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ABSTRACT  22 

Protein homeostasis is disrupted in aging and neurodegenerative diseases, yet, the specific 23 
impact of aging on brain proteostasis remains poorly understood. Here, we measured and 24 
integrated the effects of aging on the transcriptome, translatome, and multiple layers of the 25 
proteome in the brain of a short-lived killifish. We find that aging causes a decoupling between 26 
transcriptome and proteome. This leads to decreased abundance of proteins enriched in basic 27 
amino acids such as DNA/RNA-binding proteins and increased levels of others, independent 28 
of mRNA changes. Chronic proteasome impairment in vivo induces aging signatures in 29 
lysosomes and mitochondria. However, it does not recapitulate the age-related decoupling 30 
between transcripts and proteins. Instead, aberrant translation pausing and ensuing reduced 31 
ribosome availability reprogram the proteome independently of transcription. The age-linked 32 
changes in protein biogenesis likely enhance aggregation and reduce availability of key protein 33 
complexes, thus contributing to proteome dysfunction and aging hallmarks in older brains. 34 
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Highlights: 39 

● A resource of protein solubility, organelle 40 
composition and PTMs in the aging 41 
vertebrate brain 42 
● Proteostasis alterations converge on 43 
mitochondria, ribosomes and biosynthetic 44 
pathways 45 
● Basic proteins, e.g., DNA/RNA binding, 46 
are reduced due to translation pausing 47 
● Decreased ribosome availability 48 
reprograms protein synthesis in old brains 49 

 50 

 51 

 52 

Introduction 53 

Aging is the primary risk factor for most neurodegenerative diseases. Both aging and 54 
neurodegeneration are characterized by a disruption in protein homeostasis, also known as 55 
proteostasis, which ultimately leads to the progressive accumulation of protein aggregates. 56 
Proteostasis involves multiple mechanisms that maintain a balanced and functional proteome. 57 
These mechanisms include the regulated coordination of protein synthesis and degradation, 58 
as well as correct protein localization within cells, and fine-tuning of their function through post-59 
translational modifications (PTMs). Preserving proteostasis is essential to ensure that an 60 
adequate supply of protein building blocks is available for assembling cellular structures such 61 
as multi-protein complexes and organelles. Additionally, it also prevents the accumulation of 62 
misfolded and "orphan" protein complex subunits that are susceptible to aggregation. 63 
 64 
Several possible mechanisms are suggested to contribute to age-related proteostasis 65 
impairment in the brain (J. Labbadia and Morimoto 2015; Hipp, Kasturi, and Hartl 2019)For 66 
example, age-dependent enhanced ribosome collisions and stalling have been identified in 67 
old yeast cells and nematodes as leading to a decline in proteostasis through overwhelmed 68 
quality control pathways and increased aggregation (Stein et al. 2022). Age-dependent 69 
changes in protein synthesis have also been observed in rodents and other organs beyond 70 
the brain  (Anisimova et al. 2020; Kluever et al. 2022; Ori et al. 2015). Further, accumulation 71 
of ribosomes at isolated 3’-UTR has been observed in mouse and human aging brains 72 
(Sudmant et al. 2018). On the other side, a decline in protein clearance pathways is also 73 
implicated in aging phenotypes (Vilchez, Saez, and Dillin 2014; Hansen, Rubinsztein, and 74 
Walker 2018). For instance, a partial decrease of proteasome activity, an early event during 75 
brain aging, can contribute to the loss of stoichiometry of the ribosome and other protein 76 
complexes (Kelmer Sacramento et al. 2020). Also, increased activity of deubiquitinating 77 
enzymes leads to the accumulation of a subset of proteins that can influence lifespan in 78 
nematodes (Koyuncu et al. 2021).  79 
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Although all these individual studies have documented changes in specific aspects of the 80 
transcriptome and proteome during aging, as well as age-dependent alterations in aggregation 81 
and post-translational modification, a comprehensive and coordinated analysis of these 82 
changes is currently lacking.  83 
 84 
Understanding and integrating the impairment of proteostasis in the aging vertebrate brain is 85 
particularly relevant for human neurodegenerative diseases. We reason that to comprehend 86 
the mechanisms of proteostasis decline and its connections to other hallmarks of aging 87 
requires an integrative analysis. This should comprise the integration of several aspects of 88 
proteostasis in aging as well as their interplay and mechanistic relationships. To bridge the 89 
knowledge gap arising from the separate investigation of these aspects in different model 90 
systems, we conducted a comprehensive investigation of proteostasis in the aging brain of 91 
the short-lived killifish Nothobranchius furzeri. We chose killifish because of the spontaneous 92 
emergence of aging brain phenotypes, including cognitive decline (Valenzano et al. 2006), 93 
neuronal loss (S. Bagnoli et al. 2022), accumulation of protein aggregates (Matsui, Kenmochi, 94 
and Namikawa 2019), reduced proteasome activity (Kelmer Sacramento et al. 2020), 95 
aggregation of prion-like proteins (Harel et al. 2022), and mis-localization and aggregation of 96 
disease-relevant proteins, such as the RNA-binding protein TDP-43 (Louka et al. 2022).  97 
 98 
Using this model system, we integrated biochemical and omics techniques to systematically 99 
measure the effects of aging on the transcriptome, translatome, and multiple layers of the 100 
proteome and applied computational approaches to investigate the relationships between 101 
these different aspects. We established a protocol for long-term partial inhibition of 102 
proteasome activity to investigate whether this specific perturbation of proteostasis is sufficient 103 
to replicate age-related brain phenotypes in vivo. Finally, we performed Ribo-Seq to directly 104 
assess the contribution of mRNA translation to proteome alterations and to quantify ribosome 105 
stalling and pausing in the aging vertebrate brain. Our analyses provide a compelling 106 
hypothesis to explain the lack of correspondence between transcriptome and proteome 107 
changes, an evolutionary conserved (Janssens et al. 2015; Wei et al. 2015; Walther et al. 108 
2015; David et al. 2010; Takemon et al. 2021; Gerdes Gyuricza et al. 2022; Kelmer 109 
Sacramento et al. 2020), yet understudied aspect of age-related proteostasis impairment that 110 
has been linked to neurodegeneration in humans(Dick et al. 2023). We demonstrate that age-111 
dependent translation dysfunction, leading to aberrant elongation pausing and increased 112 
aggregation can account for age-related alterations of the proteome independently of changes 113 
in mRNA levels. 114 

 115 

 116 

 117 

 118 

 119 

 120 

 121 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549210doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549210
http://creativecommons.org/licenses/by-nc/4.0/


4 

Results 122 

Multi-layer characterization of proteome alterations in the killifish 123 
aging brain 124 

Aging can influence different aspects of protein homeostasis. To obtain an unbiased 125 
characterization of the effect of aging on the brain proteome we employed a multi-layered 126 
approach to interrogate major modes of protein regulation. We generated datasets describing 127 
changes in protein and mRNA levels, protein subcellular localization, detergent insolubility, 128 
and post-translational modifications (PTMs) in the aging brain of killifish (Figure 1A and S1A). 129 
First, we captured proteome-wide variation in subcellular localization using an approach based 130 
on differential centrifugation coupled with quantitative mass spectrometry (LOPIT-DC) 131 
(Geladaki et al. 2019) and analyzed pools of adult (12 weeks post-hatching = wph) and old 132 
(39 wph) killifish brains (Figure S1B, Table S1). We used a list of well-annotated organelle 133 
markers (Gatto, Breckels, and Lilley 2019) to evaluate organelle separation by LOPIT-DC 134 
(Figure 1B and S1C, D) and to confirm the reproducibility of organelles sedimentation between 135 
adult and old brains (Figure S1E). We then employed a tailored statistical approach (see 136 
methods, Figure S1F) to identify age-dependent changes in protein sedimentation profiles 137 
(Figure 1C, Table S1). The most prominent changes affected multiple mitochondrial and 138 
lysosomal proteins among others, including the mitochondrial transporters SLC25A32 and 139 
SLC25A18, and the lysosomal and vesicle trafficking proteins RAB14 and CCZ1 (Figure 1D). 140 
We interpret these alterations of sedimentation as an indication of partial reorganization of the 141 
mitochondrial and lysosomal proteome during aging that correlates with the well-described 142 
dysfunction of these organelles during aging and neurodegenerative diseases. 143 
 144 
In parallel, we used the same pools of samples to assess age-dependent changes in protein 145 
solubility. We complemented our previous analysis of SDS insoluble aggregates in the killifish 146 
aging brain (Kelmer Sacramento et al. 2020) with a more fine-grained analysis of protein 147 
solubility. Thus, we exposed brain homogenates to a series of detergent combinations of 148 
increasing strength, separated soluble and insoluble fractions by ultracentrifugation (as 149 
described in (Tebbenkamp and Borchelt 2009), Figure S2A, Table S1), and quantified protein 150 
abundances across fractions using mass spectrometry. Principal component analysis showed 151 
reproducible detergent-based fractionation in adult and old brains (Figure S2B) and GO 152 
enrichment analysis confirmed the expected partitioning of cellular components as a function 153 
of detergent strength (Figure S2C and S2D). In agreement with previous findings from other 154 
species (Vecchi et al. 2020; Walther et al. 2015) and the spontaneous age-related 155 
accumulation of protein aggregates in killifish brain (Matsui, Kenmochi, and Namikawa 2019; 156 
Harel et al. 2022; Kelmer Sacramento et al. 2020), we observed an overall increase of protein 157 
detergent-insolubility in old samples (Figure S2E). By comparing detergent insolubility profiles 158 
between adult and old brains (Figure S2F-G), we identified 410 protein groups changing 159 
detergent insolubility with aging (Figure 1E, Table S1). While many of these proteins exhibited 160 
increased insolubility to detergents in old brains, there were instances where aging was linked 161 
to decreased insolubility to detergents. This indicates that factors other than protein 162 
aggregation, such as alterations in protein interactions or localization, could be responsible for 163 
the observed changes in detergent insolubility. 164 
 165 
Next, we examined the effects of brain aging on multiple PTMs, using a sequential enrichment 166 
strategy followed by quantification of age-dependent changes in protein ubiquitylation, 167 
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acetylation, and phosphorylation in the aging brain (Figure S3A, Table S2). We quantified 168 
PTM-carrying peptides normalized for protein changes (see methods, Figure S3) and 169 
identified age-related changes for 534 phosphorylated, 618 ubiquitylated, and 190 acetylated 170 
peptides (P<0.05, Figure 1F). The general increase in the number of affected PTM peptides 171 
with aging emphasized its overall impact on the proteome beyond protein abundance (Figure 172 
1F-G). Integration of phosphorylation data with experimentally derived kinase-substrate 173 
relationships (Johnson et al. 2023) indicates a remodeling of kinase signaling in the aging 174 
brain. Besides an increased activity (i.e., increased phosphorylation of predicted targets) for 175 
kinases involved in the regulation of immune responses, we reported enhanced activity for 176 
kinases of the protein kinase C family, e.g., PKN1, PKN2, PKCA, whose hyperactivation is 177 
linked to Alzheimer’s disease (Alfonso et al. 2016; Morshed et al. 2021; Bai et al. 2020). Our 178 
data also reveals the decreased activity of kinases responsible for the phosphorylation of 179 
splicing factors and other RNA processing proteins, e.g. CDC2-like kinases 2 and 4 (CLK2 180 
and CLK4, Figure 1H-I). These data suggest a convergence between aging and 181 
neurodegeneration concerning altered signaling pathways in the brain and hints at 182 
dysfunctional RNA processing in the aging brain. 183 
 184 
To more systematically investigate the convergence between brain aging and 185 
neurodegenerative diseases, we queried our datasets for killifish orthologs of proteins 186 
encoded by genes that have been genetically linked to neurodegeneration in humans (Table 187 
S3). We found several of these proteins to be affected by aging in killifish in at least one of the 188 
proteomic datasets analyzed (Figure 1J). These include changes in subcellular fractionation 189 
and detergent insolubility (Figure S4A-B), as well as 23 PTM sites conserved between killifish 190 
and humans (Figure S4C-D-E). The microtubule-associated protein Tau (MAPT) was notably 191 
affected by aging across multiple proteomic layers. MAPT showed a prominent increase in 192 
detergent insolubility in old brains (Figure 1E), an alteration associated with human aging and 193 
neurodegenerative diseases (Guillozet et al. 2003; Chatterjee et al. 2023; Wang and 194 
Mandelkow 2015). Additionally, we detected an age-dependent increase in phosphorylation 195 
and ubiquitylation of conserved residues in the microtubule-binding domain (MBD) of MAPT, 196 
a region sensitive to PTMs and associated with Tau pathological aggregation (Figure 1K and 197 
S4D) (L. Li et al. 2022; Datta et al. 2021; Wang and Mandelkow 2015). We validated the 198 
spontaneous increase of MAPT/Tau phosphorylation in old killifish brains using 199 
immunofluorescence staining for a conserved phosphorylated epitope of Tau (AT100) (Figure 200 
1L).  201 
 202 
Together, our analyses comprehensively establish how aging affects the brain proteome along 203 
multiple axes beyond protein abundance, using a consistent model organism and age groups. 204 
This thorough characterization of the proteome reveals several potential connections between 205 
aging, specific molecular events, and genetic factors associated with neurodegeneration, 206 
which are relevant to humans. To make this resource easily accessible to the scientific 207 
community, we have developed a web application at  https://genome.leibniz-208 
fli.de/shiny/orilab/notho-brain-atlas/ (credentials will be available after final publication) 209 

 210 
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 211 

Figure 1: Aging affects protein subcellular localization, detergent insolubility and post-translational 212 
modifications. A) Overview of the datasets generated in this study (wph= weeks post-hatching). B) Organelle 213 
markers protein profiles from LOPIT-DC (12 wph). The x-axis indicates the different fractions of the LOPIT-DC 214 
experiment. The y-axis indicates protein distribution across fractions. The median profiles of each organelle are 215 
highlighted by a colored solid line. C) Scatterplot depicting protein relocalization scores in the aging killifish brain. 216 
The x-axis indicates the median replicate Euclidean distance of the profiles between the two conditions. Y-axis 217 
indicates the -log10 P-value of the Hotelling T-squared test between adult (12 wph) and old (39 wph) profiles (N=4 218 
pools per age group). D) Examples of sedimentation profiles for selected proteins with altered subcellular 219 
fractionation profiles. In each of the plots, the x-axis indicates the 10 fractions obtained from LOPIT-DC. The y-axis 220 
indicates the total protein distribution along the 10 fractions for adult (12 wph, pink) and old (39 wph, green) fish. 221 
Shaded areas indicate 50% of the replicate distribution. P-values indicate the results of the Hotelling T2 test (N=4 222 
pools per age group). E) Volcano plot depicting protein detergent insolubility changes in the aging killifish brain. 223 
The x-axis indicates the difference in detergent insolubility score (see methods) expressed as old vs. adult. Higher 224 
values indicate increased detergent insolubility in the old brain. Y-axis indicates the -log10 of the MANOVA test 225 
between adult and old profiles (N=4 pools per age group). Significant changes are highlighted by dashed lines 226 
(MANOVA adjusted P<0.2 and absolute Δ Detergent insolubility score >2). F) Post-translationally modified peptides 227 
affected by aging. The y-axis (left) indicates the percentage of affected sites in each dataset when compared to 228 
the young samples (P<0.05, moderated Bayes T-test, N=3-4). G) Barplots showing relative abundances of 229 
ubiquitylated peptides from DNAJA1 and HSPA6 across age groups (purple bars). The corresponding protein 230 
abundances are displayed as reference (red bars). On the side is reported the sequence of the identified peptide, 231 
N=3-4. H) Volcano plot showing changes in estimated kinase activity (using the algorithm from (Johnson et al. 232 
2023)) based on phosphoproteomics data from old (39 wph) vs. young (5 wph) fish brains. The x-axis indicates 233 
changes in estimated kinase activity. The y-axis indicates FDR corrected -log10(P-value, Fisher’s test). I) Density 234 
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distribution for kinases involved in the regulation of immune response (GO:0050776, upper panel) and RNA 235 
processing (GO:0006396, lower panel) against all other kinases from panel H. x-axis indicates the log2 Kinase 236 
activity enrichment value. J) Heatmap showing alterations of proteins linked to neurodegenerative diseases. 237 
Significant alterations in each dataset (P<0.05) are marked by black dots. K) Barplots displaying significantly 238 
changing (P<0.05, moderated Bayes T-test) MAPT/Tau phosphorylated (green) and ubiquitylated (purple) peptide. 239 
The values represent relative abundances to the young (5 wph) age group after correction for protein changes (see 240 
methods, Figure S3B). Asterisks indicate the P-value of the moderated Bayes T-test (N=3-4). L) (Left panel)  241 
Immunofluorescence stainings for phosphorylated (AT100) Tau in brain cryo-sections of young and old 242 
Nothobranchius furzeri. The stainings were normalized over the amount of NeuN in order to account for the different 243 
amounts of neuronal cells between young and old (N=5) animals. Scale bars = 20μm. (Right panel) Boxplot 244 
representation of mean intensity for phosphorylated Tau normalized over the amount of NeuN.The p-value 245 
indicates the results of a  two-sample Wilcoxon test.  *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.  Related 246 
to Figure S1,S2,S3,S4 and Table S1,S2,S3. 247 

 248 

Loss of basic proteins independently of transcription is a feature of 249 
the aging brain  250 

We utilized our extensive datasets to investigate the mechanisms driving age-related changes 251 
in proteostasis. One intriguing hallmark of an aging brain, whose mechanisms are poorly 252 
characterized, is the loss of correlation between changes in gene transcripts (mRNA) and 253 
corresponding protein changes, a phenomenon known as "decoupling”. The widespread 254 
occurrence of decoupling during aging across species suggests that it may be an important 255 
contributor to proteome dysfunction with age. To further investigate this aspect and how it 256 
might be connected to other proteome alterations, we combined our datasets with 257 
quantification of age-related changes in gene transcripts and protein levels which we obtained 258 
from proteomics and RNA sequencing (RNAseq) data (Figure 2A-B and S5A-H). By fitting a 259 
null distribution on the measured differences between protein and transcript changes, which 260 
we refer to as “decoupling score”, we identified subsets of proteins displaying “positive protein-261 
transcript decoupling”, i.e., protein level higher than expected from changes of its 262 
corresponding transcript, or “negative protein-transcript decoupling”, i.e., protein level lower 263 
than expected from changes of its corresponding transcript (Figure 2B and 2C, Table S4). 264 

The decoupling scores displayed a median shift towards negative values (Figure 2C) due to 265 
an overall skew towards negative fold changes at the proteome level (Figure S5D), which was 266 
independent of sample normalization (Figure S5C). To assess the reproducibility of the 267 
decoupling metric, we compared the decoupling scores of this study to the decoupling scores 268 
of an independent transcriptome and proteome aging brain dataset that we previously 269 
generated (Kelmer Sacramento et al. 2020). Supporting our observations, there was a 270 
significant positive correlation between these datasets (Figure S5I), despite technical 271 
differences in the quantitative proteomics workflows: tandem-mass tags (TMT) based 272 
quantification (Kelmer Sacramento et al. 2020) compared to label-free Data Independent 273 
Acquisition (DIA, this study).  274 

We then applied a multiple linear regression model to interrogate the association between the 275 
measured decoupling scores (response variable, N=1188 complete observation) and distinct 276 
biophysical properties of transcripts and proteins (N=9 features). Our model explained 31% of 277 
the decoupling variance (Adjusted R2 = 0.31, Figure 2D). We detected estimated protein 278 
absolute abundance (see methods, 𝛃=0.36, P < 2.20E-16) and protein half-life (as described 279 
in (Fornasiero et al. 2018), 𝛃=0.31, P < 2.20E-16 ) as the parameters with the highest 280 
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correlation with positive decoupling (higher protein levels than expected from transcript 281 
changes, Figure 2E). On the other hand, the parameters with the highest correlation with 282 
negative decoupling (i.e. lower protein levels than expected from transcript changes) were 283 
relative transcript abundance (expressed as log2 transcripts per million (TPM) 𝛃=-0.26, P < 284 
2.20E-16) and proportion of basic amino acids (𝛃=-0.13, P = 4.30E-03, Figure 2D and 2E). 285 
We subsequently employed a second regression model, with protein amino acid composition 286 
as the sole predictor variable. Our analysis revealed significant correlations between negative 287 
decoupling and the content of lysine, proline, glutamine, and arginine (Figure 2F). These 288 
findings reveal that basic amino acid content has a significant  aggregated impact on 289 
“negative” decoupling with aging, i.e. the loss of protein levels relative to mRNA. 290 

Since higher content of basic amino acids is a known feature of nucleic acid binding proteins. 291 
Therefore, we investigated the age-dependent behavior of proteins involved in DNA repair and 292 
experimentally defined RNA-binding proteins (Caudron-Herger et al. 2021). Both these groups 293 
of proteins showed an age-dependent decrease of protein- but not transcript-levels (Figure 294 
2G and H). On the other hand, myelin components, e.g., myelin basic protein (MBP) and 295 
myelin protein P0 (MPZ), and intermediate filament proteins, e.g. glial fibrillary acidic protein 296 
(GFAP) and alpha-internexin (INA), showed decreased transcript- but not protein-levels with 297 
aging (Figure 2I), likely due to their long half-lifes and low turnover rates. 298 

Together, our data identify specific classes of proteins that experience “decoupling” between 299 
protein and transcript levels in the aging vertebrate brain. We identify distinct biophysical and 300 
biochemical characteristics linked to different patterns of dysregulation between protein and 301 
transcript levels. This suggests the presence of shared molecular attributes that contribute to 302 
aging-linked decoupling phenomena. 303 

 304 
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 305 

Figure 2: Protein-transcript decoupling affects highly abundant and basic proteins in opposite manners. 306 
A) Workflow describing the characterization of protein-transcript decoupling in the killifish aging brain. Age-related 307 
changes in transcriptome and proteome are compared to compute the decoupling metrics. For a specific protein, 308 
positive decoupling values indicate a relative increase in protein abundance compared to its transcript, while 309 
negative decoupling indicates a relative decrease in protein abundance compared to its transcript. B) Scatterplot 310 
comparing protein- (x-axis) and transcript-level (y-axis) fold changes in killifish aging brain. The color of each dot 311 
represents the decoupling score calculated as the difference between log2 transformed fold changes measured at 312 
the protein and transcript levels. Grey dashed lines indicate the equal changes between transcript and protein and, 313 
therefore, a zero decoupling score. C) Density distribution of decoupling scores for the comparison of 39 wph vs. 314 
5 wph. On the right part, highlighted in red are positive decoupling events (increase in protein abundance compared 315 
to the transcript), while on the left in blue are negative decoupling events (decrease in protein abundance compared 316 
to the transcript). Significant changes are defined as Q-value < 0.1. D) Multiple linear regression analysis of 317 
decoupling scores based on biophysical features of transcripts or proteins as predictors. The x-axis indicates the 318 
estimate of the regression coefficient for each feature, while the size of the dots and asterisks represent the -log10 319 
P-values of the F-test. E) Added variable plot between selected biophysical features and decoupling scores. F) 320 
Multiple linear regression analysis of decoupling scores based on percentage of protein amino acid composition 321 
as predictors. The x-axis indicates the estimate of the regression coefficient for each feature, while the size of the 322 
dots and asterisks represent the -log10 P-values of the F-test. G) Transcript and protein level fold changes for RNA 323 
binding and DNA repair proteins for the comparison of 39 wph vs. 5 wph. H and I) Selected examples of proteins 324 
showing negative (H) and positive (I) decoupling in the aging killifish brain, N=3-4. *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 325 
0.001, ****P ≤ 0.0001. Related to Figure S5 and Table S4. 326 

 327 

 328 

 329 

 330 
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Decoupling correlates with changes in detergent-insolubility and 331 
affects ribosomes and respiratory chain complexes 332 

To explore the interconnections among the various dimensions of proteome changes in the 333 
aging brain, we conducted a gene set enrichment analysis for each layer of the proteome 334 
alterations. We then used principal component analysis (PCA) to summarize the normalized 335 
enrichment scores (NES) and K-means clustering to identify Gene Ontology (GO) terms that 336 
showed correlated changes (Figure 3A, Figure S6A, see methods). By calculating Pearson’s 337 
correlation coefficient between enrichment scores across datasets, we could define 338 
relationships between different layers of aging-linked changes. We found a positive correlation 339 
between protein-transcript decoupling and increased detergent insolubility, a hallmark of 340 
protein aggregation (Pearson’s R = 0.28, P < 2.20E-16), as well as protein phosphorylation 341 
(Pearson’s R = 0.26, P = 6.67E-08), while other alterations, for instance, changes in protein 342 
ubiquitylation, showed a smaller correlation value (Pearson’s R = 0.11, P = 1.23E-02, Figure 343 
3B).  344 

To unbiasedly identify the most prominently affected cellular components in our analysis, we 345 
ranked GO terms by calculating the values of their projections on the first two principal 346 
component axes. We found that the highest-ranking terms were related to components of the 347 
mitochondrial respiratory chain and ribosomes (Figure 3C). These two sets of protein 348 
complexes were often affected by aging in opposite ways  (Figure 3C). Components of the 349 
respiratory chain showed a progressive decrease in their transcripts together with a stable or 350 
modest increase of the corresponding protein levels (Figure 3D-E, Figure S6B). Respiratory 351 
chain proteins also showed an overall increase in detergent insolubility with aging (Figure 3F-352 
G). Importantly, these alterations primarily affected respiratory chain components but not 353 
mitochondrial proteins in general (Figure S6C). To corroborate these findings, we interrogated 354 
our subcellular fractionation data (Figure S1). This analysis allowed us to identify two key 355 
aspects: (i) changes in the protein composition of aged mitochondria, notably a significant 356 
decrease in the relative abundance of mitochondrial ribosomes and an increase in the relative 357 
abundance of oxidative phosphorylation (Figure 3H and Figure S6D), and (ii) altered 358 
subcellular distribution of specific mitochondrial proteins (Figure S6E-F). These analyses 359 
provide support for a global remodeling of the mitochondria during aging. 360 

Both cytosolic and mitochondrial ribosomal protein levels progressively decreased during 361 
aging (reaching, on average, a ~25% reduction in old brains), while their corresponding 362 
transcripts increased (Figure 3I-J, Figure S6G-H). The reduced level of ribosomal proteins 363 
was accompanied by a decreased detergent insolubility (Figure 3K-L, S6H-I). This alteration 364 
might be related to the loss of ribosome stoichiometry and partial mis-/disassembly that we 365 
previously described in the old killifish brain (Kelmer Sacramento et al. 2020). Interestingly, 366 
we noticed similar patterns for other large complexes rich in basic amino acids, like RNA 367 
polymerase II (Figure S6J-K), that might indicate common mechanisms altering the 368 
homeostasis of these key complexes. These results show a significant association between 369 
protein-transcript decoupling and other protein alterations in the aging brain that affect 370 
ribosomes and mitochondrial respiratory chain complexes preferentially and in opposite 371 
directions.  372 

  373 
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 374 

 375 

Figure 3: Ribosomes and respiratory chain complexes are major nodes affected in the aging brain.  376 
A) Principal component analysis (PCA) showing the relationship between different age-related proteome 377 
alterations. PCA was performed on normalized enrichment scores (NES) calculated by gene set enrichment 378 
analysis for each dataset. Every dot represents a GO term (cellular component). Arrows show the contribution of 379 
each dataset to the first two principal components. Colors indicate different clusters of GO terms obtained by k-380 
means clustering. B) Heatmap showing pairwise correlations of NES values across the different datasets. DR = 381 
Detergent insolubility, ∆PT = protein-transcript decoupling induced by aging, AC=Acetylation, PH=Phosphorylation, 382 
UB=Ubiquitylation. C) Top-ranking GO terms displaying the strongest contribution to the PCA analysis. GO terms 383 
were ranked by summing scores along the first two principal components. The barplot colors indicate the cluster 384 
membership of the GO terms, as shown in (A). The heatmap shows the NES values for each of the respective 385 
terms across the different datasets. Gray tiles indicate GO terms that were not covered in the given dataset. D) 386 
Line plots showing transcript (blue) and protein (red) median abundance for respiratory chain proteins across age 387 
groups. Each point summarizes the median log2 protein or transcript quantity for the indicated complex relative to 388 
the 5 wph age group (set to 0). The line bars indicate 50% of the distribution across N=3-4 pools per age group. 389 
P-values indicate the results of a MANOVA test run on the two multivariate distributions. E) Selected examples of 390 
respiratory chain proteins displaying positive protein-transcript decoupling, N=4 pools. F) Violin plot displaying 391 
detergent insolubility score for proteins of the mitochondrial respirasome (GO:0070469). Each dot represents the 392 
median insolubility score of each protein across N=4  pools per age group; asterisks indicate the results of a two-393 
sample Wilcoxon test G) Examples of detergent insolubility profiles for respiratory chain proteins displaying 394 
increased detergent insolubility with aging. The x-axis indicates the different detergent insolubility fractions: 395 
S=soluble, F1:F3=fractions after solubilization with buffers of increasing detergent strength (see methods, Figure 396 
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S2A). The y-axis indicates log2 protein quantities relative to the soluble (S) fraction. The shaded area indicates 397 
50% of the distribution across N=4 pools per age group. H) On the left, the volcano plot displays changes in 398 
mitochondrial proteome composition in response to aging. The x-axis indicates the log2 mitochondrial proteome 399 
fold changes, and the y-axis indicates the -log10 P-value of the moderated Bayes T-test. On the right, a box plot 400 
showing the effect of aging on different groups of mitochondrial pathways (annotation from MitoCarta 3.0). Each 401 
group was tested against the rest of the mitochondrial proteins using a two-sample Wilcoxon test, corrected for 402 
multiple testing using FDR correction. Only groups with Adjusted P-value<0.1 are shown. I) Line plots showing 403 
transcript (blue) and protein (red) median abundance for ribosomal proteins across age groups. Each point 404 
summarizes the median log2 protein or transcript quantity for the indicated complex relative to the 5 wph age group 405 
(set to 0). The line bars indicate 50% of the distribution across N=3-4 pools per age group.  J) Selected examples 406 
of ribosomal proteins showing negative protein-transcript decoupling, N=3-4. K) Violin plot displaying detergent 407 
insolubility score for cytoplasmic ribosomal subunits. Each dot represents the median insolubility score of each 408 
protein across N=4  pools per age group. L) Examples of detergent insolubility profiles for ribosomal proteins 409 
displaying decreased detergent insolubility with aging. The x-axis indicates the different detergent insolubility 410 
fractions: S=soluble, F1:F3=fractions after solubilization with buffers of increasing detergent strength (see methods, 411 
Figure S2A). The y-axis indicates log2 protein quantities relative to the soluble (S) fraction. The shaded area 412 
indicates 50% of the distribution across N=4 pools per age group. *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 413 
0.0001. Related to Figure S6. 414 

 415 

Proteasome impairment recapitulates organelle-specific aging 416 
hallmarks, but not protein-transcript decoupling 417 

Protein degradation by the ubiquitin-proteasome system has a major role in regulating protein 418 
levels and contributes to the maintenance of key organelles and protein complexes,  including 419 
ribosomes and mitochondria. Previous studies (Kelmer Sacramento et al. 2020; Hipp, Kasturi, 420 
and Hartl 2019; Gray, Tsirigotis, and Woulfe 2003) have shown a connection between brain 421 
aging and a decline in proteasome activity. Consequently, we investigated the effects of a mild 422 
but extended experimentally-induced reduction of proteasome activity on brain aging 423 
phenotypes.  To this end, we simulated the impairment observed during aging by imposing a 424 
chronic reduction of proteasome activity in adult killifish. We optimized in vivo dosage of 425 
bortezomib, a dipeptide that binds with high affinity and blocks the catalytic site of the 426 
proteasome, to maintain a ~50% inhibition in the brain of adult killifish over 4 weeks without 427 
inducing overt toxicity and affecting animal well-being (Figure 4A, Table S5). GO enrichment 428 
analysis of brain proteome and transcriptome changes showed induction of adaptive 429 
responses to bortezomib characterized by over-representation of terms related to the 430 
proteasome (Figure 4A) and specific alterations of the proteostasis network (Figure S7A). 431 
These include increased protein levels of proteasome activators (PSME1/PA28ɑ, 432 
PSME3/PA28γ, and PSME4/PA200) and increased mRNA levels of key autophagy genes 433 
such as ATG5 and ATG7 (Figure 4B). Some of these adaptive responses, e.g., increased 434 
levels of the small heat shock protein HSPB1 (also known as HSP27) and HSPA6, a member 435 
of the HSP70 family, were also detected in the brain of old killifish (Figure 4B). 436 
Immunofluorescence analysis of lysosomes revealed a marked increase in their area, volume, 437 
and sphericity both upon proteasome impairment (Figure 4C) that replicates morphological 438 
changes observed during aging (Figure S7B). Lysosomal swelling is also a typical 439 
characteristic of lysosomal storage disorders (de Araujo et al. 2020) and increased lysosomal 440 
size has also been linked to TDP-43 related Fronto-Temporal Dementia (FTD-TDP43) (Stagi 441 
et al. 2014). We also noted that proteasome impairment induced a global decrease in the level 442 
of mitochondrial proteins, which was entirely due to post-transcriptional mechanisms (Figure 443 
4D). Consistently, we did not detect changes in master regulators of mitochondrial genes 444 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549210doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549210
http://creativecommons.org/licenses/by-nc/4.0/


13 

(Figure S7C). We validated the decreased mitochondrial content by quantifying the ratio of 445 
mitochondrial DNA (mtDNA) to nuclear DNA and showed that similar to aging, proteasome 446 
impairment also induced a significant reduction of mtDNA (Figure 4D-S7D).  447 

Next, we asked whether proteasome impairment could also recapitulate the age-related 448 
protein-transcript decoupling that we characterized. As expected, proteasome impairment led 449 
to increased abundance of shorter-lived proteins, consistent with the role of the ubiquitin-450 
proteasome system in regulating their turnover (Figure S7E). Combined analysis of RNAseq 451 
and proteome data showed that proteasome impairment indeed induced protein-transcript 452 
decoupling (Figure S7F, Table S5). However, when we applied the same multiple linear 453 
regression models used for aging, we found that the biophysical properties associated with 454 
decoupling by bortezomib are distinct from those associated with decoupling during aging 455 
(Figure S7F). Consistently, the decoupling values caused by proteasome impairment or aging 456 
were negatively correlated (Spearman Rho = -0.25, P < 2.20E-16, Figure 4E), also for the 457 
specific cases of ribosomes (Figure 4F) and respiratory chain complexes (Figure 4G). 458 
Together, our findings reveal that partial and chronic inhibition of the proteasome elicits 459 
specific adaptive responses in adult killifish, some of which are also observed in aged brains. 460 
However, proteasome impairment alone is not able to fully recapitulate age-linked proteome 461 
changes, most prominently the age-related protein-transcript decoupling. 462 

 463 

 464 

 465 
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 466 
 467 

Figure 4: Effects of four weeks in vivo proteasome impairment on the killifish brain.  A) Adult killifish (12 468 
wph, N=10) were treated for 1 month, every week, with an intraperitoneal injection of the proteasome inhibitor 469 
bortezomib or vehicle control (DMSO). The bottom panel shows a Gene Set Enrichment Analysis (GSEA) of the 470 
proteasome impairment sample (BORT/DMSO). Color code indicates the normalized enrichment score (NES) while 471 
dot size indicates the -log10 of the adjusted P-value of the Kolmogorov-Smirnov tests (Holm’s correction). The top-472 
right panel shows quantification of chymotrypsin-like (CT-L) proteasome activity in brain lysates following repeated 473 
injections of bortezomib or DMSO control. Asterisks indicate the results of a two-sample Wilcoxon test,  N=10. B)  474 
(Left panel) Barplot showing normalized protein quantity (relative to DMSO control, set to 1) of selected proteins 475 
(red) and transcript (blue) involved in the proteostasis network and their correspective in aging (Right panel). 476 
Asterisks indicate the Q-value of the differential abundance testing performed with a two-sample T-test on the 477 
peptide abundances N=10. C) (Left panel) Immunofluorescence stainings for lysosome (LAMP1) in brain cryo-478 
sections of control and treated Nothobranchius furzeri. Scale bars = 5μm. (Right panel) Barplot representation of 479 
lysosome morphology features in control (grey) and Bortezomib treated (orange) samples. The y-axis represents 480 
the mean value of the different morphology features in each replicates (N=6). D) (Left panel) Effect of proteasome 481 
impairment on mitochondrial transcripts and proteins. Asterisks indicate the results of a two-sample Wilcoxon test. 482 
(Right panel) Quantification of mitochondrial DNA (mt-DNA) from killifish brains. Relative mtDNA copy number was 483 
calculated using real-time quantitative PCR with primers for 16S rRNA mitochondrial gene and Cdkn2a/b nuclear 484 
gene for normalization (N=10). Asterisks indicate the results of two-sample Wilcoxon tests. E) Comparison of 485 
decoupling scores measured in aging (old vs. young comparison, y-axis) and upon partial proteasome impairment 486 
(bortezomib vs. DMSO, x-axis), proteins related to the respiratory chain (green) and ribosomal proteins (orange) 487 
are shown. Spearman correlation was selected due to the presence of outliers in the distribution. F) Comparison 488 
of decoupling induced by aging and proteasome impairment for ribosomes. G) Comparison of decoupling induced 489 
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by aging and proteasome impairment for oxidative phosphorylation proteins. *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 0.001, 490 
****P ≤ 0.0001.  Related to Figure S7, Table S5. 491 

 492 

Translation pausing correlates with decreased levels of basic 493 
proteins in old brains 494 

Our results suggest that factors other than proteasome dysfunction contribute to the 495 
dysregulation of protein homeostasis during aging. One potential alternative mechanism is the 496 
differential translation of specific mRNAs at old age, which could contribute to the age-related 497 
discrepancy between transcript and protein levels. Therefore, we assessed changes in 498 
translation output, estimated from transcript occupancy by ribosomes, via a Ribo-Seq 499 
experiment in the killifish aging brain (Figure 5A, Table S6). Quality assessment of the reads 500 
showed the characteristic tri-nucleotide periodicity (Figure S8A) and overall reproducibility 501 
across replicates (Figure S8B). We compared age-related changes in ribosome occupancy 502 
and mRNA levels and observed the expected positive correlation (R=0.25, P < 2.20E-16, 503 
Figure S8C). We then estimated changes in translation efficiency (TE) from RNA-Seq and 504 
Ribo-Seq (see methods) and compared them to proteome data. In line with previous findings 505 
in the rat brain (Ori et al. 2015), we observed a stronger positive correlation between the 506 
changes of TE and protein abundance  (R=0.32, P < 2.20E-16, Figure 5B) than between 507 
changes of transcript and protein abundance (R=0.23, P < 2.20E-16). Changes in TE led to 508 
consistent alterations in protein levels for specific proteins, such as members of the Complex 509 
IV of the respiratory chain, where increased TE was associated with higher steady-state 510 
protein levels (Figure 5C and S8D). Intriguingly,  this was not the case for other protein 511 
complexes, including ribosomes, RNA polymerase II and other nucleic-acid binding proteins 512 
involved in DNA repair, where increased TE was associated with a paradoxical reduction of 513 
steady-state protein levels (Figure 5C, 5D, and S8D). These two modalities of protein 514 
regulation act independently of transcript regulation. In summary, we found that for some 515 
proteins, changes in TE with aging can amplify transcriptional changes, e.g., for proteasomes 516 
(Figure 5D), or compensate for transcript regulation, e.g., for respiratory chain complexes 517 
(Figure 5D and S8D). However, for some proteins, TE alone cannot explain the divergence 518 
between proteome and transcriptome, as in the case of ribosomal proteins (Figure 5D). 519 

Recent studies showed that aging is associated with translation dysfunction in yeast and 520 
nematodes, whereby enhanced elongation pausing leads to ribosome collisions, abortive 521 
translation of stalled mRNAs and aggregation of their encoded nascent polypeptides(Stein et 522 
al. 2022). To assess if a similar effect of aging on translation could explain the apparent 523 
incongruence between mRNA and protein levels observed in aged killifish brains, we queried 524 
our Ribo-Seq data for signatures of translation pausing (i.e., analysis of pairs of highly 525 
occupied codons, see Experimental Procedures). Indeed, this analysis revealed an overall 526 
increase in site-specific pausing in the aging brain (Figure 5E, Table S6). Additionally, disome 527 
analysis provided evidence for increased ribosome collisions in the old brain (Figure 5F). 528 
Ribosome collision and stalling have been associated with changes in the ubiquitylation of 529 
ribosomal proteins (Meyer et al. 2020; Higgins et al. 2015; Yan et al. 2019). To assess the 530 
detection of these changes in the killifish system, we induced ribosome stalling in killifish cells 531 
using anisomycin and validated the appearance of a higher molecular weight band in 532 
immunoblot against the 40S subunit RPS3 (Figure S8E). A similar higher molecular weight 533 
band was detectable in aging killifish brains, and its ratio to total RPS3 increased with age 534 
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(Figure S8F). This enhanced ubiquitination was in contrast with multiple other sites of 535 
ribosomal protein ubiquitylation detected by mass spectrometry as these were, for most 536 
ribosomal proteins, reduced with aging (Figure S8G). Together, these data support an 537 
increase of ribosome collision in the aging killifish brain. Of note, similar to what is observed 538 
in yeast and nematodes, aging also causes a progressive decrease of a subset of proteins 539 
involved in ribosome quality control (RQC) in aged killifish brains (Figure S8H).  Such 540 
impairment of RQC may exacerbate ribosome collision and stall with age and may also disrupt 541 
the degradation of stalled mRNAs, leading to their accumulation in the aged cells. 542 

Analysis of the correlation between our measured proteomic features and translation 543 
alterations with age identified a positive correlation between translation pausing and increased 544 
detergent insolubility, which is considered a hallmark of aggregation (Figure 5G). These 545 
alterations affected key proteostasis network components such as the proteasome (Figure 546 
S8I). Remarkably, stretches enriched in basic residues (arginine and lysine), as well as 547 
glycine, were enriched at both pausing (Figure 5H) and disome sites (Figure S8J). These 548 
features are consistent with previous observations from yeast and nematodes (Stein et al. 549 
2022) and suggest a link between pausing, protein aggregation and proteostasis collapse in 550 
the aging vertebrate brain. Interestingly, the same residues (arginine and lysine) were 551 
associated with decreased protein levels in our decoupling model (Figure 2F). Consistently, 552 
we detected a significant correlation between translation pausing and protein-transcript 553 
decoupling (Figure 5I, R=-0.17, P < 2.20E-16). This indicates that translation pausing can 554 
explain a substantial fraction of the cases where reduced protein abundance is uncoupled 555 
from transcript regulation. More specifically, we observed increased pausing on transcripts 556 
coding for ribosomal and RNA-binding proteins, which exhibit a depletion at the protein level 557 
not reflected in their transcripts. At the same time, components of the respiratory chain did not 558 
show any remarkable deviation from the overall pausing distribution (Figure 5I), although 559 
different complexes showed distinct pausing profiles (Figure S8K). Alterations in translation 560 
efficiency and pausing have been linked to changes in mRNA half-life (Sharma et al. 2021; 561 
Chan et al. 2018; Schwartz and Parker 2000). Therefore, we estimated age-related alterations 562 
in mRNA half-life by calculating changes between exonic and intronic reads (Gaidatzis et al. 563 
2016). Interestingly, we observed that in old brains transcripts encoding for ribosomal proteins 564 
and RNA-binding proteins showed increased half-life compared to the rest of the transcriptome 565 
(Figure 5J), suggesting that the increase in transcript levels might not be the result of increased 566 
transcription of these genes. Together these results show that increased ribosome occupancy 567 
does not necessarily result in enhanced protein synthesis in the aging brain, possibly due to 568 
increased pausing at some mRNAs. Furthermore, translation pausing is associated with 569 
signatures of ribosome collisions, which correlate with changes in protein solubility. We thus 570 
propose that translation dysfunction may represent the underlying cause for the decreased 571 
levels of ribosomal proteins and other nucleic-acid binding proteins in the aging brain. Taken 572 
together, our data suggest a link between translation pausing, protein aggregation and 573 
proteome alterations affecting proteostasis in the aging vertebrate brain. 574 

 575 
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 576 

 577 

Figure 5:  Increased translation pausing in the aging killifish brain. A) Workflow of the experiment. Ribosome 578 
profiling was performed on Young (5 wph), Adult (12 wph), and Old (39 wph) Nothobranchius furzeri brains. Each 579 
(N=2) replicate consisted of a pool of 10-15 animals depending on the age group. B) 2-D density plot showing the 580 
relationship between age-related changes in protein abundance (x-axis) and changes in translation efficiency (y-581 
axis). In each quadrant are summarized the number of protein and transcript pairs. C) GOEnrichmet analysis (ORA) 582 
on each quadrant shown in B. The x-axis indicates the -log10(adjusted P-value) of the Fisher test with Holm 583 
correction. D) Boxplot displaying differential modes of regulation, for example, protein complexes. On the x-axis 584 
are displayed the different datasets: Transcriptome (green), Translation efficiency (purple), and Proteome (red) for 585 
26S Proteasome, oxidative phosphorylation, and cytoplasmic ribosomes. E) Lineplot showing the normalized 586 
ribosome distribution at different pausing sites for different age groups. The x-axis represents the distance (in 587 
codons) from the pausing site, while on the y-axis the normalized ribosome occupancy is shown. F) Lineplot 588 
showing the normalized disome ribosome distribution at different disome pausing sites for different age groups. 589 
The x-axis represents the distance (in codons) from the disome pausing site, while on the y-axis the normalized 590 
ribosome occupancy is shown. G) Boxplot showing the relationship between solubility and ribosome pausing. On 591 
the x-axis, the solubility values are grouped according to quantiles. Each quantile holds for 25% of the protein 592 
distribution. On the y-axis, the log2 fold changes in pausing for each significant (Adjusted P-value < 0.05) pausing 593 
site. Numbers in black indicate the number of observations in each of the distributions. H) Weblogo for residues 594 
that display a strong increase in pausing (Pause score > 10) in 39 wph/5 wph. The y-axis displays the relative 595 
frequencies of the different residues, while the x-axis displays the different ribosome positions (E, P, A). I) 2-D 596 
density plot showing the relation between significant changes in pausing (Adjusted P-value < 0.05) displayed on 597 
the y-axis and the decoupling metrics (x-axis). Each point in the distribution represents a significantly altered 598 
pausing site. Contour lines indicate the distribution of cytoplasmic ribosomes (red), RNA-binding proteins (black), 599 
and oxidative phosphorylation (white). J) Boxplot showing mRNA half-life estimate changes (see methods) between 600 
39 wph and 5 wph. The x-axis represents different selected categories. Asterisk indicates the results of a two-601 
sample Wilcoxon test with Holm correction. *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Related to Figure 602 
S8, Table S6. 603 
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Proposing a possible model for a reshaping of translation in the 604 
aging brain 605 

The results presented so far point to alterations in protein synthesis in old brains leading to a 606 
reduction of ribosomal proteins, among others. We hypothesized that the ensuing lower levels 607 
of ribosomes, particularly in light of increased load on the RQC  machineries, may in turn lead 608 
to a vicious cycle of dysfunction. Altered ribosome concentration has been known to directly 609 
impact the translation of specific mRNAs, as observed in a group of inherited diseases 610 
collectively referred to as 'ribosomopathies' (Mills and Green 2017; Khajuria et al. 2018). We 611 
thus attempted to extend a model proposed by (Mills and Green 2017; Khajuria et al. 2018) to 612 
the aging scenario. The original model predicts that the protein output of specific mRNAs can 613 
be influenced by ribosome availability depending on transcript-specific translation initiation 614 
rate 𝑘! 	(where 𝑘! refers to the affinity of specific mRNAs sequences to bind ribosomes) (Mills 615 
and Green 2017; Khajuria et al. 2018). Under these assumptions, a decrease in ribosome 616 
concentration can, for example, increase protein synthesis from transcripts that have a high 617 
translation initiation rate by lowering the total ribosome load on them and therefore relieving 618 
trafficking and pausing events (Figure 6A). To test this hypothesis in the context of aging brain, 619 
we estimated 𝑘! from killifish 5'-UTR sequences based on experimental data (Noderer et al. 620 
2014), and modeled the estimated synthesis rate as described in (Mills and Green 2017; 621 
Khajuria et al. 2018) (see methods, Figure 6A, Table S7). In agreement with the model, a 622 
subset of killifish transcripts displayed an increase in predicted synthesis rate as a function of 623 
decreased ribosome concentration (orange cluster in Figure 6A and Table S7). To test these 624 
predictions on our experimental data, we selected a specific set of proteins showing decreased 625 
translation pausing and increased protein abundance in our decoupling model (60 proteins, 626 
bottom right quadrant in Figure 5I). We then estimated their predicted synthesis rates as a 627 
function of ribosome concentration. Consistent with the experimental data, the relative 628 
synthesis of this subset of proteins was predicted to increase following a reduction of ribosome 629 
concentration (Figure 6B). Approximately one-third of these proteins were mitochondrial 630 
(including 7 components of the respiratory chain), and another prominent fraction belonged to 631 
proteins related to neuron projections (Figure 6B). Intriguingly, the absence of ribosomal 632 
proteins in this subset, despite their high 𝑘! value, indicates distinct translation dynamics for 633 
these proteins resulting from their increased elongation pausing during aging. These results 634 
provide evidence that reduced ribosome concentration in aged brains, likely triggered by 635 
aberrant pausing events, might remodel a subset of the proteome independently of transcript 636 
levels and regulation (Figure 6C). 637 

 638 
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 639 

Figure 6: Reduced ribosome levels can lead to translation reprogramming in the aging brain.  A) Heatmap 640 
showing the estimated protein output, modeled as described in  Mills and Green 2017. Each column in the heatmap 641 
indicates the estimated protein output for a specific ribosome concentration. Transcripts are clustered with a 642 
hierarchical clustering using the “ward D2” algorithm on the dissimilarity (1 - Person’s correlation) measure. For 643 
display purposes, the heatmap represents 5000 rows randomly sampled from all datasets. In the right panel, an 644 
illustrative example of a cluster displaying increased estimated protein output as a function of reduced ribosome 645 
levels. For these transcripts, the general ribosome decrease is predicted to relieve trafficking and pausing, leading 646 
to overall improved protein production. B) Lineplot showing the estimated protein output for transcript displaying 647 
decreased ribosome pausing in the Ribo-Seq data (median per transcript log2 Pausing 39 wph / 5 wph < 0 and 648 
Adjusted P-value <=0.15) and increased protein levels relative to the transcript in the decoupling model (orange). 649 
The x-axis represents the simulated decreased ribosomal concentration, while the y-axis indicates the estimated 650 
protein output, as shown also in A. C) Schematic representation of the translation reprogramming model and its 651 
connection with the relevant hallmarks of aging. Aging is associated with increased ribosome collision and pausing 652 
on ribosomal proteins, leading to a ~25% reduction of ribosome levels. This generalized decrease of available 653 
ribosomes could drive the translation of other high-affinity mRNAs leading to increased protein levels in the aging 654 
brain. Related to Table S7. 655 

 656 
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Discussion 658 

Our work provides an integrated view of the changes in the diverse mechanisms comprising 659 
proteostasis and illuminates how they contribute to the remodeling of the vertebrate brain 660 
proteome during aging. We demonstrate that aging brains exhibit profound alterations in their 661 
proteome, manifested as changes in protein synthesis, solubility, post-translational 662 
modification and, organelle composition compared to younger ones. We also observe 663 
significant changes in the composition of their proteome, such as an overall reduction in 664 
ribosome levels, that do not correspond to changes in mRNA abundance. Our analysis further 665 
suggests that such proteome changes are driven in significant measure by alterations in 666 
translation, including increased elongation pausing at specific polybasic stretches. A corollary 667 
of these changes is that aging protein synthesis may no longer respond faithfully to changes 668 
in transcriptional programs. Accordingly, we observe that increased ribosome occupancy does 669 
not necessarily translate to higher protein synthesis in aged brains. Furthermore, we identify 670 
limitations in adaptive responses, such as the ones to proteasome impairment, which are only 671 
partially mounted in old brains. By unraveling these age-dependent events and understanding 672 
their underlying logic, we begin to establish connections between proteostasis alterations and 673 
other hallmarks of aging. These include mitochondrial and lysosomal dysfunction as well as 674 
aberrant RNA synthesis, splicing and, genome stability, given that translation of proteins 675 
involved in these processes is affected by age (Figure 6C). 676 

Based on our observations, we propose that there are at least three different modalities in 677 
which protein production can be affected in the aging brain: (i) transcriptional modulation, i.e., 678 
changes in protein production that are influenced by the level of mRNA. For example, in the 679 
case of proteasomes, where decrease in protein abundance with age is associated with lower 680 
levels of mRNAs (Figure 5D). (ii) Translational modulation, i.e., changes in protein production 681 
that occur at the level of translation efficiency. This is exemplified by some components of the 682 
respiratory chain, particularly Complex IV, that show increased protein levels in old brains. In 683 
this case, reduced levels of mRNA are compensated by higher ribosome occupancy and more 684 
efficient protein synthesis (Figure S8D). (iii) Translational pausing, i.e., a specific type of 685 
modulation where prevalently proteins rich in basic amino acids, such as ribosomal and other 686 
nucleic acid binding proteins, experience increased translation stalling. This correlates with 687 
higher levels of mRNA but subsequently leads to unproductive protein synthesis. 688 

The aging-linked changes in protein biosynthesis that we describe have two direct 689 
implications. First, the availability of a subset of protein complexes, notably those containing 690 
regions enriched in basic amino acids, is reduced in the aging brain. These complexes include 691 
those involved in all the major steps of protein biosynthesis, including ribosomes themselves 692 
but also other RNA-binding proteins involved in splicing, as well as RNA and DNA 693 
polymerases and DNA repair proteins. Interestingly, previous studies have proposed a 694 
translation control mechanism for this class of proteins influenced by the presence of lysine 695 
and basic amino acids (Arthur et al. 2015). All biological functions linked to these protein 696 
complexes have been shown to decline or become perturbed with age, and indeed their 697 
dysfunction is recognized as “hallmarks of aging”. Perhaps, the common biophysical 698 
properties of the components of these protein complexes make them vulnerable to translation 699 
dysfunction with aging. Consequently, the observed impairment of protein biosynthesis with 700 
aging may contribute to other aging hallmarks that generally depend on nucleic acid binding 701 
proteins (López-Otín et al. 2023). The interplay of these processes in all the major steps of 702 
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protein synthesis may amplify these dysfunctions in a vicious feedback loop that further 703 
impairs proteostasis. Of note, individual manipulation of any of these pathways has been 704 
shown to ameliorate aging phenotypes (Schumacher et al. 2021; Bhadra et al. 2020; 705 
Bozukova et al. 2022; Gyenis et al. 2023; Debès et al. 2023; Gonskikh and Polacek 2017). 706 

The second implication is that aging leads to a change in the protein composition of organelles, 707 
in particular mitochondria. Remodeling of protein biosynthesis leads to a reduction of 708 
mitochondrial ribosomes, similarly to other basic proteins, while components of the respiratory 709 
chain are maintained or even increased, as in the case of Complex IV. These observations 710 
based on bulk tissue measurements were corroborated by more direct analysis of the 711 
composition of mitochondria from subcellular fractions and by other age-dependent alterations 712 
of mitochondrial proteins, e.g., in detergent insolubility and sedimentation profiles. A 713 
compositional change of the brain mitochondrial proteome with age aligns with previous 714 
observations from other species (Ingram and Chakrabarti 2016), and with ultrastructural and 715 
functional alterations reported in aging and age-associated diseases (Heiby and Ori 2022). 716 
We also found that other aspects of mitochondria aging in the brain, i.e., reduced mtDNA 717 
content, were instead dependent on decreased proteasome activity, highlighting the 718 
convergence of multiple aging mechanisms in determining the levels and composition of key 719 
cellular structures such as mitochondria (Figure 6C). 720 

Our data demonstrate that increased translation pausing during aging is an evolutionarily 721 
conserved phenomenon (Stein et al. 2022). Future analyses should clarify the mechanistic 722 
and/or regulatory events leading to increased translation pausing with age and their 723 
relationship with other age-related alterations of ribosomes, including loss of stoichiometry 724 
and aggregation (Kelmer Sacramento et al. 2020). One of the mechanisms potentially 725 
contributing to increased translational pausing could reside in the decrease in ATP levels that 726 
is typically observed in old tissues (Miyoshi et al. 2006; Braeckman, Houthoofd, and 727 
Vanfleteren 2002; Gkotsi et al. 2014; Espada et al. 2020). This reduction in energy levels might 728 
alter the decoding kinetics for specific non-optimal codons, such as the ones encoding basic 729 
amino acids (Bazzini et al. 2016; da Silva et al. 2023), leading to a decreased synthesis rate 730 
for these proteins. We also identified distinctive changes in protein ubiquitylation in ribosomal 731 
proteins, some of which have been previously associated with ribosome collision induced by 732 
different types of translation or proteotoxic stress (Higgins et al. 2015; Yan et al. 2019). 733 
However, it remains unclear whether these modifications are a cause or consequence of 734 
increased pausing. For ribosomes, decoupling in aging manifests as a decrease in protein 735 
levels together with a progressive increase in transcript levels. These findings are consistent 736 
with several observations. First, an age-dependent increase of transcripts encoding for 737 
ribosomal proteins has been observed by single-cell RNAseq in multiple cell types of the 738 
murine brain (Ximerakis et al. 2019). Accordingly, increased levels of transcripts encoding for 739 
ribosomal proteins were one of the most consistent transcriptional signatures of longevity 740 
shared across multiple tissues and mammalian species (Tyshkovskiy et al. 2023). 741 
Interestingly, our results suggest that this increase might not result from increased 742 
transcription but rather from increased mRNA stability. Decreased abundance of ribosomal 743 
proteins with age has been described in multiple organs in mice (Yu et al. 2020), as well as in 744 
nematodes (Koyuncu et al. 2021), and the protein half-life of ribosomes is affected by aging 745 
in the mouse brain (Kluever et al. 2022). These data suggest that similar mechanisms might 746 
affect ribosomes in different cell types and organs during mammalian aging. Translation 747 
pausing may also represent a converging pathophysiological mechanism shared between 748 
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aging and neurodegenerative diseases, as ribosome stalling has been linked to perturbation 749 
of proteostasis in different types of neurodegenerative diseases (Z. Wu et al. 2019; Rimal et 750 
al. 2021; S. Li et al. 2020; Aviner et al. 2022). 751 

Other mechanisms that have not been investigated in this study can additionally contribute to 752 
protein-transcript decoupling. For instance, age-dependent impairment of protein degradation 753 
by the autophagy-lysosome system can lead to the accumulation of specific proteins (Aman 754 
et al. 2021), as has been shown for myelin basic protein (MBP) in microglia (Safaiyan et al. 755 
2016). Interestingly, although induction of initial stress response was congruent in aging and 756 
after proteasome impairment, a compensatory activation of autophagy was induced by 757 
proteasome impairment in adults but not during aging. This discrepancy explains, at least in 758 
part, the anti-correlation that we observed between bortezomib-induced and age-related 759 
decoupling and leaves open the interesting question of why aging brains fail to mount a 760 
compensatory response to proteasome dysfunction. In this regard, it is noteworthy that aging 761 
impairs the ability to respond to heat shock in C. elegans (Johnathan Labbadia and Morimoto 762 
2015). In addition, stalling of RNA polymerase II has been described to occur with aging, 763 
thereby skewing the output of transcription in a gene-length dependent manner (Gyenis et al. 764 
2023), consistent with a systemic loss of long transcripts observed in multiple aging tissues 765 
and species (Stoeger et al. 2022). A reduction in the abundance of specific transcripts could 766 
increase transcriptional noise, lead to an imbalance in the stoichiometry of protein complexes, 767 
but also alter the relationship between mRNA and protein levels, especially for long-lived 768 
proteins.  769 

Finally, our work might contribute to the understanding of the relationship between aging and 770 
the risk of neurodegenerative diseases. We provide an unprecedented resource (accessible 771 
at https://genome.leibniz-fli.de/shiny/orilab/notho-brain-atlas/, credentials will be available 772 
after final publication) of proteome alterations in the aging vertebrate brain and show that 773 
multiple proteins and signaling pathways associated with neurodegeneration in humans 774 
become perturbed in different ways during physiological aging in killifish. Such alterations 775 
might underlie convergent mechanisms between aging and mutations that increase the risk of 776 
neurodegeneration in old individuals. 777 

Limitations of the study: (i) Our analyses are based on measurements performed on bulk brain 778 
tissue and, therefore, can be interpreted only as an average effect across different cell types 779 
and brain regions. In addition, phenomena occurring in rare cell populations might be missed 780 
by our analysis. (ii) Our findings are based on steady-state levels and do not allow us to 781 
estimate the impact of aging on the synthesis and degradation of transcript and protein 782 
directly. In the future, pulse-chase experiments performed in vivo using labeled nucleotides 783 
and amino acids could enable a more direct investigation of mRNA and protein turnover 784 
dynamics in aging. (iii) Some of our data lack spatial resolution, which could be critical to study 785 
highly specialized cells such as neurons and discern proteome differences between, e.g., cell 786 
body and synapses. (iv) Although we demonstrate that several aging phenotypes that we 787 
describe are conserved across species, we cannot exclude that some effects might be 788 
restricted to killifish and, therefore, not transferable to other species. 789 

 790 
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 857 
 858 
Figure S1: Subcellular fractionation of the killifish aging brain by LOPIT-DC. A) Survival curves of 859 
Nothobranchius furzeri MZM-0410 strain in captivity (data from (Baumgart et al. 2016)). The survival of 860 
Nothobranchius furzeri was investigated by tracking the occurrence of deaths starting at the age of 5 weeks post-861 
hatching (wph), which corresponds to sexual maturity. This study includes data from four age groups highlighted 862 
by vertical dashed lines. The analyzed strain was derived from the wild with a median lifespan of 7-8 months. B) 863 
Scheme of the LOPIT-DC experiment. The protocol was adapted to brain tissue from Geladaki et al. 2019; see 864 
methods for details. C-D) Organelle markers protein profiles from LOPIT-DC. The x-axis indicates the different 865 
fractions. The y-axis indicates protein abundance estimates derived from label-free Data Independent Acquisition 866 
mass spectrometry. Protein quantities were normalized by dividing the protein quantity in each fraction by the sum 867 
of the protein quantity along fractions. Each profile represents the median across replicates (N=4 pools). The 868 
median profiles of each organelle are highlighted by a colored solid line. Profiles obtained from adult (12 wph, panel 869 
C) and old (39 wph, panel D) fish are shown. E) Principal component analysis for different organelles markers in 870 
the LOPIT-DC fractions. Organelle markers from 12 wph (pink) and 39 wph (green) are shown. Each dot represents 871 
the median profile across (N=4 pools) replicate for each condition. F) Computational strategy used to identify age-872 
related changes in protein sedimentation profiles. Related to Figure 1 and Table S1. 873 
 874 
 875 
 876 
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 877 

Figure S2: Protein detergent insolubility changes in the killifish aging brain. A) Scheme of the differential 878 
detergent extraction experiment. The protocol was adapted to brain tissue from Tebbenkamp and Borchelt, 2009 879 
(see methods). B) Principal component analysis based on proteomics data from fractions obtained by differential 880 
detergent extraction. C) K-means clustering of detergent insolubility profiles. On the y-axis, the log2 protein quantity 881 
relative to the soluble “S” fraction, each profile represents the median across both conditions and (N=4 pools) 882 
replicates. D) GO enrichment overrepresentation analysis (ORA) of proteins assigned to each cluster against the 883 
rest of the identified proteome. On the x-axis, the -log10 of the adjusted P-value (Holm correction) of the Fisher’s 884 
Test is reported. Colors refer to the different clusters displayed in panel C. E) Boxplot depicting detergent insolubility 885 
profiles for all the proteins quantified across age groups. The y-axis indicates the log2 transformed value of protein 886 
quantity in each fraction relative to the soluble (S) fraction. Asterisks indicate the results of a two-sample Wilcoxon 887 
test. F) Computational strategy used for calculating differences in detergent insolubility profile across age groups. 888 
A MANOVA test was performed on each protein profile to detect significant changes in the multivariate mean 889 
between 12 wph (adult) and 39 wph (old samples), N=4 pools per age group. The detergent insolubility score (DIS) 890 
was calculated by summing the log2 protein quantity (relative to the soluble S fraction). Higher DIS indicate proteins 891 
that are relatively more abundant in insoluble fractions (F1:F3) than the soluble one (S). G) Example profiles of top 892 
hits proteins displaying changes in detergent insolubility with aging. EIF3B is an example of a protein that displays 893 
decreased detergent insolubility with age, while SULT2A1 displays increased detergent insolubility with age. For 894 
the left panel, the y-axis represents the log2 protein quantity in each fraction relative to the first soluble (S) fraction. 895 
Dark lines indicate the median between replicates, while shaded areas represent 50% of the replicate distribution, 896 
N=4 pools per age group. On the right panel, boxplots show the Detergent insolubility score (calculated as the sum 897 
of the log2 protein quantity relative to the first soluble (S) fraction) for the same proteins. Related to Figure 1 and 898 
Table S1!""#$"%"&!&'("##$"%"&!&)*"###$"%"&!&&)*"####$"%"&!&&&)!"  899 
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 900 
Figure S3: Analysis of protein post-translational modifications in the killifish aging brain. A) Workflow for 901 
the enrichment of post-translational modified peptides from in killifish brain. B) Correction strategy for detecting 902 
stoichiometric changes in post-translationally modified peptides. Correction factors were computed for each 903 
protein and condition relative to the 5 wph (young) age group. Quantities of the modified peptides were divided by 904 
the corresponding protein correction factor, and age-related changes were tested using limma (Ritchie et al. 905 
2015). C-H) Relationship between age-related abundance changes of modified peptides vs. corresponding 906 
protein, before (left panels) and after (right panels) correction. The red text indicates the test results for the 907 
association between paired samples using Pearson's product-moment correlation coefficients. Related to Figure 908 
1 and Table S2. 909 
 910 
 911 
 912 
 913 
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 914 
 915 
Figure S4: Age-associated alterations of proteins linked to human neurodegenerative disorders.  916 
A-B) Examples of proteins changing their subcellular localization profile or detergent insolubility. The top panels 917 
indicate either subcellular fractionation profiles (as in Figure 1D) or detergent insolubility profiles. For subcellular 918 
fractionation, in each of the plots, the x-axis indicates the 10 fractions obtained from LOPIT-DC and the y-axis 919 
indicates the total protein distribution along the 10 fractions for adult (12 wph, pink) and old (39 wph, green) fish. 920 
Shaded areas indicate 50% of the (N=4 pools) replicate distribution. P-values indicate the results of the Hotelling 921 
T2 test. For detergent insolubility profiles, the x-axis indicates the different detergent insolubility fractions: 922 
S=soluble, F1:F3=fractions after solubilization with buffers of increasing detergent strength (see methods, Figure 923 
S2A). The y-axis indicates log2 protein quantities relative to the soluble (S) fraction. The shaded area indicates 924 
50% of the distribution across N=4 pools per age group. In the bottom panels, the PCA plot represents relocalization 925 
for each protein. The contour line represents the density distribution of the different organelles (calculated as the 926 
median between 12 wph and 39 wph), and the position of the protein at 39 wph is highlighted with a cross. The 927 
organelles represented are the ones that possess the higher absolute changes in the log2 ratios between Euclidean 928 
distances from the protein in the two age groups. Only for panel A, the boxplot on the right side indicates the 929 
detergent insolubility score in the two age groups. C) Pieplot showing conserved modified residues between 930 
Nothobranchius furzeri and humans that display changes in abundance with aging. Data refers to proteins involved 931 
in neurodegenerative diseases in humans. D) Local sequence alignments between Nothobranchius furzeri proteins 932 
(bottom sequence) and best human BLAST hit (upper sequence) for different proteins involved in 933 
neurodegenerative diseases. Modified residues are highlighted in purple (ubiquitylation) and green 934 
(phosphorylation). E) Barplots displaying significantly changing (P<0.05, moderated Bayes T-test) of modified 935 
peptides for the proteins shown in panel D. Asterisks indicate the P-value of the moderated Bayes T-test (N=3-4). 936 
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The values represent relative abundances to the young (5 wph) age group after correction for protein changes (see 937 
methods, Figure S3B). Related to Figure 1 and Table S3. 938 
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 967 
 968 
Figure S5: Proteome and transcriptome characterization of the killifish aging brain. A) Principal component 969 
analysis of proteomics data. B) Correlation heatmap between samples from the aging brain proteome data. 970 
Pairwise Pearson’s R correlation coefficient was calculated on the log2 transformed protein abundances. C) 971 
Boxplot displaying the distribution of log2 transformed and normalized protein abundances. D) Volcano plot 972 
highlighting significant protein abundance changes in the aging brain (39 wph vs. 5 wph). Dashed lines indicate 973 
the threshold used to select differentially abundant proteins (absolute log2 FC > 0.58 and -log10 Q-value < 0.05) 974 
E) Principal component analysis of transcriptomics data. F) Correlation heatmap between samples from the aging 975 
brain transcriptome data. Pairwise Pearson’s R correlation coefficient was calculated on the log2 transformed 976 
transcript per million reads (TPM). G) Boxplot displaying the distribution of log2 transformed and normalized 977 
transcript counts (TPM). H) Volcano plot highlighting significant transcript abundance changes in the aging brain 978 
(39 wph vs 5 wph). Dashed lines indicate the threshold used to select differentially expressed genes (absolute log2 979 
FC > 0.58 and -log10 Adjusted P-value < 0.05). For displaying purposes, the X-axis range was limited to a -10:10 980 
range leading to the exclusion of 1 gene. I) 2-D density plot showing the correlation between protein-transcript 981 
decoupling during aging in this study, displayed on the y-axis, and protein-transcript decoupling described in 982 
Sacramento et al., (2020) (x-axis). Related to Figure 2 and Table S4. 983 
 984 
 985 
 986 
 987 
 988 
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 989 
 990 
Figure S6: Alterations of ribosomal and respiratory chain proteins. A) Scheme of data integration strategy. 991 
For each dataset, a gene set enrichment analysis (GSEA) was performed using GO terms for cellular components. 992 
The normalized enrichment scores (NES) from each dataset were combined in a matrix and used as input for 993 
principal component analysis. B) Barplot showing transcript and protein abundances for oxidative phosphorylation 994 
protein. All the values were normalized to the 5 wph (young) age group (set to 1), N=3-4. C) Boxplot depicting the 995 
distribution of protein-transcript decoupling values (as defined in Figure 2A) for oxidative phosphorylation (light 996 
gray) proteins against the rest of the mitochondrial proteome (dark gray). Asterisks indicate the results of a two-997 
sample Wilcoxon test. D-F) Examples of mitochondrial proteins that display changes in subcellular fractionation 998 
with aging. The x-axis indicates the 10 fractions obtained from LOPIT-DC, and the y-axis indicates the total protein 999 
distribution along the 10 fractions for adult (12 wph, pink) and old (39 wph, green) animals. Shaded areas indicate 1000 
50% of the replicate distribution from N=4 pools per group. P-values indicate the results of the Hotelling T2 test. G) 1001 
Barplot showing transcript and protein abundances for cytoplasmic ribosomal protein. All the values were 1002 
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normalized to the 5 wph (young) age group (set to 1), N=3-4. H) Line plot showing the trajectories for transcriptome 1003 
(blue) and proteome (red) of mitochondrial large and small ribosomal subunits. Each point summarizes the median 1004 
distribution of the log2 ratio of the quantities relative to the first (5 wph) age group, while the line bars indicate 50% 1005 
of the distributions. P-values indicate the results of a MANOVA test run on the two multivariate distributions, N=3-1006 
4. I) Violin plot displaying detergent insolubility score for proteins of the mitochondrial ribosome (GO:0005761). 1007 
Each dot represents the median insolubility score of each protein across N=4  pools per age group; asterisks 1008 
indicate the results of a two-sample Wilcoxon test. J) Line plot showing the trajectories for transcriptome (blue) and 1009 
proteome (red) for RNA Polymerase II enzyme. Each point summarizes the median distribution of the log2 ratio of 1010 
the quantities relative to the first (5 wph) age group, while the line bars indicate 50% of the distributions. P-values 1011 
indicate the results of a MANOVA test run on the two multivariate distributions, N=3-4. K) Violin plot displaying 1012 
detergent insolubility score for proteins of the RNA Polymerase II enzyme (GO:0016591). Each dot represents the 1013 
median insolubility score of each protein across N=4  pools per age group; asterisks indicate the results of a two-1014 
sample Wilcoxon test. *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Related to Figure 3.  1015 
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 1016 

  1017 
 1018 
Figure S7: Effect of proteasome impairment on the killifish brain. A) Protein abundance changes induced by 1019 
proteasome impairment for different components of the proteostasis network. B) (Right panel) Immunofluorescence 1020 
stainings for lysosome (LAMP1) in brain cryo-sections of young (light blue) and old (green) Nothobranchius furzeri. 1021 
Scale bars = 5μm. (Left panel) Barplot representation of lysosome morphology features in young (light blue) and 1022 
old (green) samples. The y-axis represents the mean value of the different morphology features in each of the 1023 
replicates (N=6).C) Effect of proteasome impairment on mitochondrial transcripts and proteins. For protein data, 1024 
asterisks indicate the Q-value of the differential abundance testing performed with a two-sample T-test on the 1025 
peptide abundances. For transcript data, asterisks indicate the Adjusted P-value of the differential abundance 1026 
testing. N=10 . D) Quantification of mitochondrial DNA (mt-DNA) from killifish brains during aging. Relative mtDNA 1027 
copy number was calculated using real-time quantitative PCR with primers for 16S rRNA mitochondrial gene and 1028 
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Cdkn2a/b nuclear gene for normalization (N=5). Asterisks indicate the results of two-sample Wilcoxon tests. E) 1029 
Violin plot showing the distribution of up and down-regulated proteins in response to proteasome impairment 1030 
against their half-life as quantified in Fornasiero et al., 2018. Asterisks indicate the results of a two-samples 1031 
Wilcoxon test. F) (Top left panel) Scatterplot comparing protein- (x-axis) and transcript-level (y-axis) fold changes 1032 
in killifish after treatment with bortezomib. The color of each dot represents the decoupling score calculated as the 1033 
difference between log2 transformed fold changes measured at the protein and transcript levels. Grey dashed lines 1034 
indicate the equal changes between transcript and protein and, therefore, a zero decoupling score. (Bottom left 1035 
panel) Density distribution of decoupling scores for comparing bortezomib vs. DMSO. On the right part, highlighted 1036 
in red, are protein “gain” events (increase in protein abundance compared to the transcript), while on the left, in 1037 
blue, are protein “loss” events (decrease in protein abundance compared to the transcript). (Right panel) Multiple 1038 
linear regression analysis of decoupling scores in response to proteasome impairment based on biophysical 1039 
features of transcripts or proteins as predictors. The x-axis indicates the estimate of the regression coefficient for 1040 
each feature, while the size of the dots and asterisks represent the -log10  P-values of the F-test. *P ≤ 0.05; **P ≤ 1041 
0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Related to Figure 4 and Table S5. 1042 
 1043 
 1044 
 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
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 1055 
Figure S8: Ribosome profiling in the killifish aging brain. A) Tri-nucleotide plot showing characteristic triplet 1056 
periodicity. The x-axis represents the distance from the starting codon (in nucleotide) and the y-axis the number of 1057 
reads. B) Scatterplot showing the correlation between replicates for the Ribo-Seq experiment. On the different axis, 1058 
the log2(RPKM) values from the different replicates are shown. C) Scatterplot showing the correlation between 1059 
log2 fold changes for ribosome occupancy (y-axis) and changes in the transcriptome (x-axis) for different aging 1060 
steps. D) Boxplot displaying differential modes of regulation for different protein complexes. On the x-axis are 1061 
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displayed the different datasets: Transcriptome (green), Translation efficiency (purple), and Proteome (red). E) 1062 
Immunoblot to detect RPS3 ubiquitylation in killifish cells treated with Anisomycin, which inhibits translation 1063 
elongation and causes ribotoxic stress (Iordanov et al. 1997) for 24 hours. F) Immunoblot to detect RPS3 1064 
ubiquitylation across age groups. Barplot shows the ratio between the total RPS3 and its ubiquitylated fraction 1065 
during aging. Asterisks indicate the results of an ordinary one-way ANOVA test (N=4). G) Barplots displaying 1066 
significantly changing (P<0.05, moderated Bayes T-test) of ubiquitin-modified peptides for ribosomal proteins. 1067 
Asterisks indicate the P-value of the moderated Bayes T-test (N=3-4). The values represent relative abundances 1068 
to the young (5 wph) age group after correction for protein changes (see methods, Figure S3B). H) Barplot showing 1069 
normalized protein abundance (relative to the first, 5 wph, age group set to 1)  for factors associated with Ribosome-1070 
Quality-Control (RQC) pathways. The y-axis represents protein abundances relative to the first (5 wph) age groups. 1071 
Asterisks indicate the Q-value of the differential abundance testing performed with a two-sample T-test on the 1072 
peptide abundances, N=3,4 pools per group. I) 2-D density plot showing the relation between significant changes 1073 
in pausing (Adjusted P-value < 0.05) displayed on the y-axis and changes in detergent insolubility metrics (x-axis). 1074 
Each point in the distribution represents a significantly altered pausing site. Contour lines indicate the distribution 1075 
of cytoplasmic ribosomes (red), Proteasome (black), and oxidative phosphorylation (white). J) Weblogo for disome 1076 
pausing sites that display a strong increase in pausing (Pause score > 10). The y-axis displays the relative 1077 
frequencies of the different residues, while the x-axis displays the different ribosome positions (E, P, A).  K) Boxplot 1078 
showing the distributions of pausing sites for cytoplasmic ribosomes (left panel) and respiratory chain complexes 1079 
(right). Each dot represents a significantly altered (Adjusted P-value < 0.05) pausing site. The Y axis represents 1080 
the log2 fold changes in pausing between 39 wph and 5 wph.  *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. 1081 
Related to Figure 5 and Table S6. 1082 

 1083 

 1084 
 1085 
  1086 
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Materials and methods 1087 

 1088 
Animal management practices  1089 
All experiments were performed in accordance with relevant guidelines and regulations. Fish 1090 
were bred and kept in FLI’s fish facility according to §11 of the German Animal Welfare Act 1091 
under license number J-003798. The animal experiment protocols were approved by the local 1092 
authority in the State of Thuringia (Veterinaer- und Lebensmittelueberwachungsamt; 1093 
proteasome impairment: reference number 22-2684-04-FLI-19-010). Sacrifice and organ 1094 
harvesting of non-experimental animals were performed according to §4(3) of the German 1095 
Animal Welfare Act. 1096 
 1097 
In vivo proteasome impairment  1098 
Adult animals (12–14 wph) were subjected to pharmacological intervention via intraperitoneal 1099 
injections (IP) during a 4-weeks period of treatment. On each of the sixth day (t = 0, t = 6 d, t 1100 
= 12d, t = 18d, t = 24d), fish were anesthetized with 200 mg/l buffered MS-222 (PharmaQ) 1101 
and gently manipulated to deliver IP of Bortezomib at 500 μM or vehicle (1% DMSO in a 1102 
physiological salt solution) at a dosage of 10 μl/g body weight. Animals from the same hatch 1103 
were randomly allocated to the experimental groups. Both male and female fish were included 1104 
in each experimental group. Individual brains from the fish were collected on the last day of 1105 
treatment and snap-frozen in liquid nitrogen. 1106 
 1107 
Proteasome activity assay 1108 
CT-L (chymotrypsin-like) proteasome activity was assayed with the hydrolysis of a specific 1109 
fluorogenic substrate, Suc-LLVY-AMC (UBPBio, Catalog Number G1100). On the day of the 1110 
experiment, brains were lysed in buffer (50 mM HEPES, pH 7.5 (Sigma Aldrich, H3375); 5 mM 1111 
EDTA (Carl Roth, 8043.2); 150 mM NaCl (Carl Roth, 3957.1); 1 % (v/v) Triton X-100 (Carl 1112 
Roth, 3051.3); 2 mM ATP (Sigma Aldrich, A2383) prepared with Milli-Q water) to a final 1113 
estimated protein concentration of ~4 mg/mL and homogenized by sonication (Bioruptor Plus) 1114 
for 10 cycles (30 sec ON/60 sec OFF) at high setting, at 4°C. Lysates corresponding to 10 μg 1115 
protein were incubated in 50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 1 mM ATP, 1 mM DTT, 10% 1116 
glycerol, and 10 μM proteasome substrate for 1 h at 37 °C. Specific proteasome activity was 1117 
determined as the difference between the total activity of protein extracts and the remaining 1118 
activity in the presence of 20 μΜ MG132 (Enzo Life Sciences, BML-PI102-0005). 1119 
Fluorescence was measured by multiple reads for 60 min at 37°C by TECAN Kinetic Analysis 1120 
(excitation 380 nm, emission 460 nm, read interval 5 min) on a Safire II microplate reader 1121 
(TECAN). 1122 
 1123 
Sample preparation for total proteome and analysis of PTMs 1124 
Snap-frozen brains were thawed and transferred into Precellys® lysing kit tubes (Keramik-kit 1125 
1.4/2.8 mm, 2 ml (CKM)) containing 150 μl of PBS supplemented with cOmplete™, Mini, 1126 
EDTA-free Protease Inhibitor (Roche,11836170001) and with PhosSTOP™ Phosphatase 1127 
Inhibitor (Roche, 4906837001). Based on estimated protein content (5% of fresh tissue 1128 
weight), three to six brains were pooled to obtain ~1.5 mg of protein extract as starting material 1129 
for each biological replicate. Tissues were homogenized twice at 6000 rpm for 30 s using 1130 
Precellys® 24 Dual (Bertin Instruments, Montigny-le-Bretonneux, France), and the 1131 
homogenates were transferred to new 2 ml Eppendorf tubes. Proteins were quantified using 1132 
Pierce™ BCA Protein Assay Kit (Thermo Scientific, 23225), and 1.25 mg was processed for 1133 
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further analysis. Volumes were adjusted using PBS and one-fourth of the volume equivalent 1134 
of the 4× lysis (8% SDS, 100 mM HEPES, pH8) buffer was added. Samples were sonicated 1135 
twice in a Bioruptor Plus for 10 cycles with 1 min ON and 30 s OFF with high intensity at 20 °C. 1136 
The lysates were centrifuged at 18,407 xg for 1 min and transferred to new 1.5 ml Eppendorf 1137 
tubes. Subsequently, samples were reduced using 10 mM DTT (Carl Roth, 6908) for 15 min 1138 
at 45 °C and alkylated using freshly made 200 mM iodoacetamide (IAA) (Sigma-Aldrich, I1149) 1139 
for 30 min at room temperature in the dark. An aliquot of each lysate was used for estimating 1140 
the precise protein quantity using BCA (Thermo Scientific, 23225). Subsequently, proteins 1141 
were precipitated using cold acetone, as described in (Buczak et al. 2020), and resuspended 1142 
in 500 µl of digestion buffer (3 M urea, 100 mM HEPES pH 8.0). Aliquots corresponding to 20, 1143 
200, and 1000 µg protein were taken for proteome, phosphopeptides, and 1144 
ubiquitylated/acetylated peptides enrichment, respectively, and digested using LysC 1:100 1145 
enzyme:proteins ratio for 4 hours (Wako sequencing grade, 125-05061) and trypsin 1:100 1146 
enzyme:proteins ratio for 16 hours (Promega sequencing grade, V5111). The digested 1147 
proteins were then acidified with 10% (v/v) trifluoroacetic acid and desalted using Waters 1148 
Oasis® HLB µElution Plate 30 µm (2, 10, and 30 mg, depending on the amount of starting 1149 
material) following manufacturer instructions. The eluates were dried down using a vacuum 1150 
concentrator and reconstituted in MS buffer A (5% (v/v) acetonitrile, 0.1% (v/v) formic acid). 1151 
For PTM enrichment, peptides were further processed as described below. For Data 1152 
Independent Acquisition (DIA) based analysis of total proteome, samples were transferred to 1153 
MS vials, diluted to a concentration of 1 µg/µL, and spiked with iRT kit peptides (Biognosys, 1154 
Ki-3002-2) prior to analysis by LC-MS/MS.  1155 
 1156 
Sequential enrichment of ubiquitylated and acetylated peptides 1157 
Ubiquitylated and acetylated peptides were sequentially enriched starting from ~1000 µg of 1158 
dried peptides per replicate. For the enrichment of ubiquitylated peptides, the PTMScan® HS 1159 
Ubiquitin/SUMO Remnant Motif (K-ε-GG) kit (Cell Signaling Technology, 59322) was used 1160 
following manufacturer instructions. The K-ε-GG modified enriched fraction was desalted and 1161 
concentrated as described above, dissolved in MS buffer A, and spiked with iRT kit peptides 1162 
prior to LC-MS/MS analysis.  1163 
The flowthrough fractions from the K- ε -GG enrichment were acidified with 10% (v/v) 1164 
trifluoroacetic acid and desalted using Oasis® HLB µElution Plate 30 µm (30 mg) following 1165 
manufacturer instructions. Acetylated peptides were enriched as described by Di Sanzo et al. 1166 
2021. Briefly, dried peptides were dissolved in 1000 µl of IP buffer (50 mM MOPS pH 7.3, 1167 
10 mM KPO4 pH 7.5, 50 mM NaCl, 2.5 mM Octyl β-D-glucopyranoside) to reach a peptide 1168 
concentration of 1 µg/µL, followed by sonication in a Bioruptor Plus (5 cycles with 1 min ON 1169 
and 30 s OFF with high intensity at 20 °C). Agarose beads coupled to an antibody against 1170 
acetyl-lysine (ImmuneChem Pharmaceuticals Inc., ICP0388-5MG) were washed three times 1171 
with washing buffer (20 mM MOPS pH 7.4, 10 mM KPO4 pH 7.5, 50 mM NaCl) before 1172 
incubation with each peptide sample for 1.5 h on a rotating well at 750 rpm (STARLAB Tube 1173 
roller Mixer RM Multi-1). Samples were transferred into Clearspin filter microtubes (0.22 µm) 1174 
(Dominique Dutscher SAS, Brumath, 007857ACL) and centrifuged at 4 °C for 1 min at 2000 1175 
xg. Beads were washed first with IP buffer (three times), then with washing buffer (three times), 1176 
and finally with 5 mM ammonium bicarbonate (three times). Thereupon, the enriched peptides 1177 
were eluted first in basic condition using 50 mM aqueous NH3, then using 0.1% (v/v) 1178 
trifluoroacetic acid in 10% (v/v) 2-propanol and finally with 0.1% (v/v) trifluoroacetic acid. 1179 
Elutions were dried down and reconstituted in MS buffer A (5% (v/v) acetonitrile, 0.1% (v/v) 1180 
formic acid), acidified with 10% (v/v) trifluoroacetic acid, and then desalted with Oasis® HLB 1181 
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µElution Plate 30 µm. Desalted peptides were finally dissolved in MS buffer A, spiked with iRT 1182 
kit peptides and analyzed by LC-MS/MS. 1183 
 1184 
Enrichment of phosphorylated peptides 1185 
Lysates (corresponding to ~200 µg of protein extract) were acetone precipitated, digested into 1186 
peptides, and desalted, as described in ‘‘Sample preparation for total proteome and analysis 1187 
of PTMs’’. The last desalting step was performed using 50 μl of  80% ACN and 0.1% TFA 1188 
buffer solution. Before phosphopeptide enrichment, samples were filled up to 210 µl using 1189 
80% ACN and 0.1% TFA buffer solution. Phosphorylated peptides were enriched using Fe(III)-1190 
NTA cartridges (Agilent Technologies, G5496-60085) in an automated fashion using the 1191 
standard protocol from the AssayMAP Bravo Platform (Agilent Technologies). In short, Fe(III)-1192 
NTA cartridges were first primed with 100 µl of priming buffer (100% ACN, 0.1% TFA) and 1193 
equilibrated with 50 μL of buffer solution (80% ACN, 0.1% TFA). After loading the samples into 1194 
the cartridge, the cartridges were washed with an OASIS elution buffer, while the syringes 1195 
were washed with a priming buffer (100% ACN, 0.1% TFA). The phosphopeptides were eluted 1196 
with 25 μL of 1% ammonia directly into 25 μL of 10% FA. Samples were dried down with a 1197 
speed vacuum centrifuge and stored at −20 °C until LC-MS/MS analysis. 1198 
 1199 
Subcellular fraction of killifish brain by LOPIT-DC  1200 
All the following steps were performed at 4°C, keeping samples on ice unless stated otherwise. 1201 
Fresh brains from adult (12 wph) and old (39 wph) killifish were pooled to reach ~150 mg of 1202 
wet tissue weight per biological replicate. A mixture of male and female fish was used. Fresh 1203 
brain tissue was subsequently transferred to a 15 mL Potter homogenizer (Fisher Scientific, 1204 
15351321) together with 7.5 mL of lysis buffer (LB) (250 mM sucrose, 10 mM HEPES ph 8.0, 1205 
2 mM MgAc, 2 mM EDTA) supplemented with Protease Inhibitor (Roche,11836170001) and 1206 
homogenized with ~60 gentle strokes. The brain homogenate was then transferred in a 15mL 1207 
Falcon tube and treated with Benzonase (Merk, 70664) for 20 min at room temperature. An 1208 
aliquot of 2.5 mL homogenate was collected for each sample and stored at -80°C to be later 1209 
processed for differential detergent extraction (see below). The remaining 5 mL were 1210 
transferred to a 5 mL Eppendorf tube and centrifuged at 500 xg for 5 min at 4°C to remove 1211 
cell debris and unlysed cells. Subsequently, the clarified homogenate was centrifuged at 1000 1212 
xg for 13 min at 4°C and the resulting pellet was collected as the first subcellular fraction (01). 1213 
Following one additional centrifugation at 1000 xg for 7 minutes, the supernatant was then 1214 
divided into 4 x 1.5 mL Ultracentrifuge Tubes (Beckman) and processed for differential 1215 
ultracentrifugation step with an Optima TLX-BenchTop Ultracentrifuge (Beckman, 8043-30-1216 
1197), using a TLA55 rotor (Beckman, 366725), using the following ultracentrifugation 1217 
settings: 1218 
 1219 
 1220 
 1221 
 1222 
 1223 
 1224 
 1225 
 1226 
 1227 
 1228 
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xg Time Fraction Temperature 

3000 10’ 02 4°C 

5000 10’ 03 4°C 

9000 15’ 04 4°C 

12000 15’ 05 4°C 

15000 15’ 06 4°C 

30000 20’ 07 4°C 

79000 43’ 08 4°C 

120000 45’ 09 4°C 

— — 10 (final supernatant, cytosol 
enriched) 

 

 1229 
Pellets from each centrifugation step were resuspended in 50 μL of PBS, and proteins were 1230 
solubilized by adding 50 μL of 2x lysis buffer (200 mM HEPES pH 8.0, 100 mM DTT, 4% (w/v) 1231 
SDS). For fraction 10 (cytosol enriched), 300μL was taken and supplemented with 300 μL of 1232 
2x lysis buffer. All the samples were then sonicated using a Bioruptor Plus (Diagenode) for 5 1233 
cycles with 60 sec ON and 30 sec OFF with max intensity, boiled for 10 min at 95°C, and a 1234 
second sonication cycle was performed. The solubilized proteins were reduced with 200mM 1235 
DTT for 15 min at 45°C and alkylated using freshly made 200mM IAA for 30 min at room 1236 
temperature in the dark. Subsequently, proteins were precipitated using cold acetone, 1237 
dissolved in 1 M guanidine HCl in 100 mM HEPES pH8.0, and digested using LysC and 1238 
trypsin, as described in (Buczak et al. 2020). The digested proteins were then acidified with 1239 
10 % (v/v) trifluoroacetic acid and desalted using Oasis® HLB μElution Plate 30 μm following 1240 
manufacturer instructions. The eluates were dried down using a vacuum concentrator and 1241 
reconstituted in 5 % (v/v) acetonitrile, 0.1 % (v/v) formic acid. Samples were transferred 1242 
directly to MS vials, diluted to a concentration of ~1 μg/μL, and spiked with iRT kit peptides 1243 
prior to analysis by LC-MS/MS. 1244 
 1245 
Differential detergent extraction 1246 
All the following steps were performed at 4°C, keeping samples on ice unless stated otherwise. 1247 
For each replicate, 2.5 mL of brain homogenate was thawed on ice. After thawing, the 1248 
homogenate was centrifuged at 500 xg for 5 min at 4°C to remove debris. The supernatant 1249 
was collected, and 64 μL of 20% (v/v) IGEPAL Nonidet P-40 (Sigma) was added to reach an 1250 
initial concentration of 0.5% (v/v). The homogenate was then divided into 4x 1.5mL 1251 
ultracentrifuge tubes and sonicated in a Bioruptor Plus for 10 cycles with 30 min ON and 30 s 1252 
OFF with max intensity at 24 °C. The homogenates were then loaded into a TLA55 rotor and 1253 
ultracentrifuged with an Optima TLX-BenchTop Ultracentrifuge at 100,0000 xg for 5 min at 1254 
24°C. After ultracentrifugation, the supernatants were collected and stored as “soluble” (S) 1255 
fraction. The remaining pellets were resuspended in 1mL of buffer A (10 mM HEPES pH 8.0, 1256 
2 mM MgAc, 2 mM EDTA, 0.5% NP-40), samples were mixed by vortexing, and sonicated in 1257 
a Bioruptor Plus for 10 cycles with 30 s ON and 30 s OFF with max intensity at 24 °C. Samples 1258 
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were then ultracentrifuged again at 100,0000 xg for 5 min at 24°C. The supernatants (“F1”) 1259 
were collected and the remaining pellets were resuspended in 1mL of buffer B (10 mM HEPES 1260 
pH 8.0, 2 mM MgAc, 2 mM EDTA, 0.5% NP-40, 0.25% SDS, 0.5% deoxycholic acid), mixed, 1261 
sonicated, and centrifuged as above. The supernatants (“F2”) were collected and the 1262 
remaining pellets were resuspended in 1mL of buffer C (10 mM HEPES pH 8.0, 2 mM MgAc, 1263 
2 mM EDTA, 0.5% NP-40, 2% SDS, 0.5% deoxycholic acid), mixed, sonicated, and 1264 
centrifuged as above. The supernatants (“F3”) and the remaining pellets were collected. All 1265 
the collected samples were stored at -80°C until further analysis.  1266 
 1267 
 1268 
Data independent acquisition for proteome quantification 1269 
Peptides were separated in trap/elute mode using the nanoAcquity MClass Ultra-High 1270 
Performance Liquid Chromatography system (Waters, Waters Corporation, Milford, MA, USA) 1271 
equipped with trapping (nanoAcquity Symmetry C18, 5 μm, 180 μm × 20 mm) and an 1272 
analytical column (nanoAcquity BEH C18, 1.7 μm, 75 μm × 250 mm). Solvent A was water 1273 
and 0.1% formic acid, and solvent B was acetonitrile and 0.1% formic acid. 1 μl of the samples 1274 
(∼1 μg on column) were loaded with a constant flow of solvent A at 5 μl/min onto the trapping 1275 
column. Trapping time was 6 min. Peptides were eluted via the analytical column with a 1276 
constant flow of 0.3 μl/min. During the elution, the percentage of solvent B increased 1277 
nonlinearly from 0–40% in 120 min. The total run time was 145 min, including equilibration 1278 
and conditioning. The LC was coupled to an Orbitrap Exploris 480 (Thermo Fisher Scientific, 1279 
Bremen, Germany) using the Proxeon nanospray source. The peptides were introduced into 1280 
the mass spectrometer via a Pico-Tip Emitter 360-μm outer diameter × 20-μm inner diameter, 1281 
10-μm tip (New Objective) heated at 300 °C, and a spray voltage of 2.2 kV was applied. The 1282 
capillary temperature was set at 300°C. The radio frequency ion funnel was set to 30%. For 1283 
DIA data acquisition, full scan mass spectrometry (MS) spectra with a mass range 350–1650 1284 
m/z were acquired in profile mode in the Orbitrap with the resolution of 120,000 FWHM. The 1285 
default charge state was set to 3+. The filling time was set at a maximum of 60 ms with a 1286 
limitation of 3 × 106 ions. DIA scans were acquired with 40 mass window segments of differing 1287 
widths across the MS1 mass range. Higher collisional dissociation fragmentation (stepped 1288 
normalized collision energy; 25, 27.5, and 30%) was applied, and MS/MS spectra were 1289 
acquired with a resolution of 30,000 FWHM with a fixed first mass of 200 m/z after 1290 
accumulation of 3 × 106 ions or after filling time of 35 ms (whichever occurred first). Data were 1291 
acquired in profile mode. For data acquisition and processing of the raw data, Xcalibur 4.3 1292 
(Thermo) and Tune version 2.0 were used. 1293 
 1294 
Data processing for MS-DIA samples 1295 
Spectral libraries were created by searching the DIA or/and DDA runs using Spectronaut 1296 
Pulsar (14.9.2 and 15.3.2, Biognosys, Zurich, Switzerland). The data were searched against 1297 
species-specific protein databases (Nfu_20150522, annotation 1298 
nfurzeri_genebuild_v1.150922) with a list of common contaminants appended. The data were 1299 
searched with the following modifications: carbamidomethyl (C) as fixed modification, and 1300 
oxidation (M), acetyl (protein N-term), lysine di-glycine (K-ε-GG), phosphorylated tyrosine (T) 1301 
and serine (S) and acetyl-lysine (K-Ac) as variable modifications for the respective PTMs 1302 
enrichments. A maximum of 3 missed cleavages were allowed for K-Ac and K-ε-GG 1303 
modifications, 2 missed cleavages were allowed for phospho enrichment. The library search 1304 
was set to 1 % false discovery rate (FDR) at both protein and peptide levels. DIA data were 1305 
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then uploaded and searched against this spectral library using Spectronaut Professional 1306 
(v14.9.2 and 15.3.2) and default settings. Relative quantification was performed in 1307 
Spectronaut for each pairwise comparison using the replicate samples from each condition 1308 
using default settings, except:  1309 
 1310 
 1311 

Dataset Software 
version 

Test Data 
Filtering 

Imputation Normalization 

Aging proteome 15.3.2 Unpaired 
t-test 

Q-value Global 
Imputing 

True,  
Automatic 

LOPIT-DC 14.9.2 NA Q-value 
percentile 
0.2 

Run Wise 
Imputing 

True,  
Global 

Detergent 
insolubility 

15.4.2 NA Q-value  
percentile 
0.2 

Run Wise 
Imputing 

False 

Proteasome  
Inhibition 

14.9.2 Unpaired 
t-test 
 

Q-value 
 

Global 
Imputing 

True, 
Automatic 
 

PTMs - 
Ubiquitin 

15.4.2 – Q-value  
percentile 
0.2 

Global 
Imputing 

True, 
Automatic 

PTMs - 
Phosphorylation 

15.4.2 – Q-value  
percentile 
0.2 

Global 
Imputing 

True, 
Automatic 

PTMs - 
Acetylation 

15.4.2 – Q-value  
percentile 
0.2 

Global 
Imputation 

True, 
Automatic 

 1312 
Candidates and report tables were exported from Spectronaut and used for downstream 1313 
analysis. 1314 
 1315 
Immunoblot  1316 
Killifish brains and cells treated for 24 hours with anisomycin (Cell Signaling Technology, 1317 
2222) were lysed following as described in “Sample preparation for total proteome and 1318 
analysis of PTMs”. Protein concentration was estimated by Qubit assay (Invitrogen, Q33211), 1319 
and 30 µg of proteins were used. 4× loading buffer (1.5 M Tris pH 6.8, 20% (w/v) SDS, 85% 1320 
(v/v) glycerin, 5% (v/v) β-mercaptoethanol) was added to each sample and then incubated at 1321 
95 °C for 5 minutes. Proteins were separated on 4–20% Mini-Protean® TGX™ Gels (BioRad, 1322 
4561096) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using a 1323 
Mini-Protean® Tetra Cell system (BioRad, Neuberg, Germany, 1658005EDU). Proteins were 1324 
transferred to a nitrocellulose membrane (Carl Roth, 200H.1) using a Trans-Blot® Turbo™ 1325 
Transfer Starter System (BioRad, 1704150). Membranes were stained with Ponceau S 1326 
(Sigma, P7170-1L) for 5 min on a shaker (Heidolph Duomax 1030), washed with Milli-Q water, 1327 
imaged on a Molecular Imager ChemiDocTM XRS + Imaging system (BioRad) and destained 1328 
by 2 washes with PBS and 2 washes in TBST (Tris-buffered saline (TBS, 25 mM Tris, 75 mM 1329 
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NaCl), with 0.5% (v/v) Tween-20) for 5 min. After incubation for 5 min in EveryBlot blocking 1330 
buffer (Biorad, 12010020), membranes were incubated overnight with primary antibodies 1331 
against RPS3 (Bethyl Laboratories, A303-840A-T) or α-tubulin (Sigma, T9026) diluted 1332 
(1:1000) in enzyme dilution buffer (0.2%  (w/v) BSA, 0.1% (v/v) Tween20 in PBS) at 4 °C on 1333 
a tube roller (BioCote® Stuart® SRT6). Membranes were washed 3 times with TBST for 1334 
10 min at room temperature and incubated with horseradish peroxidase coupled secondary 1335 
antibodies (Dako, P0448/P0447) at room temperature for 1 h (1:2000 in 0.3% (w/v) BSA in 1336 
TBST). After 3 more washes for 10 min in TBST, chemiluminescent signals were detected 1337 
using ECL (enhanced chemiluminescence) Pierce detection kit (Thermo Fisher Scientific, 1338 
Waltham, MA, USA, #32109). Signals were acquired on the Molecular Imager ChemiDocTM 1339 
XRS + Imaging system and analyzed using the Image Lab 6.1 software (Biorad). Membranes 1340 
were stripped using stripping buffer (1% (w/v) SDS, 0.2 M glycine, pH 2.5), washed 3 times 1341 
with TBST, blocked, and incubated with the second primary antibody, if necessary. 1342 
 1343 
 1344 
RNA isolation for RNA-Seq analysis 1345 
Individual brains from the fish were collected and snap-frozen in liquid nitrogen. The protein 1346 
amount was estimated based on fresh tissue weight (assuming 5% of protein w/w), and ice-1347 
cold 1x PBS with protease/ phosphatase inhibitors (Roche,11836170001, 4906837001) was 1348 
added accordingly to a final concentration of 2 μg/μL. Samples were then vortexed (5 times) 1349 
before sonication (Bioruptor Plus) for 10 cycles (60 sec ON/30 sec OFF) at the high setting, 1350 
at 4 °C. The samples were then centrifuged at 3000 xg for 5 min at 4 °C, and the supernatant 1351 
was transferred to 2 mL Eppendorf tubes. 1.5 mL of ice-cold Qiazol (Qiagen, 79306) reagent 1352 
was added to 150 μL of homogenate, vortexed five times, and snap-frozen in liquid nitrogen. 1353 
On the day of the experiment, samples were thawed on ice, vortexed five times, and incubated 1354 
at room temperature for 5 min before adding 300 μL of chloroform. Samples were mixed 1355 
vigorously, incubated for 3 min at room temperature, and centrifuged at 12000 xg for 20 min 1356 
at 4 °C. The upper aqueous phase (600 μL) was carefully transferred into a fresh tube, and 1357 
the remaining volume (phenol/chloroform phase) was kept on ice for DNA isolation. The 1358 
aqueous phase was mixed with 1.1 volume of isopropyl alcohol, 0.16 volumes of sodium 1359 
acetate (2 M; pH 4.0), and 1 μL of GlycoBlue (Invitrogen, AM9515) to precipitate RNA. After 1360 
10 min incubation at room temperature, samples were centrifuged at 12000 xg for 30 min at 4 1361 
°C. The supernatant was completely removed, and RNA pellets were washed by adding 80% 1362 
(v/v) ethanol and centrifuging at 7500 xg for 5 min at 4 °C. The washing steps were performed 1363 
twice. The resulting pellets were air-dried for no more than 5 min and dissolved in 10 μL 1364 
nuclease-free water. To ensure full dissolution of RNA in water, samples were then incubated 1365 
at 65 °C for 5 min, before storage at -80 °C. 1366 
 1367 
RNA-Seq library preparation 1368 
Sequencing of RNA samples was done using Illumina’s next-generation sequencing 1369 
methodology (Bentley et al. 2008). In detail, quality check and quantification of total RNA was 1370 
done using the Agilent Bioanalyzer 2100 in combination with the RNA 6000 pico kit (Agilent 1371 
Technologies, 5067-1513). Total RNA library preparation was done by introducing 500 ng total 1372 
RNA into Illumina’s NEBNext Ultra II directional mRNA (UMI) kit (NEB, E7760S), following the 1373 
manufacturer’s instructions. The quality and quantity of all libraries were checked using 1374 
Agilent’s Bioanalyzer 2100 and DNA 7500 kit (Agilent Technologies, 5067-1506). 1375 
 1376 
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RNA-Seq sequencing 1377 
All libraries were sequenced on a NovaSeq6000 SP 300 cycles v1.5; paired-end 151 bp (one 1378 
pair for each of the projects). Total RNA libraries were pooled and sequenced in three lanes. 1379 
Small RNA libraries were pooled and sequenced in one lane. Sequence information was 1380 
extracted in FastQ format using Illumina’s bcl2FastQ v2.20.0.422, against the Nothobranchius 1381 
furzeri reference genome (Nfu_20150522, annotation nfurzeri_genebuild_v1.150922). 1382 
Alignment to the reference genome was performed using STAR (Dobin et al. 2012) with the 1383 
following parameters: --outSAMmultNmax 1 --outFilterMultimapNmax 1 -- 1384 
outFilterMismatchNoverLmax 0.04 --sjdbOverhang 99 --alignIntronMax 1000000 -- 1385 
outSJfilterReads Unique. The deduplication step was performed using the umi_tool v1.1.1 1386 
(Smith, Heger, and Sudbery 2017), using the following parameters: extract --bcpattern= 1387 
NNNNNNNNNNN`, `dedup --chimeric-pairs discard --unpaired-reads discard -- paired. 1388 
 1389 
RNA-Seq quantification and differential expression 1390 
RNA-Seq data were then processed as follows: quantification was performed using 1391 
featurecounts v2.0.3 (Liao, Smyth, and Shi 2013) with the following parameters -s 2 -p -B --1392 
countReadPairs. Differential expression analysis was performed using the DESeq2 package 1393 
(v1.34.0) (Love, Huber, and Anders 2014). Raw count data were normalized using the 1394 
transcript per million strategy. 1395 
 1396 
Ribo-Seq library preparation 1397 
Ribosome profiling libraries were prepared following previously published protocol with 1398 
modifications (Stein et al., 2022). 10~15 brain samples from fish were combined and lysed 1399 
frozen using Cryo-Mill (Retsch, MM301) in the presence of 1ml of lysis buffer (20 mM Tris-HCl 1400 
pH 7.5, 140 mM KCl, 5 mM MgCl2, 1 mM DTT, 100 µg/ml Cycloheximide, 1% Triton X-100, 1401 
and 1 X Protease Inhibitor). Lysed powder was quickly thawed in a water bath at room 1402 
temperature and spun at 21,000 g for 15 minutes at 4 °C to clear lysate. RNAse I (Invitrogen, 1403 
AM2294) was added to 0.4U/μg of RNA and incubated at 25 °C for 45 minutes. Digestion was 1404 
stopped by adding 0.4U/μg of SUPERaseIn RNAse Inhibitor (Invitrogen, AM2696). RNAse-1405 
treated lysate was layered on 900 μl sucrose cushion buffer (20 mM Tris-HCl pH 7.5, 140 mM 1406 
KCl, 5 mM MgCl2, 1 mM DTT, 100 µg/ml Cycloheximide, 0.02U/μl SuperaseIn, 1M Sucrose), 1407 
and spun at 100,000 rpm for 1 hour at 4 °C in TLA100.3 rotor. Resulting ribosome pellet was 1408 
resuspended in 250 μl of lysis buffer with SuperaseIn and RNA was extracted using TRIzol 1409 
reagent (Invitrogen, 15596026) following manufacturer’s protocol. 27-34bp fragments were 1410 
isolated from denaturing gel, ligated to adapter (NEB, S1315S), and ribosomal RNA was 1411 
removed using RiboCop (Lexogen, 144.24) mixed with custom depletion DNA oligos (Table 1412 
2). Remaining fragments were reverse transcribed, circularized, and PCR amplified following 1413 
the steps described previously (McGlincy and Ingolia 2017). Barcoded samples were pooled 1414 
and sequenced using Hiseq 4000 (Illumina). 1415 
 1416 
Imaging 1417 
 1418 
Cryo-sections preparation and free-floating immunofluorescence 1419 
To prepare brain cryo-sections for free-floating immunofluorescence from 5 wph and 39 wph 1420 
old killifish, brains were dissected and fixed ON in a solution of 4% paraformaldehyde PFA in 1421 
PBS at 4°C. The samples were then equilibrated in a 30% sucrose solution ON at 4° and 1422 
subsequently embedded in cryo-protectant (Tissue -Tek O.C.T. Compound; Sakura Finetek, 1423 
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USA). Tissue slices of 50mm thickness were cut at a cryostat (Leica) and stored on glass 1424 
slides (Thermo Fisher Scientific, USA). 1425 
Free-floating immunofluorescence experiments were performed by adapting previous 1426 
protocols for classical on-slide immunofluorescence (Sara Bagnoli, Terzibasi Tozzini, and 1427 
Cellerino 2023). Briefly, the sections were washed in PBS to remove the cryo-embedding 1428 
medium and detached from the glass slide. The sections were then placed in 24-wells and 1429 
performed two additional washes in PBS for 5 min each. Afterward, an acid antigen retrieval 1430 
step (10 mM Tri-sodium citrate dihydrate, 0.05% tween, at pH 6) was performed by bringing 1431 
the solution to boiling point in a microwave and adding 50ml of it in each well, leaving the 1432 
solution for 5 minutes. This step was repeated two times.. 500 ml of blocking solution (5% 1433 
BSA, 0.3% Triton-X in PBS) was then applied for 2 h. Primary antibodies (Phospho-Tau 1434 
AT100, NeuN or Lamp1 Table 1) at the proper dilution were added in a solution of 1% BSA, 1435 
0.1% triton in PBS, and left overnight at 4°C in slow agitation on a rocker. Next day, the proper 1436 
secondary antibodies (Table 1) at a 1:500 dilution were used in the same solution. After 2h of 1437 
incubation, slices were washed three times with PBS, counter-stained with a solution 1:10000 1438 
of Hoechst 33342 (Invitrogen, USA) for two minutes and manually mounted under a 1439 
stereomicroscope on Superfrost Plus glass slides (Thermo Fisher Scientific, USA). Finally, 1440 
Fluoroshield mounting medium (Sigma, USA) was used and slices were covered with a 1441 
coverglass (Thermo Fisher Scientific, USA). 1442 
  1443 
Image acquisition 1444 
Imaging of lysosomal staining was performed with a Zeiss scanning confocal microscope 1445 
(LSM900, Zeiss, Germany) equipped with an Airyscan module. Nine consecutive z planes with 1446 
a step of 300nm were acquired with a 63x oil immersion objective (Plan-Apochromat 63x/1.4 1447 
Oil DIC M27, Zeiss, Germany) at a resolution of 2186x2186 pixels with the use of Airyscan. 1448 
Images were then deconvoluted in the Zeiss Zen blue 3.7 suite using the Fast Iterative 1449 
algorithm and exported as tiff for further analysis in Imaris (Bitplane, UK). 1450 
Samples processed for Tau stainings were imaged with an Axio Imager Z.2 (Zeiss, Germany) 1451 
equipped with an Apotome slide using a 63x oil immersion objective (Plan-Apochromat 63x/1.4 1452 
Oil DIC M27, Zeiss, Germany). Z-stacks were realized by acquiring five consecutive z-planes 1453 
at an interval of 1 micron. Images were then processed in imageJ (Fiji). 1454 
  1455 
Lysosomes morphological analysis 1456 
To analyze the change in morphology of lysosomes in aging, we analyzed nine 5 wph samples 1457 
and twelve 39 wph samples. To study morphological changes in case of proteostasis 1458 
alteration, samples from six bortezomib-treated animals and six controls (DMSO treated) were 1459 
analyzed. Tiff images were loaded in Imaris (Bitplane, UK) to recreate a 3D rendering of the 1460 
samples. A version of the ‘Surfaces’ algorithm was created, optimizing the settings to realize 1461 
an optimal mask of single lysosomes. Statistics obtained (Area, Volume, Mean intensity, and 1462 
Sphericity) were extracted, and mean values for each animal were calculated. Data 1463 
significance was tested using a two-tails T-test. 1464 
  1465 
Mean fluorescence intensity analysis 1466 
To analyze differences in the amount of Tau phosphorylation between young (5 wph) and old 1467 
(39 wph) Nothobranchius furzeri brain samples, we performed mean fluorescence intensity 1468 
(MFI) analysis in the free license software ImageJ (Fiji). Since Tau is a neuronal protein, and 1469 
the number of neurons between young and old animals varies, we normalized the MFI of Tau 1470 
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staining over the MFI of NeuN, a neuronal-specific marker, in order to render the Tau MFI 1471 
proportional to the number of neurons. Images were opened in ImageJ (Fiji), and median 1472 
filtering (1px radius) was applied. The average intensity projection was realized, and MFI for 1473 
the green channel (Tau) and red channel (NeuN) was measured and reported in an Excel 1474 
table. Tau MFI for each animal was divided by the corresponding NeuN MFI, and the 1475 
significance of the results was tested by a two-tails T-test. 1476 
 1477 
  1478 

Primary Antibody Producer Catalog 
Number 

Type Working 
dilution 

Lamp1 Abcam Ab24170 Polyclonal 
Rabbit 

1:500 

NeuN Abcam Ab177487 Monoclonal 
Rabbit 

1:500 

Phospho-Tau AT100 Thermo Fisher 
Scientific 

MN1060 Monoclonal 
Mouse 

1:400 

          

Secondary Antibody         

AlexaFluor 488 anti-
Rabbit 

Invitrogen A11001 Goat IgG 1:500 

AlexaFluor 568 anti-
Rabbit 

Invitrogen A11011 Goat IgG 1:500 

AlexaFluor 488 anti-
Mouse 

Invitrogen A11004 Goat IgG 1:500 

  1479 
Table 1: List of antibodies utilized in this work 1480 
 1481 

Oligo #1 GGCCGTTACCGGCCTCACACCGTCCATGGGATGAGC/3BioTEG/ 

Oligo #2 CGGGCGAGACGGGCCGGTGGTGCGCCCGGGAAC/3BioTEG/ 

Oligo #3 CGCCTCCCCGCCTCACCGGGTAAGTGAAAAAACGATAAGAG/3BioTEG/ 

Oligo #4 GCACGCGCCGGGCGCTTGACACCAGAACCGAGAGC/3BioTEG/ 

 1482 
Table 2: List of DNA oligonucleotides used for ribosomal RNA depletion 1483 
 1484 
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Data analysis 1485 
 1486 
Protein subcellular localization by LOPIT-DC 1487 
For each age group and replicate, protein distribution profiles were calculated by dividing the 1488 
scaled protein quantity in each fraction by the total sum of protein quantity across all fractions. 1489 
Protein markers for the different compartments were taken from the Bioconductor package 1490 
pRoloc (Crook et al. 2019), by mapping Nothobranchius furzeri entries onto Homo sapiens 1491 
entries via orthologues mapping. To classify each of the proteins into a stable compartment, 1492 
a support-vector-machine classifier with a radial kernel (Breckels et al. 2016) was used. Hyper-1493 
parameters C and gamma were selected via a grid-search approach using a 5-fold cross-1494 
validation iterated 100 times. The best C and gamma parameters were selected to classify the 1495 
“unknown” proteome. Only classified proteins with an SVM-score > 0.7 were considered stable 1496 
classification. To detect age-related changes in subcellular fractionation, a two-step approach 1497 
was implemented. For each normalized protein profile, a principal component analysis was 1498 
used to summarize the variance from the 10 fractions in each replicate and age group. After 1499 
summarization, the first two principal component scores were used to perform a Hotelling T2 1500 
test to detect changes in the multivariate protein profile mean. To estimate effect sizes, the 1501 
median Euclidean distance between age groups was calculated for each protein profile (see 1502 
Figure S1F).  1503 
 1504 
Differential detergent extraction 1505 
A batch correction was applied to remove the effects of different batches of LC-MS/MS 1506 
analysis using the limma::removeBatchEffect function from the limma package (Ritchie et al. 1507 
2015). Then, for each protein group, a detergent insolubility profile was generated by dividing 1508 
the protein quantities from fractions F1:F3 by the quantity in the soluble (S) fraction, and log2 1509 
transformed. To detect significant changes in detergent insolubility profiles between age 1510 
groups, a MANOVA test was applied to the detergent insolubility profiles using the standard 1511 
function in the R programming language, and P-values were corrected for multiple testing 1512 
using the FDR strategy. To estimate effect sizes, a detergent-insolubility-score (DIS) was 1513 
calculated by summing the log2 transformed protein quantities in fractions F1:F3 relative to 1514 
the S “soluble” fraction. For each age group and protein group, the median DIS between 1515 
replicates was used to estimate the magnitude of changes in detergent insolubility: ΔDIS = 1516 
DIS39wph - DIS12wph. High values of ΔDIS indicate proteins that become more detergent resistant 1517 
in the old (39 wph) samples (see Figure S2E). 1518 
 1519 
Modified peptide abundance correction 1520 
For each enrichment, PTMs report tables were exported from Spectronaut. To correct the 1521 
quantities of modified peptides for underlying changes in protein abundance across the age 1522 
groups compared, correction factors were calculated using the aging proteome data. For each 1523 
condition and protein group, the median protein quantity was calculated and then divided by 1524 
the median protein quantity in the young (5 wph) age group. Each modified peptide was 1525 
matched by protein identifier to the correction factor table. If a modified peptide was mapped 1526 
to 2 or more proteins, the correction factor was calculated using the sum of the quantity of 1527 
these proteins. Further, the correction was carried out by dividing peptide quantities by the 1528 
mapped correction factors, and log2 transformed (see Figure S3). Differences in peptide 1529 
quantities were statistically determined using the t-test moderated by the empirical Bayes 1530 
method as implemented in the R package limma (Ritchie et al. 2015). 1531 
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 1532 
Kinase activity prediction from phosphoproteome data 1533 
Kinase activity prediction was calculated using the Kinase library (https://kinase-1534 
library.phosphosite.org/ea?a=de, (Johnson et al. 2023) using the differential expression-1535 
based analysis and default parameter.  1536 
 1537 
GO enrichment analysis 1538 
Gene Set Enrichment Analysis (GSEA) was performed using the R package clusterProfiler (T. 1539 
Wu et al. 2021), using the function gseGO. Briefly, Nothobranchius furzeri protein entries were 1540 
mapped to the human gene name orthologues and given in input to the function to perform 1541 
the enrichment. For GO term overrepresentation analysis (ORA), the topGO R package was 1542 
used.  1543 
 1544 
Identification of conserved PTMs sites 1545 
For the Nothobranchius furzeri proteins involved in neurodegenerative diseases (Figure 1J), 1546 
a local alignment was performed with protein BLAST(v2.12.0+) (Altschul et al. 1990) with 1547 
default parameters against the RefSeq human proteome (Taxon ID:9606). The top 10 hits 1548 
from the BLAST search were retrieved, and each modified residue was mapped into the local 1549 
alignment to identify the corresponding position in the human proteins. Each modified peptide 1550 
was then considered conserved if at least one of the top 10 hits from the BLAST alignment 1551 
had a corresponding residue in the modified amino acid position.  1552 
 1553 
Calculation of protein-transcript decoupling and multiple linear regression  1554 
For aging brain proteome data and proteasome impairment samples, protein-transcript 1555 
decoupling values were calculated as the difference in log2 fold changes between proteome 1556 
and transcriptome. A null distribution was fitted on the decoupling values using the R package 1557 
fdrtool (Strimmer 2008). Q-value < 0.1 was used as a threshold to reject the null hypothesis. 1558 
The decoupling values from each protein-transcript pair were used as response variables in a 1559 
multiple linear regression model. Predictors for the model were retrieved as follows: protein 1560 
quantities were calculated as the median log2 protein quantity across all replicates from the 1561 
proteomics DIA data. Protein quantities are estimated using the median peptide abundance 1562 
as calculated by the Spectronaut software. mRNA abundance values were defined as the 1563 
median log2(TPM) across all samples from the RNA-Seq aging dataset. Biophysical 1564 
parameters were calculated for each protein with the R package Peptides. Protein half-life 1565 
values were taken from mouse cortex data from (Fornasiero et al. 2018). The percentage of 1566 
gene GC content was obtained from ENSEMBL Biomart (v108) (Cunningham et al. 2022), 1567 
mapping ENSEMBL annotation against the Nothobranchius furzeri reference genome 1568 
(Nfu_20150522, annotation nfurzeri_genebuild_v1.150922) using bedtools (Quinlan and Hall 1569 
2010). Multiple linear regression models were then performed using the `lm` base R function 1570 
by keeping only complete and unique observations from the matrix generated. Features were 1571 
scaled for each dataset, and a multiple linear regression model without intercept was fitted to 1572 
the data.  1573 
 1574 
Data integration 1575 
Log2 fold changes (for PTMs), ΔDIS (for detergent insolubility), or protein-transcript 1576 
decoupling values were used as input for a GSEA analysis based on GO cellular component 1577 
terms using the gseGO function from the clusterProfile (T. Wu et al. 2021) R package with the 1578 
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following parameters minSize = 5 and maxSize = 400. For each GSEA, the normalized 1579 
enrichment scores (NES) were taken and arranged in a matrix with different GO terms as rows 1580 
and different datasets as columns. To visualize the relationship between the dataset, a 1581 
principal component analysis was performed on the matrix. Missing GO terms in a given 1582 
dataset were imputed as 0 values. The sum of the scores on the first two principal components 1583 
was used to extract the most strongly affected GO terms from the combined integration of all 1584 
the datasets.  1585 
 1586 
Mitochondrial proteome composition 1587 
To calculate age-related changes in mitochondrial proteome composition (Figure 3H), raw DIA 1588 
files coming from fraction 02 of the LOPIT-DC experiment were re-analyzed in Spectronaut 1589 
(v16.2), using the same parameters as the other LOPIT-DC experiment. Fraction 02 1590 
represents the fraction where mitochondrial proteins are sedimenting in the LOPIT-DC 1591 
experiment and, therefore, strongly enriched for mitochondrial proteins (Figure S1C-D). From 1592 
the protein quantity matrix, mitochondrial proteins (according to Mitocarta3.0 annotation 1593 
(Pagliarini et al. 2008)) were extracted, and their quantities log2 transformed and normalized 1594 
by median centering. To detect changes in composition, a linear model on the log2 1595 
mitochondrial-centered values was implemented between the two age groups with the R 1596 
package limma (Ritchie et al. 2015).  1597 
 1598 
Ribo-seq data processing and analysis 1599 
Data processing and analysis was based on previously published protocol (Stein et al. 2022). 1600 
Adapter sequences were removed from demultiplexed sequencing reads using Cutadapt 1601 
v.1.4.2 (Martin 2011), followed by removal of the 5’ nucleotide using FASTX-Trimmer. Reads 1602 
mapping to ribosomal RNAs were removed using Bowtie v.1.3.1 (Langmead et al. 2009). 1603 
Remaining reads were aligned to reference libraries that consisted of coding sequences 1604 
containing 21 nucleotides flanking upstream of the start codon and downstream of the stop 1605 
codon. To maximize unique mapping, a reference library was constructed using the longest 1606 
transcripts for every 22757 genes. Bowtie alignment was performed using the following 1607 
parameters: -y -a -m 1 -v 2 -norc -best -strata. A-site offset was estimated using riboWaltz 1608 
(Lauria et al. 2018), and fragment lengths that do not exhibit 3-nucleotide periodicity were 1609 
removed. Pause scores at each position were calculated by dividing the number of reads at 1610 
each position by the average number of reads within the internal part of the transcript, 1611 
excluding the first and last 20 codons. Positions with increased pausing during aging were 1612 
identified following the previously published method (Stein et al. 2022). Briefly, for 6749 1613 
transcripts with sufficient coverage (>0.5 reads/codon and >64 reads/transcript) in all age 1614 
groups, we used a two-tailed Fisher’s exact test to compare each position (codon) between 1615 
age groups to identify positions with statistically significant changes (Benjamini-Hochberg 1616 
adjusted P-value < 0.05). These positions were further filtered to include positions with odds 1617 
ratio greater than 1, pause score of the older sample greater than the pause score of younger 1618 
sample, reads in the oldest sample greater than the average number of reads across the 1619 
transcript, and a position in the internal part of the transcript to only select sites with high-1620 
confidence age-dependent changes in pausing. To visualize amino acids enriched in age-1621 
dependent pausing sites, we used the weighted Kullback Leibler method (Thomsen and 1622 
Nielsen 2012) using the frequency of each amino acid in coding sequences as background. 1623 
For metagene analysis around age-dependent pausing sites, reads were first aligned to these 1624 
sites and normalized by dividing reads at each codon by the average reads per codon within 1625 
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the analysis window to control for differences in expression and coverage. Mean and 1626 
bootstrapped 95% confidence intervals of these normalized values were plotted. Only 1627 
positions with sufficient coverage (reads/codon>0.5) in the analysis window were included. To 1628 
identify sites with disome formation, we first identified sites with strong pausing in the old 1629 
sample (pause score >6). Then, we calculated the average ribosome density of two regions 1630 
for young and old samples; 1) analysis window (40 codons up/downstream from strong pause 1631 
site) and 2) between 8 and 12 codons upstream from strong pause site (approximate position 1632 
of trailing ribosome). Sites with higher ribosome density in 2) were identified as disome sites, 1633 
and disomes sites unique to old samples were plotted. For comparisons to proteomics data 1634 
sets, we included all sites with statistically significant changes (Benjamini-Hochberg adjusted 1635 
P-value < 0.05) and used log2 of pause score ratio (Old/Young).   1636 
For translation efficiency analysis, RNA-seq data was re-aligned to the same reference library 1637 
used for Ribo-seq to compare transcript abundance. Changes in translation efficiency were 1638 
calculated using DESeq2 (Love, Huber, and Anders 2014), using the following design ~assay 1639 
+ condition + assay:condition, where assay indicates the different counts from RNA-Seq and 1640 
Ribo-Seq respectively, and condition indicated the different age groups.  1641 
 1642 
Estimates of mRNA half-life variations  1643 
Exonic coordinates of protein-coding genes were extracted from the annotation 1644 
nfurzeri_genebuild_v1.150922. Exonic and intronic read counts were obtained following the 1645 
procedure suggested by (Gaidatzis et al. 2016). To this end, exonic coordinates were flanked 1646 
on both sides by 10 nt and were grouped by gene. Intronic coordinates were obtained by 1647 
subtracting the exonic coordinates from the gene-wise coordinates. For each gene, exonic 1648 
and intronic read counts were obtained using the htseq-count function from HTSeq v2.0.2 1649 
(Putri et al. 2022) with the parameter -m set to intersection-strict to consider only reads that 1650 
strictly fall within an exon or an intron. Additionally, in each sample, genes with less than 10 1651 
reads on both exons and introns were ignored (read counts set as missing values) in order to 1652 
be robust against noisy estimates based on low read counts. Lastly, the log-transformed 1653 
exonic-to-intronic read count ratio r was computed for each gene and sample as:  1654 
 1655 

𝑟	 = 	𝐿𝑜𝑔"(𝑒𝑥𝑜𝑛𝑖𝑐	𝑐𝑜𝑢𝑛𝑡𝑠	 + 1) 	− 	𝐿𝑜𝑔"(𝑖𝑛𝑡𝑟𝑜𝑛𝑖𝑐	𝑐𝑜𝑢𝑛𝑡𝑠	 + 	1) 1656 
 1657 
Gene-specific biases such as exonic and intronic lengths and GC content can affect exonic 1658 
and intronic read counts. These biases cancel out when ratios between samples are 1659 
considered, as they are typically multiplicative (Gaidatzis et al. 2016). The ratio between 1660 
mRNA half-life in sample s_1 and sample s_2 is then estimated as: 1661 
 1662 

𝐿𝑜𝑔!(
𝑚𝑅𝑁𝐴	ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒	𝑠"
𝑚𝑅𝑁𝐴	ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒	𝑠!

) 	= 	
𝑟"
𝑟!
	 1663 

 1664 
Estimates of protein synthesis rate 1665 
  To estimate 𝑘!, 5’-UTRs sequences were retrieved from the Nothobranchius furzeri reference 1666 
genome (Nfu_20150522, annotation nfurzeri_genebuild_v1.150922). The masked FASTA 1667 
genome sequences were parsed using bedtools (Quinlan and Hall 2010). The translation 1668 
starting codon “ATG” was identified from the `CDS` features from the GFF file. The region 1669 
around the starting codon was extracted with +6 nucleotide upstream and +4 nucleotide 1670 
downstream to match the pattern “NNNNNNATGNN”. Only valid sequences (without 1671 
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ambiguous nucleotides) with an ATG starting codon in the correct position were retained. 91% 1672 
of the transcript annotated in the GFF file had a valid translation initiation region as described 1673 
above. The 𝑘! was then estimated using the dinucleotide position weight matrix from (Noderer 1674 
et al. 2014). In case a single transcript had multiple starting sites, the 𝑘! values were 1675 
summarized by taking the median value. This led to the estimate of 𝑘! for 59129 transcripts. 1676 
Estimated protein synthesis rates were calculated as in (Mills and Green 2017; Khajuria et al. 1677 
2018). More in detail, the authors described the estimated synthesis rate as:   1678 
 1679 

𝑄	 = 	𝑚𝑅𝑘𝑖	[1	 − 	 (𝐿	/	(	(𝑘𝑒	/	(𝑘𝑖𝑅)) 	+ 	 (𝐿	 − 	1)	)	)	] 1680 
 1681 

where 𝑄 refers to the estimated synthesis rate,  𝑚 refers to individual mRNA expression level 1682 
obtained from the median across sample log2(TPM) from RNA-Seq data and normalized 1683 
between 0 and 1, 𝑅 represents the total amount of available ribosomes, 𝑘! indicates an mRNA-1684 
specific translation initiation rate as computed above and normalized between 0 and 1, 𝐿 is 1685 
the number of codons occupied by one ribosome, set to 10 (based on the average length of a 1686 
ribosome footprint), and 𝑘# is the termination rates arbitrarily set to 1. Estimated synthesis 1687 
rates were then computed for different values of 	𝑅 ranging from 1.3 to 0.  1688 
 1689 
 1690 
 1691 
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