cortex; PPC: posterior 
parietal cortex; ACC: anterior cingulate cortex. MOs: Supplementary motor cortex. C. 
Baseline-corrected average PSTHs recorded in (from top to bottom) V1, PPC and ACC 
following a change in the orientation of the presented drifting grating. Red: hits; green: 
misses. Dark colors indicate max visual change (highest saliency), while light colors indicate 
threshold visual change (low saliency). Shaded areas indicate the standard error of the 
mean. Color bars on top of individual panels indicate time bins in which significant 
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differences (p<0.05, permutation-based test, FDR-corrected) were found between 
responses to – respectively – sensory stimuli with a difference salience (blue) or hit/miss 
trials (orange). D. Outline of the contrast discrimination task, in which mice had to rotate a 
wheel to bring the Gabor patch with the highest contrast toward the center of the field of 
view. Modified from ref. 12. E. Same as C, but computed as a function of the difference in 
contrast between the stimulus presented in the contralateral field of view with respect to 
the recorded hemisphere (which was always the highest-contrast stimulus) and the stimulus 
presented ipsilaterally. The color darkness indicates the contrast difference. Statistical 
differences were computed as in panel C. Note that no difference between responses to 
sensory stimuli with different contrasts was observed. 

 

Figure 2: Network architecture and activity in the nominal setup. A. Network schematic. 
We developed a minimal network model with an excitatory (E) and an inhibitory (I) node in 
three cortical areas: V1, PPC and PFC. Orange (blue) arrows indicate feedforward (feedback) 
connections, whose values were determined based on anatomical connectivity – roughly 
indicated by arrow thickness, see also panel B. Connections between excitatory and 
inhibitory nodes (black arrows) were calibrated to match experimental results. External 
input was applied to V1 (red arrow) to simulate visual stimuli. B. Synaptic weights between 
nodes. The upper-left 3x3 block corresponds to non-local connections (matrix W, see STAR 
methods), while the other three blocks correspond to local couplings γi. Values in 
highlighted cells (red lines) were experimentally derived. All other values were calibrated. C, 

D, E. Example firing rate traces in the three regions for two different values of applied 
current: C low current Imax = 0.8mA; D, E medium current Imax = 2mA. At medium currents a 
feedback-bump may (D) or may not (E) appear depending on small changes in initial 
conditions. In C-E, row 1 reflects the input, rows 2-4 the activity of excitatory nodes and 
rows 5-7 the activity of inhibitory nodes.  

 
Figure 3: Network activity as a function of initial conditions and input currents. A. 

Examples of activity trajectories (random initial conditions) for different input currents, in 

the nominal setup of parameters. B. Distributions of integral quantity S for the trajectories 

in A. A late-activity bump is detected when the integral of V1 firing rate S lies in the interval 

[0.2, 0.35], highlighted in green. C. Frequency distribution of S for different values of applied 

current Iapp. Red columns highlight the values displayed in B. The statistics is obtained over 

100 different realizations for every value of Imax, with initial conditions sampled from a 

uniform, random distribution ui(t = 0) ∈ [0, 0.05] spikes/s. 

 
Figure 4: Probability of observing a late-activity bump, in the plane of parameters (α,Imax), 

for the sets of connections considered. In each panel heatmaps show the probability of 
observing both an early and late activity bumps P2b as a function of applied input current 
Imax and morphing parameter α, applied to a different set of connections. The green and 
orange lines represent isolines of P1b = 99% and Pov = 99% respectively, which border regions 
dominated by single bumps / inactivity and overshooting (see gray labels on top-left panel). 
A white, dotted line marks the nominal setup (α = 1). For each panel. morphed connections 
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are colored in red on the respective network scheme. For each couple of (α,Imax) values, we 
considered 50 random initial conditions (see STAR Methods).   

 

 

 

STAR Methods 
 

RESOURCE AVAILABILITY  

Lead contact 

• Further information and requests for resources and reagents should be directed to 
and will be fulfilled by the lead contact, Umberto Olcese (u.olcese@uva.nl). 

Materials availability 

• This study did not generate new materials or reagents. 

Data and code availability 

• All the data collected by the authors of this study and used for the analyses present-
ed in Fig. 1 will be shared by the lead contact upon request. 

• This paper also analyzes existing, publicly available data. These accession numbers 
for the datasets are listed in the key resources table.  

• All original code will be deposited at Zenodo and will publicly available as of the date 
of publication. DOIs will be listed in the key resources table.  

• Any additional information required to reanalyze the data reported in this paper is 
available from the lead contact upon request.  

 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

 
Collection and analysis of in vivo recordings 

The model we developed (see Model description) was qualitatively fitted on data collected 

in vivo by the authors and on a previously released dataset12. The experimental procedures 
performed to collect the data are only summarized here, and are described more 

extensively in refs. 11,23. All details about experimental subjects, recording procedures and 
behavioral task for the previously released dataset can be found in ref. 12.  
 
Experimental subjects 

All animal experiments followed the relevant national and institutional regulations. 
Experimental procedures were approved by the Dutch Commission for Animal Experiments 
and by the Animal Welfare Body of the University of Amsterdam. The data presented here 
was collected from 17 male mice, obtained from two transgenic mouse lines: PVcre 
(B6;129P2-Pvalbtm1(cre)Arbr/J, RRID: IMSR_JAX:008069) and F1 offspring of this PVcre line 
and Ai9-TdTomato cre reporter mice (Gt(ROSA)26Sortm9(CAG- tdTomato)Hze RRID: 
ISMR_JAX 007909). Mice were group-housed in under a reversed day-night schedule (lights 
on at 20:00 and off at 8:00) and all experimental procedures were done in the dark period. 
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Temperature was kept between 19.5 and 23.5 °C, and humidity between 45% and 65%. 
During behavioral training (starting when mice were about 8 week old), mice were kept 
under a water restriction regime. Their minimum weight was kept above 85% of their 
average weight between P60-P90. Mice were normally trained 5 days/week, and generally 
obtained all their daily liquids in the form of rewards during task performance. A 
supplement was delivered when the amount of liquid obtained during the task was below a 
minimum of 0.025 ml/g body weight per day. The same amount was provided during 
weekends. Mice received ad libitum food. 
 
 
METHODS 

 

Surgical procedures 

At the start of experimental procedures, mice were implanted with a headbar to allow head-
fixation in the experimental setup. About three weeks before electrophysiological 
recordings, a subset of mice received an injection of an adeno-associated virus mediating 
the Cre-dependent expression of ChR2 in Parvalbumin-positive interneurons; the injection 
was performed, in separate sets of mice, in either V1 or PPC. Data collected during 
optogenetic interventions was not utilized for the analyses presented in this study. The day 
before the start of extracellular recordings, small craniotomies (about 200 μm in diameter) 

over the cortical areas of interest using a dental drill. Cortical regions (V1, PPC and anterior 
cingulate cortex ACC for this study) were identified either via stereotactic coordinates or via 
intrinsic optical signal imaging – Fig. 1A. Details about all surgical procedures can be found 
refs. 11,23. 
 

Behavioral task and sensory stimuli 

Mice were trained, over the course of several weeks, to perform an audio-visual change 
detection task – Fig. 1C. Visual stimuli were drifting square-wave gratings (temporal 

frequency: 1.5 Hz; spatial frequency: 0.08 cycles per degree; contrast: 70%; gamma-
corrected), presented over the full screen (18.5-inch monitor, 60 Hz refresh rate). Gratings 
were continuously presented at a distance of about 21 cm from the eyes. In a subset of 
trials (visual change trials) the orientation of the drifting grating was instantaneously 
changed. The amount of orientation change determined the visual saliency, which was set, 
based on the properties of the psychometric curve of individual mice, to a value 
corresponding to a threshold or max change (detection threshold and 90 deg, respectively). 
Mice were trained to respond to a visual change by licking to one reward port (left or right, 
counterbalanced across mice), and received 5-8 μl of liquid reward (infant formula) upon a 
correct response. Visual stimuli were the subject of analysis in the current manuscript, and a 
detailed description can be found in refs. 11,23. Correct responses to an auditory changes 
corresponded to licks toward the port not rewarded for visual stimuli (counterbalanced 
across mice). Importantly, similar neuronal responses were obtained across the measured 
areas irrespective of the side to which the mice had to lick upon a visual change, as well as 
independently of whether mice were trained to only report visual but not auditory changes. 
A more in depth account can be found in refs. 11,23. 
 

Multi-area recordings: acquisition and pre-processing 
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Extracellular recordings were performed simultaneously in 2 or 3 cortical areas (V1, PPC, 
ACC and A1 were targeted in different experimental sessions). Recordings were performed 
on a maximum of 4 consecutive days. Several types of Neuronexus (Ann Arbor, MI) silicon 
probes were used (A1 × 32-Poly2–10 mm-50 s-177, A2 × 16-10 mm-100-500-177, A4 × 8-5 
mm-100-200-177, A1 × 64-Poly2-6 mm-23 s-160). Neurophysiological signals were pre-
amplified, bandpass filtered (0.1 Hz to 9 kHz), and acquired at 32 kHz (a band-pass filter was 
set between 0.1 Hz and 9 kHz) with a Digital Lynx SX 128 channel system, via the acquisition 
software Cheetah 5.0 (Neuralynx, Bozeman, MT). Spike detection and sorting were 
performed using the Klusta (version 3.0.16) and Phy (version 1.0.9) software packages. For 
more details about acquisition and pre-processing, refer to refs. 11,23. 
 

Histology 

At the end of experiments, mice were perfused in 4% PFA in PBS, and their brains were 
recovered for histological reconstruction meant to verify the correct placement of silicon 
probes in V1, PPC and ACC. 
 
Model description 

We modeled a network of 3 regions, namely V1 (primary visual cortex), PPC (posterior 

parietal cortex) and PFC (prefrontal cortex). Each region comprises one excitatory and one 

inhibitory population (see schematic in Fig. 2), and the activity of each population is 

described by a neural mass model27,28,36–38. The model describes the evolution of the 

average population firing rates. Such models are macroscopic in nature, that is, they 

describe population activity, as opposed to single-neuron activity. Populations are 

connected through weighted links, which represent anatomical connectivities. Neural Mass 

Wilson-Cowan models, such as the ones described below, are an established framework to 

investigate large-scale neuronal dynamics27,28,36–38. 

The �th cortical area in the network evolves according to the following equations: 


�� ��� ��
� � �����

� � ���  !�����
� � !�����

� � " #��

���

��� � �app,���	$ ,

�� ��� ��

� � �����
� � ����!�����

� � !�����
�	,

 

where the superscripts &, � label excitatory and inhibitory variables, respectively. The firing 

rate ��  of the �-th population has characteristic time constants 
� , and it evolves according 

to two main contributions: a damping term proportional to �� , and a nonlinear synaptic 

term, collecting inputs from the network. Our network is formed by 3 main brain regions 

(V1, PPC, and PFC) hence we set  �� � '1, � � ��( and �� � ��(, each endowed with an 

excitatory and inhibitory node, thereby obtaining a network with 6 nodes. 

The local couplings are denoted by !��� where ), * � &, �. Inhibitory populations are 

connected only locally, whereas excitatory populations have local as well as long-range 

connections. Long-range connections are mutual, all-to-all and, in general, asymmetric. This 

means that, while each population is connected to all the others, the respective weights 
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have different strengths. We encode the link from the excitatory population + to the 

excitatory � in a matrix using the equation  

#�� � ,��-./ 12 ,.�/1,3* 4/1+.5��1,6 2/1� j �1 i �1�3* ,��-./ 12 ,.�/1,3* 4/1+.5��1,6 �1 �  

Nominal values of #�� (see highlighted entries in the upper left 3x3 block of Fig. 2B) have 

been taken according to recent data on mice33,34. This allows to develop a model with 

faithful connectivity between cortical regions. 

The nonlinear function ��� is sigmoidal: 

�����	 � 11 � .��
�
�����

�
��

, 
and a similar expression holds for ��� . The parameter 9��influences the sharpness of the 

sigmoid, while :��  determines the threshold at which the nonlinear firing response is 

triggered. Finally, we model a network receiving an external stimulus in V1, hence �app��	 is 

different from 0 only in V1, so �app,� � 0 for � � 2,3 and it is a step function for '� 

�app,���	 � ;�max 0 � � � <,0 � � <. = 

Nominal values of parameters are reported in the next paragraph. Parameter variations are 

discussed in the main text. 

The described equations are numerically integrated using the function ode23s in Matlab, 

which is based on a modified Rosenbrock formula of order 279.  

Numerical parameters values 

Connection strengths between areas (matrix W)  were taken from recent experimental 
data34. All other model parameters were manually adjusted to enable the excitatory nodes 
to reproduce patterns of activity comparable to those observed in vivo, and reported earlier.  
 
Matrix W: connectivity between excitatory variables (units: pA/Hz) 

 
 
 
 
 

Gamma parameters (units: pA/Hz) 

 V1 PCC PFC 

���  1. 1. 1. 

��� 2.3 1.8 1.9 

���  2 2 2 

��� 0.5 0.5 0.5 

 

Parameters of the firing rate function: 

 V1 PPC PFC 

V1  11.22 1.29 

PPC 4.57  10.57 

PFC  0.72 9.78  
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 V1 PPC  PFC 

       �
�

  [1/mA]
 

3 2 2 

       �
�

   [1/mA]
 

2 2 2 

      �
�

   [mA]
 

2 4 2 

 
 
     �

�
  [mA]

 
0.3 0.3 0.3 

 

Characteristic times and decay constants: 

 V1 PCC PFC 

      �
�

  [ms] 
 

30 200 38 

      �
�

   [ms]
 

10 10 10 

��  
0.8 0.9 3.8 

          �
�  

0.07 0.1 0.07 

 

Noise in the initial conditions 

We investigated the network behavior when the nominal setup is perturbed by noise, by 

sampling the initial conditions from a random, uniform distribution: ui(t=0) > [0, ?].  

The analysis of network behavior under noise is obtained by with 50 realizations for each 

network setup. We fixed δ=0.05 spikes/s, as this value was one order of magnitude smaller 

than the typical scales of the excitatory firing rates, and we additionally studied the effects 

of varying ?. 

Connectivity morphing parameter 

We introduce a connectivity morphing parameter which amplifies (α>1), dampens (or 

suppresses (α<1) one or more synaptic connections (#��) with respect to their nominal 

value (α=1), via the following transformation: #��
�	� � �#�� 

We use this morphing strategy to examine the robustness of the network behavior to 

changes in the coupling between areas, and also to infer which nodes are most relevant for 

the formation of the late activity bump.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS  

In vivo recordings: Data analysis 

All data analysis was performed in Matlab 2021b (MathWorks).  
 
In vivo recordings: Sensory-evoked and task-related responses 

For each single neuron identified through the spike sorting procedure (V1: 594 neurons, 
PPC: 529 neurons, ACC: 629 neurons), we computed the average peri-stimulus time 
histogram (PSTH) aligned to the onset of visual changes, separately for hit and miss trials, as 
well as for small and large visual changes. PSTHs were computed with a 10 ms time bin, and 
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smoothed with a Gaussian window (standard deviation: 25 ms). Each PSTH was baseline-
corrected, i.e., we subtracted the average activity computed in the [-500 -10] ms window 
with respect to stimulus onset. 
 

In vivo recordings: Sensory-evoked and task-related responses – previously released 

dataset 

The dataset used for the Steinmetz et al. (2019)12 study was downloaded from 
https://figshare.com/articles/dataset/Dataset_from_Steinmetz_et_al_2019/9598406 and 
analyzed using the same approach described above. Trials were pooled together based on 
whether a hit or miss was observed, and separately for visual contrasts of 25%, 50% and 
100%.  
 
In vivo recordings: Statistical analyses 

Differences between sensory-evoked responses were assessed using a permutation-based 
approach. For each pair of conditions to be tested (e.g. hit trials to high vs. low saliency 
stimuli) we used the corresponding single-neuron PSTHs to compute the difference between 
average responses (across neurons) separately for each time bin. We then randomly 
swapped the trial identify of each PSTH, separately for each neuron, and computed the 
corresponding response difference. This was repeated 1000 times. We then ranked, 
separately per time bin, the actual response difference between two conditions compared 

to the values obtained through random permutations. If the actual response difference was 
higher than 95% of the values obtained through random permutations, a difference was 
considered to be significant, and the corresponding p value was compute as the fraction of 
randomly obtained values which was higher than the actual difference. All p values were 
then corrected for the false discovery rate (Bonferroni correction). To compute if an area 
encoded differences between high and low saliency stimuli, we further specified that this 
difference had to be present for both hit and miss trials, to prevent any interaction effect. 
Similarly, any hit/miss difference had to be present for both low and high saliency stimuli.  

 

Model: Neural activity measure 

We define an integral measure which counts the cumulative number of spikes in V1, from 

time �����  to time �	�
 

� � @ �������

�����

��	��. 
Here �����	 is the firing rate of the excitatory population in the primary visual cortex '�. We 

shall set ����� so as to start counting spikes after a first (stimulus-induced) bump occurs, and 

use � to determine whether a second (feedback-induced) bump is present in V1. 

 

KEY RESOURCES TABLE 

 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Experimental models: Organisms/strains 
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Mouse, PVcre, bred at the University of Amsterdam from 
Jackson lines 

The Jackson Laboratory RRID: IMSR_JAX:008069 

Mouse, PVcre/TdTomato, bred at the University of 
Amsterdam from Jackson lines 

The Jackson Laboratory RRID: IMSR_JAX:027395 

Deposited data 
Previously published in vivo V1 recordings (Steinmetz et al., 2019) 

https://figshare.com/articl
es/dataset/Dataset_from
_Steinmetz_et_al_2019/9
598406 

https://doi.org/10.6084/m9.fig
share.11274968 

Software and algorithms 
MATLAB Mathworks RRID:SCR_001622 

Arduino IDE Arduino  N/A 

Klusta (Rossant et al., 2016) 
https://klusta.readthedocs
.io/en/latest/ 

N/A 

Phy (Rossant et al., 2016) 
https://github.com/cortex-
lab/phy 

N/A 

Data analysis code This paper 
[link provided before 
publication]   

[insert DOI before 
publication] 

Modelling code This paper 
[link provided before 
publication]   

[insert DOI before 
publication] 

Other 
Arduino UNO Arduino RRID: SCR_017284 

Microelectrode silicon probes NeuroNexus Cat#s:  
A1x32-Poly2-10mm-50s-177 
A2x16-10mm-100-500-177 
A4x8-5mm-100-200-177 
A1x64-Poly2-6mm-23s-160 

 

 

References 

 
1. Aru, J., Bachmann, T., Singer, W., and Melloni, L. (2012). Distilling the neural correlates 

of consciousness. Neurosci Biobehav Rev 36, 737–746. 
10.1016/j.neubiorev.2011.12.003. 

2. Koch, C., Massimini, M., Boly, M., and Tononi, G. (2016). Neural correlates of 
consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321. 
10.1038/nrn.2016.22. 

3. Del Cul, A., Baillet, S., and Dehaene, S. (2007). Brain dynamics underlying the nonlinear 
threshold for access to consciousness. PLoS Biol 5, e260. 10.1371/journal.pbio.0050260. 

4. Supèr, H., Spekreijse, H., and Lamme, V.A. (2001). Two distinct modes of sensory 
processing observed in monkey primary visual cortex (V1). Nat Neurosci 4, 304–310. 
10.1038/85170. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


5. van Vugt, B., Dagnino, B., Vartak, D., Safaai, H., Panzeri, S., Dehaene, S., and Roelfsema, 
P.R. (2018). The threshold for conscious report: Signal loss and response bias in visual 
and frontal cortex. Science 360, 537–542. 10.1126/science.aar7186. 

6. Cohen, M.A., Ortego, K., Kyroudis, A., and Pitts, M. (2020). Distinguishing the Neural 
Correlates of Perceptual Awareness and Postperceptual Processing. J Neurosci 40, 
4925–4935. 10.1523/JNEUROSCI.0120-20.2020. 

7. Hatamimajoumerd, E., Ratan Murty, N.A., Pitts, M., and Cohen, M.A. (2022). Decoding 
perceptual awareness across the brain with a no-report fMRI masking paradigm. Curr 
Biol 32, 4139-4149.e4. 10.1016/j.cub.2022.07.068. 

8. Sergent, C., Corazzol, M., Labouret, G., Stockart, F., Wexler, M., King, J.-R., Meyniel, F., 
and Pressnitzer, D. (2021). Bifurcation in brain dynamics reveals a signature of conscious 
processing independent of report. Nat Commun 12, 1149. 10.1038/s41467-021-21393-z. 

9. Yin, P., Strait, D.L., Radtke-Schuller, S., Fritz, J.B., and Shamma, S.A. (2020). Dynamics 
and Hierarchical Encoding of Non-compact Acoustic Categories in Auditory and Frontal 
Cortex. Curr Biol 30, 1649-1663.e5. 10.1016/j.cub.2020.02.047. 

10. Allen, W.E., Kauvar, I.V., Chen, M.Z., Richman, E.B., Yang, S.J., Chan, K., Gradinaru, V., 
Deverman, B.E., Luo, L., and Deisseroth, K. (2017). Global Representations of Goal-
Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron 94, 891-907.e6. 
10.1016/j.neuron.2017.04.017. 

11. Oude Lohuis, M.N., Pie, J.L., Marchesi, P., Montijn, J.S., de Kock, C.P.J., Pennartz, C.M.A., 

and Olcese, U. (2022). Multisensory task demands temporally extend the causal 
requirement for visual cortex in perception. Nat Commun 13, 2864. 10.1038/s41467-
022-30600-4. 

12. Steinmetz, N.A., Zatka-Haas, P., Carandini, M., and Harris, K.D. (2019). Distributed coding 
of choice, action and engagement across the mouse brain. Nature 576, 266–273. 
10.1038/s41586-019-1787-x. 

13. Zatka-Haas, P., Steinmetz, N.A., Carandini, M., and Harris, K.D. (2021). Sensory coding 
and the causal impact of mouse cortex in a visual decision. Elife 10, e63163. 
10.7554/eLife.63163. 

14. Le Merre, P., Ährlund-Richter, S., and Carlén, M. (2021). The mouse prefrontal cortex: 
Unity in diversity. Neuron 109, 1925–1944. 10.1016/j.neuron.2021.03.035. 

15. Fahrenfort, J.J., Scholte, H.S., and Lamme, V. a. F. (2008). The spatiotemporal profile of 
cortical processing leading up to visual perception. J Vis 8, 12.1-12. 10.1167/8.1.12. 

16. Fisch, L., Privman, E., Ramot, M., Harel, M., Nir, Y., Kipervasser, S., Andelman, F., 
Neufeld, M.Y., Kramer, U., Fried, I., et al. (2009). Neural “ignition”: enhanced activation 
linked to perceptual awareness in human ventral stream visual cortex. Neuron 64, 562–
574. 10.1016/j.neuron.2009.11.001. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Quiroga, R.Q., Mukamel, R., Isham, E.A., Malach, R., and Fried, I. (2008). Human single-
neuron responses at the threshold of conscious recognition. Proc Natl Acad Sci U S A 
105, 3599–3604. 10.1073/pnas.0707043105. 

18. Sikkens, T., Bosman, C.A., and Olcese, U. (2019). The Role of Top-Down Modulation in 
Shaping Sensory Processing Across Brain States: Implications for Consciousness. Front. 
Syst. Neurosci. 13. 10.3389/fnsys.2019.00031. 

19. COGITATE Consortium, Ferrante, O., Gorska-Klimowska, U., Henin, S., Hirschhorn, R., 
Khalaf, A., Lepauvre, A., Liu, L., Richter, D., Vidal, Y., et al. (2023). An adversarial 
collaboration to critically evaluate theories of consciousness. bioRxiv, 
2023.06.23.546249. 10.1101/2023.06.23.546249. 

20. Melloni, L., Mudrik, L., Pitts, M., and Koch, C. (2021). Making the hard problem of 
consciousness easier. Science 372, 911–912. 10.1126/science.abj3259. 

21. Seth, A.K., and Bayne, T. (2022). Theories of consciousness. Nat Rev Neurosci 23, 439–
452. 10.1038/s41583-022-00587-4. 

22. Oude Lohuis, M.N., Canton, A.C., Pennartz, C.M.A., and Olcese, U. (2021). Higher Order 
Visual Areas Enhance Stimulus Responsiveness in Mouse Primary Visual Cortex. Cereb 
Cortex, bhab414. 10.1093/cercor/bhab414. 

23. Oude Lohuis, M.N., Marchesi, P., Pennartz, C.M.A., and Olcese, U. (2022). Functional 
(ir)relevance of posterior parietal cortex during audiovisual change detection. J 
Neurosci, JN-RM-2150-21. 10.1523/JNEUROSCI.2150-21.2022. 

24. Rost, B.R., Wietek, J., Yizhar, O., and Schmitz, D. (2022). Optogenetics at the presynapse. 
Nat Neurosci 25, 984–998. 10.1038/s41593-022-01113-6. 

25. Huh, C.Y.L., Peach, J.P., Bennett, C., Vega, R.M., and Hestrin, S. (2018). Feature-Specific 
Organization of Feedback Pathways in Mouse Visual Cortex. Curr. Biol. 28, 114-120.e5. 
10.1016/j.cub.2017.11.056. 

26. Tervo, D.G.R., Hwang, B.-Y., Viswanathan, S., Gaj, T., Lavzin, M., Ritola, K.D., Lindo, S., 
Michael, S., Kuleshova, E., Ojala, D., et al. (2016). A Designer AAV Variant Permits 
Efficient Retrograde Access to Projection Neurons. Neuron 92, 372–382. 

10.1016/j.neuron.2016.09.021. 

27. Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., and Wang, X.-J. (2015). A Large-
Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex. 
Neuron 88, 419–431. 10.1016/j.neuron.2015.09.008. 

28. Joglekar, M.R., Mejias, J.F., Yang, G.R., and Wang, X.-J. (2018). Inter-areal Balanced 
Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate 
Cortex. Neuron 98, 222-234.e8. 10.1016/j.neuron.2018.02.031. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


29. Castro, S., El-Deredy, W., Battaglia, D., and Orio, P. (2020). Cortical ignition dynamics is 
tightly linked to the core organisation of the human connectome. PLoS Comput Biol 16, 
e1007686. 10.1371/journal.pcbi.1007686. 

30. Dehaene, S., Sergent, C., and Changeux, J.-P. (2003). A neuronal network model linking 
subjective reports and objective  physiological data during conscious perception. 
Proceedings of the National Academy of Sciences 100, 8520–8525. 
10.1073/pnas.1332574100. 

31. Dehaene, S., and Changeux, J.-P. (2005). Ongoing spontaneous activity controls access to 
consciousness: a neuronal model for inattentional blindness. PLoS Biol 3, e141. 
10.1371/journal.pbio.0030141. 

32. Alilović, J., Lampers, E., Slagter, H.A., and van Gaal, S. (2023). Illusory object recognition 
is either perceptual or cognitive in origin depending on decision confidence. PLoS Biol 
21, e3002009. 10.1371/journal.pbio.3002009. 

33. Harris, J.A., Mihalas, S., Hirokawa, K.E., Whitesell, J.D., Choi, H., Bernard, A., Bohn, P., 
Caldejon, S., Casal, L., Cho, A., et al. (2019). Hierarchical organization of cortical and 
thalamic connectivity. Nature 575, 195–202. 10.1038/s41586-019-1716-z. 

34. Knox, J.E., Harris, K.D., Graddis, N., Whitesell, J.D., Zeng, H., Harris, J.A., Shea-Brown, E., 
and Mihalas, S. (2019). High-resolution data-driven model of the mouse connectome. 
Netw Neurosci 3, 217–236. 10.1162/netn_a_00066. 

35. Pho, G.N., Goard, M.J., Woodson, J., Crawford, B., and Sur, M. (2018). Task-dependent 

representations of stimulus and choice in mouse parietal cortex. Nat Commun 9, 2596. 
10.1038/s41467-018-05012-y. 

36. Bressloff, P.C. (2014). Waves in Neural Media: From Single Neurons to Neural Fields 
(Springer) 10.1007/978-1-4614-8866-8. 

37. Ermentrout, G.B., and Cowan, J.D. (1980). Large Scale Spatially Organized Activity in 
Neural Nets. SIAM J. Appl. Math. 38, 1–21. 10.1137/0138001. 

38. Ermentrout, G.B., and Terman, D.H. (2010). Mathematical Foundations of Neuroscience 
(Springer) 10.1007/978-0-387-87708-2. 

39. Coombes, S., and Wedgwood, K.C.A. (2023). Neurodynamics: An Applied Mathematics 
Perspective (Springer International Publishing) 10.1007/978-3-031-21916-0. 

40. Arlt, C., Barroso-Luque, R., Kira, S., Bruno, C.A., Xia, N., Chettih, S.N., Soares, S., Pettit, 
N.L., and Harvey, C.D. (2022). Cognitive experience alters cortical involvement in goal-
directed navigation. Elife 11, e76051. 10.7554/eLife.76051. 

41. Driscoll, L.N., Pettit, N.L., Minderer, M., Chettih, S.N., and Harvey, C.D. (2017). Dynamic 
Reorganization of Neuronal Activity Patterns in Parietal Cortex. Cell 170, 986-999.e16. 
10.1016/j.cell.2017.07.021. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


42. Pinto, L., Rajan, K., DePasquale, B., Thiberge, S.Y., Tank, D.W., and Brody, C.D. (2019). 
Task-dependent changes in the large-scale dynamics and necessity of cortical regions. 
Neuron 104, 810-824.e9. 10.1016/j.neuron.2019.08.025. 

43. Kirchberger, L., Mukherjee, S., Schnabel, U.H., van Beest, E.H., Barsegyan, A., Levelt, 
C.N., Heimel, J.A., Lorteije, J.A.M., van der Togt, C., Self, M.W., et al. (2021). The 
essential role of recurrent processing for figure-ground perception in mice. Sci Adv 7, 
eabe1833. 10.1126/sciadv.abe1833. 

44. Rodrigues, S., Desroches, M., Krupa, M., Cortes, J.M., Sejnowski, T.J., and Ali, A.B. 
(2016). Time-coded neurotransmitter release at excitatory and inhibitory synapses. Proc 
Natl Acad Sci U S A 113, E1108-1115. 10.1073/pnas.1525591113. 

45. McGinley, M.J., David, S.V., and McCormick, D.A. (2015). Cortical Membrane Potential 
Signature of Optimal States for Sensory Signal Detection. Neuron 87, 179–192. 
10.1016/j.neuron.2015.05.038. 

46. McGinley, M.J., Vinck, M., Reimer, J., Batista-Brito, R., Zagha, E., Cadwell, C.R., Tolias, 
A.S., Cardin, J.A., and McCormick, D.A. (2015). Waking State: Rapid Variations Modulate 
Neural and Behavioral Responses. Neuron 87, 1143–1161. 
10.1016/j.neuron.2015.09.012. 

47. Samaha, J., Iemi, L., Haegens, S., and Busch, N.A. (2020). Spontaneous Brain Oscillations 
and Perceptual Decision-Making. Trends Cogn Sci 24, 639–653. 
10.1016/j.tics.2020.05.004. 

48. Speed, A., Del Rosario, J., Burgess, C.P., and Haider, B. (2019). Cortical State Fluctuations 
across Layers of V1 during Visual Spatial Perception. Cell Rep 26, 2868-2874.e3. 
10.1016/j.celrep.2019.02.045. 

49. Supèr, H., van der Togt, C., Spekreijse, H., and Lamme, V.A.F. (2003). Internal state of 
monkey primary visual cortex (V1) predicts figure-ground perception. J Neurosci 23, 
3407–3414. 10.1523/JNEUROSCI.23-08-03407.2003. 

50. Dehaene, S., and Changeux, J.-P. (2011). Experimental and theoretical approaches to 
conscious processing. Neuron 70, 200–227. 10.1016/j.neuron.2011.03.018. 

51. Zhang, S., Xu, M., Chang, W.-C., Ma, C., Hoang Do, J.P., Jeong, D., Lei, T., Fan, J.L., and 
Dan, Y. (2016). Organization of long-range inputs and outputs of frontal cortex for top-
down control. Nat. Neurosci. 19, 1733–1742. 10.1038/nn.4417. 

52. Halassa, M.M., and Kastner, S. (2017). Thalamic functions in distributed cognitive 
control. Nat Neurosci 20, 1669–1679. 10.1038/s41593-017-0020-1. 

53. Wimmer, R.D., Schmitt, L.I., Davidson, T.J., Nakajima, M., Deisseroth, K., and Halassa, 
M.M. (2015). Thalamic control of sensory selection in divided attention. Nature 526, 
705–709. 10.1038/nature15398. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


54. Fiser, A., Mahringer, D., Oyibo, H.K., Petersen, A.V., Leinweber, M., and Keller, G.B. 
(2016). Experience-dependent spatial expectations in mouse visual cortex. Nat. 
Neurosci. 19, 1658–1664. 10.1038/nn.4385. 

55. Zhang, S., Xu, M., Kamigaki, T., Hoang Do, J.P., Chang, W.-C., Jenvay, S., Miyamichi, K., 
Luo, L., and Dan, Y. (2014). Selective attention. Long-range and local circuits for top-
down modulation of visual cortex processing. Science 345, 660–665. 
10.1126/science.1254126. 

56. Inagaki, H.K., Chen, S., Ridder, M.C., Sah, P., Li, N., Yang, Z., Hasanbegovic, H., Gao, Z., 
Gerfen, C.R., and Svoboda, K. (2022). A midbrain-thalamus-cortex circuit reorganizes 
cortical dynamics to initiate movement. Cell 185, 1065-1081.e23. 
10.1016/j.cell.2022.02.006. 

57. Takahashi, N., Moberg, S., Zolnik, T.A., Catanese, J., Sachdev, R.N.S., Larkum, M.E., and 
Jaeger, D. (2021). Thalamic input to motor cortex facilitates goal-directed action 
initiation. Curr Biol 31, 4148-4155.e4. 10.1016/j.cub.2021.06.089. 

58. Conway, B.R. (2018). The Organization and Operation of Inferior Temporal Cortex. Annu 
Rev Vis Sci 4, 381–402. 10.1146/annurev-vision-091517-034202. 

59. Glickfeld, L.L., Reid, R.C., and Andermann, M.L. (2014). A mouse model of higher visual 
cortical function. Curr. Opin. Neurobiol. 24, 28–33. 10.1016/j.conb.2013.08.009. 

60. Wang, Q., Sporns, O., and Burkhalter, A. (2012). Network analysis of corticocortical 
connections reveals ventral and dorsal processing streams in mouse visual cortex. J. 

Neurosci. 32, 4386–4399. 10.1523/JNEUROSCI.6063-11.2012. 

61. Mashour, G.A., Roelfsema, P., Changeux, J.-P., and Dehaene, S. (2020). Conscious 
Processing and the Global Neuronal Workspace Hypothesis. Neuron 105, 776–798. 
10.1016/j.neuron.2020.01.026. 

62. McCormick, D.A., Nestvogel, D.B., and He, B.J. (2020). Neuromodulation of Brain State 
and Behavior. Annu Rev Neurosci 43, 391–415. 10.1146/annurev-neuro-100219-105424. 

63. Waschke, L., Tune, S., and Obleser, J. (2019). Local cortical desynchronization and pupil-
linked arousal differentially shape brain states for optimal sensory performance. Elife 8, 

e51501. 10.7554/eLife.51501. 

64. Dehaene, S. (2014). Consciousness and the Brain: Deciphering How the Brain Codes Our 
Thoughts (Penguin Books). 

65. Kim, J.N., and Shadlen, M.N. (1999). Neural correlates of a decision in the dorsolateral 
prefrontal cortex of the macaque. Nat Neurosci 2, 176–185. 10.1038/5739. 

66. Shadlen, M.N., and Newsome, W.T. (2001). Neural basis of a perceptual decision in the 
parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86, 1916–1936. 
10.1152/jn.2001.86.4.1916. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


67. Pinto, L., Tank, D.W., and Brody, C.D. (2022). Multiple timescales of sensory-evidence 
accumulation across the dorsal cortex. Elife 11, e70263. 10.7554/eLife.70263. 

68. Lohuis, M.N.O., Marchesi, P., Olcese, U., and Pennartz, C. (2022). Triple dissociation of 
visual, auditory and motor processing in primary visual cortex. 2022.06.29.498156. 
10.1101/2022.06.29.498156. 

69. Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C.B., Carandini, M., and Harris, K.D. 
(2019). Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 
255. 10.1126/science.aav7893. 

70. Kriegel, U. (2007). - Consciousness: Phenomenal consciousness, access consciousness, 
and scientific practice. In Philosophy of Psychology and Cognitive Science Handbook of 
the Philosophy of Science., P. Thagard, ed. (North-Holland), pp. 195–217. 10.1016/B978-
044451540-7/50023-2. 

71. Boly, M., Massimini, M., Tsuchiya, N., Postle, B.R., Koch, C., and Tononi, G. (2017). Are 
the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral 
Cortex? Clinical and Neuroimaging Evidence. J. Neurosci. 37, 9603–9613. 
10.1523/JNEUROSCI.3218-16.2017. 

72. Lamme, V.A.F. (2018). Challenges for theories of consciousness: seeing or knowing, the 
missing ingredient and how to deal with panpsychism. Philos. Trans. R. Soc. Lond., B, 
Biol. Sci. 373. 10.1098/rstb.2017.0344. 

73. Odegaard, B., Knight, R.T., and Lau, H. (2017). Should a Few Null Findings Falsify 

Prefrontal Theories of Conscious Perception? J. Neurosci. 37, 9593–9602. 
10.1523/JNEUROSCI.3217-16.2017. 

74. Tononi, G., Boly, M., Massimini, M., and Koch, C. (2016). Integrated information theory: 
from consciousness to its physical substrate. Nat. Rev. Neurosci. 17, 450–461. 
10.1038/nrn.2016.44. 

75. Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 
11, 127–138. 10.1038/nrn2787. 

76. Pennartz, C.M.A. (2022). What is neurorepresentationalism? From neural activity and 

predictive processing to multi-level representations and consciousness. Behav Brain Res 
432, 113969. 10.1016/j.bbr.2022.113969. 

77. Tsuchiya, N., Wilke, M., Frässle, S., and Lamme, V.A.F. (2015). No-Report Paradigms: 
Extracting the True Neural Correlates of Consciousness. Trends Cogn Sci 19, 757–770. 
10.1016/j.tics.2015.10.002. 

78. Wang, Q., and Burkhalter, A. (2007). Area map of mouse visual cortex. J. Comp. Neurol. 
502, 339–357. 10.1002/cne.21286. 

79. Shampine, L.F., and Reichelt, M.W. (1997). The MATLAB ODE Suite. SIAM J. Sci. Comput. 
18, 1–22. 10.1137/S1064827594276424. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.19.549692doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/

