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Abstract 

The ability to learn from past experience is an important adaptation, but how natural selection 

shapes learning is not well understood. Here, we investigate the evolution of associative 

learning (the association of stimuli with rewards) by a modelling approach that is based on the 

evolution of neural networks (NNs) underlying learning. Individuals employ their genetically 

encoded NN to solve a learning task with fitness consequences. NNs inducing more efficient 

learning have a selective advantage and spread in the population. We show that in a simple 

learning task, the evolved NNs, even those with very simple architecture, outperform well-

studied associative learning rules, such as the Rescorla-Wagner rule. During their evolutionary 

trajectory, NNs often pass a transitional stage where they functionally resemble Rescorla-

Wagner learning, but further evolution shapes them to approximate the theoretically optimal 

learning rule. Networks with a simple architecture evolve much faster and tend to outperform 

their more complex counterparts on a shorter-term perspective. Also, on a longer-term 

perspective network complexity is not a reliable indicator of evolved network performance. 

These conclusions change somewhat when the learning task is more challenging. Then the 

performance of many evolved networks is not better than that of the Rescorla-Wagner rule; 

only some of the more complex networks reach a performance level close to the optimal 
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Bayesian learning rule. In conclusion, we show that the mechanisms underlying learning 

influence the outcome of evolution. A neural-network approach allows for more flexibility and 

a wider set of evolutionary outcomes than most analytical studies, while at the same time, it 

provides a relatively straightforward and intuitive framework to study the learning process. 

 

Keywords: evolution of learning, Rescorla-Wagner rule, neural networks, theoretical model, 

individual-based simulations  
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1.  Introduction 

The ability to learn from past experience is an important adaptation and learning capabilities 

have been identified in most animals and even in unicellular and non-animal species [1–5]. 

However, still very little is known about the evolution of learning. 

From an evolutionary perspective, learning is an intrinsically difficult phenomenon to study 

because it encompasses two intermingled levels of adaptation: adaptive changes of cognition 

and behaviour during individual lifetime, and selection-induced changes of the mechanisms 

underlying learning over the generations. Furthermore, learning is a complex process involving 

many mechanisms (perception, processing of information, decision-making, emotions or other 

evaluation systems), which are only partly known and likely species-specific to a considerable 

extent. Last, but not least, it is not easy to judge the fitness consequences of a given learning 

mechanism, as the implications of this mechanism for survival and reproduction depend 

strongly on both the particular life trajectories of individuals (which determine what can and 

will be learned) and on the spatiotemporal structure of the environment. 

It is therefore not surprising that only relatively few attempts have been made to model the 

evolution of learning. The most prominent approach considers the evolution of ‘learning rules’ 

[6–11]. The idea is that the learning process of an individual is characterized by a function f 

that describes how the cognitive state or behaviour t
E  of an individual is updated on the basis 

of new information R on the individual’s environment or performance: 1
( , )

t t
E f R E


 . The 

learning rule f is typically assumed to be characterized by a small number of heritable 

parameters (e.g. the slope and intercept determining a linear function) that evolve through 

natural selection, as individuals with more efficient learning rules transmit the underlying 

parameters to a larger number of offspring. We will later illustrate this approach by considering 

the evolution of the parameters characterizing the “Rescorla-Wagner rule” [12], which plays a 

prominent role in theories of associative learning. While the learning rule approach is relatively 

simple and elegant, it has the important drawback that the evolvable learning processes are 

strongly constrained from the start (by the limitations imposed on the set of learning rules), thus 

often preventing the evolution of more efficient ways of learning from experience. 

To remove this restriction, Trimmer and colleagues [13] studied the evolution of associative 

learning by a more flexible genetic programming approach. They implemented the update 

process underlying learning by binary trees of arbitrary complexity. Such trees can not only 

implement simple learning rules but also highly intricate learning processes. Moreover, a binary 
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tree provides an easy way to implement inheritance of learning mechanisms (including 

mutations and recombination). While in case of parameterized learning rules the evolutionary 

outcome can often be predicted by analytical methods (by optimality or game theoretical 

techniques), this is no longer possible for genetic learning programmes; instead individual-

based simulations are required to predict the course and outcome of evolution. Based on such 

simulations, Trimmer et al. [13] concluded that learning programmes resembling the Rescorla-

Wagner rule emerge in the early stages of evolution, but that these are later replaced by more 

efficient programmes. The genetic programming approach has the big advantage that it allows 

the evolution of a broad range of learning processes, including highly efficient processes that 

would often be excluded a priori from the set of learning rules considered by the modeller. On 

the downside, the evolved genetic learning programmes are often difficult to interpret, as 

programmes for similar or even identical learning processes can have a very different structure 

(see Appendix D in [13]). Moreover, the encoding of the genetic programmes by binary trees 

and, more importantly, their inheritance and mutation, is quite artificial and non-intuitive from 

a biological and behavioural perspective. 

Here, we use a different approach by considering the evolution of neural networks (NNs) that 

underly associative learning. NNs allow for the implementation of a similarly broad range of 

learning strategies as the genetic programming approach. As neural networks play a crucial role 

in organismal learning, modelling learning using NNs have the added advantage that knowledge 

of the neuronal basis of learning can be included in the model in a natural manner. Here, 

however, we do not attempt to replicate the structure and function of any real biological neural 

system. Instead, we employ NNs with a very simple architecture as a conceptual tool for 

understanding how learning can evolve in a system that, just as the neural networks of real 

organisms do, receives and processes information from the environment to update their internal 

states which in turn can modify future responses to the environment. 

We consider the evolution of NNs that have to solve a simple associative learning task, which 

has fitness consequences for the learning individual. The parameters determining the NN are 

genetically encoded and transmitted from parents to their offspring. NNs inducing more 

efficient learning have a selective advantage and spread in the population. Over the generations, 

selection will shape NNs which, for a given network architecture, perform the learning task 

increasingly well. By systematically comparing different network architectures, we will address 

the following research questions: To what extent is NN-based learning comparable to existing 
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learning paradigms, such as the Rescorla-Wagner rule? How well do evolved NNs perform in 

comparison to the theoretically optimal performance in the given learning task? What is the 

relationship between network complexity and network performance? 

On purpose, we focus on NNs with a very simple architecture, as only simple NNs allow the 

systematic analysis of the simulation results with the standard toolbox of evolutionary theory 

(e.g. the analysis of fitness landscapes). By increasing network complexity in a step-by-step 

manner, we hope to build up knowledge and expertise that will be useful when analysing more 

complex networks. For our study, we will make use of the simple learning task designed by 

Trimmer and colleagues [13]. This way, we can use their results as a benchmark for judging 

the learning performance of evolved NNs.  

 

2.  Associative learning from an evolutionary perspective 

Associative learning, the phenomenon that organisms come to associate different stimuli or 

events with each other, is widespread among animals and arguably the most important paradigm 

in the study of learning [14]. This form of learning has obvious evolutionary implications as it 

allows organisms to use formerly neutral stimuli (known as conditioned stimuli) to predict the 

presence/arrival of fitness relevant events (known as unconditioned stimuli). For these reasons, 

studying a simple associative learning task is a good starting point for investigating the 

evolution of learning.  

Take an imaginary example of a bumblebee that visits flowers of different colours in a meadow 

for the first time. It does not know which type of flower provides the best source of nectar. By 

visiting flowers of a specific colour, say purple, the bumblebee might learn that this colour is 

indicative of a rich nectar reward. By correctly associating purple colour with nectar presence, 

a bumblebee could spot “nectary” flowers by their purple colour from a far distance and, in this 

way, forage more efficiently in the meadow, thus enjoying a clear fitness advantage. 

The current modelling convention for associative learning in the field of experimental 

psychology is to predict the changes in the associative strength (usually measured from the 

frequency/strength of a behavioural responses observed in experiments) between two given 

stimuli. We will here follow Trimmer et al. [13], who reinterpreted “associative strength” as an 

estimate of the probability of receiving a reward. Continuing with our example, every time the 

bumblebee visits a purple flower, it will update its estimate of the probability of finding nectar 
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in this type of flowers. If in our hypothetical meadow the probability that purple flowers offer 

nectar is high, a bumblebee will be rewarded with nectar most of the times it visits a purple 

flower. Accordingly, it should associate purple flowers with a high probability of finding nectar. 

Should our bumblebee move to another meadow where purple-flowering plants offer no nectar, 

it should reduce its estimate of the probability that purple flowers provide nectar with each non-

rewarded visit. 

The Rescorla-Wagner model [12] is arguably the most influential model of associative learning 

[15,16]. Trimmer and colleagues [13] posed the question whether, why, and when the 

“Rescorla-Wagner rule” would evolve through natural selection. To this end, they took the 

simplest form of this model [17], which describes the build-up of an association between a 

single conditioned and unconditioned stimulus. Interpreting the association strength between 

the two stimuli as the subjective probability of receiving a reward, this version of the Rescorla-

Wagner rule can be written as: 

1 ( )t t tE E R E     .   (1) 

This rule describes how the estimate tE  of the reward probability is updated after receiving an 

input R, which can take on the values 1R   or 0R  depending on whether or not a reward 

was present. The parameter β determines the learning rate. Trimmer et al. [13] compared the 

performance of evolved genetic learning programmes with this version of the Rescorla-Wagner 

rule. We will follow their lead and do the same for evolved learning networks.  

 

3.  The model 

3.1  Model overview 

We consider a population of individuals that are faced with the task of determining the true 

state P of their local environment on the basis of learning experiences, where P corresponds to 

the probability of receiving a reward. Each individual is endowed with a heritable neural 

network, which processes incoming information to sequentially update an estimate E of the true 

state P. We assume that the reproductive success of an individual is inversely related to the 

estimation error 2 2( )E P   . Hence, individuals with a small discrepancy between their 

learned estimate E and the true value P produce more offspring, which inherit their parent’s 

network, subject to rare mutations. Over the generations, networks will evolve an improved 
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ability to estimate the true state of their environment based on the information provided in this 

environment. 

3.2  The learning task and the effect of learning on reproductive success 

Following Trimmer et al. (2012), we consider the associative learning task illustrated in Figure 

1. During its lifetime, each individual is confronted with K different environments (grey 

rectangles) that differ in their probability kP  of obtaining a reward. When entering a new 

environment, the individual starts with the same initial estimate 0E  of the reward probability. 

Subsequently, the individual has S learning experiences. In experience t, the individual either 

receives a reward or not ( 1 or 0tR  ), where tR  is randomly drawn from a binomial distribution 

with success probability kP . Based on its learning network, the individual uses the value tR  to 

update its estimate of the reward probability from tE  to 1tE  . After S learning experiences, a 

final estimate SE  is obtained. The squared difference 2 2( )k S kE P    between the estimated 

reward probability SE  and the true reward probability kP  quantifies the estimation error made 

in environment k. The total lifetime error i  of individual i is the average of its K errors. The 

reproductive success of individual i is proportional to max1 ( )i   , where max  is the maximal 

lifetime error made in the population. Throughout, following Trimmer et al. [13], we chose 

6K . The reward probabilities kP  were drawn independently from a uniform distribution 

U(0,1). At first, we consider a simple learning task in which the number of learning updates is 

fixed ( 10S ) and later a more complicated tasks with variable S. 

Figure 1: Overview of the learning task. Individuals are faced with K different environments, 
each with a different probability of reward Pk. In each environment the individual has S learning 
experiences after which its estimation error is calculated (see text for details). 
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3.3  Network structure 

In our study we consider simple neural networks (NNs) [18], like those in Figure 2. In the 

standard version, our network receives two inputs, tE  (the current estimate of the reward 

probability) and R (the presence or absence of a reward), and it produces an updated estimate 

of the reward probability, 1tE  , as its single output. The networks consist of nodes (the circles 

in Figure 2) that are organized in a sequence of layers. Each node is connected to one or several 

nodes in the subsequent layer (the arrows in Figure 2), and it can stimulate or inhibit the 

activities of these nodes. Each connection has a certain weight w, where a positive value of w 

represents stimulation, while a negative value corresponds to inhibition. The nodes of the input 

layer take on real values that correspond to either tE  or the reward R received (where 0R   or 

1R  ). These values are processed and determine the node activities at the subsequent level. 

More precisely, the activity iy  of node i in the consecutive layer is given by an expression of 

the form 

  i ij j ij
y A w x b .    (2) 

Here j runs over all nodes of the previous layer that are connected to i, jx  is the activity of node 

j, and ijw  is the strength of the connection between nodes j and i. ib  is a so-called “bias” that 

corresponds to the baseline activation of node i. Finally, the function A is a so-called “activation 

function.” Such functions can be useful, as they allow for more versatile input-output 

relationships of an NN and because they can ensure that the activity levels iy  are restricted to 

a certain range (such as the interval [-1,+1]). 

An NN and, hence, the iterative process 1 ( , )t tE f R E   induced by it, is fully determined by 

its architecture (i.e. the nodes and their connection patterns), the activation functions, and the 

values of the connection strengths ijw  and the biases ib . As described in Section 3.4, we assume 

that the network parameters ijw  and ib  are heritable and transmitted from parents to offspring. 

 

Figure 2: The three basic network architectures studied. N1: Single-layer network with 
linear transmission of information. N2: Two-layer network with linear transmission of 
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information. N3: Two-layer network with non-linear activation function in the processing layer. 
Vertical dashed arrows indicate that a bias is added to the output. We also analysed the same 
kind of networks in the absence of an output bias; we will refer to these networks as N10, N20 
and N30, respectively. In the first learning step, tE  is given by a genetically determined initial 
estimate 0E . In each subsequent learning step, the output 1tE   of the previous step becomes the 
input tE of the new step. 

 

In our study, we will investigate the evolution of the networks N1, N2 and N3 in Figure 2 in 

considerable detail. Networks of type N1 are particularly simple in that they do not have a 

processing layer and because the activation function is just the identity function. This implies 

that the estimate of the reward probability is updated according to the linear relationship 

1t R Ew R w E bE     ,    (3) 

where the heritable (and hence evolvable) parameters , ,R Eww  and b correspond to the weights 

of the connections from R to 1tE   and from tE  to 1tE   and to the bias of the output node 1tE  , 

respectively. Networks of type N2 have also the identity function as their activation function, 

but they include a 3-node processing layer. This implies that they also encode a linear input-

output relationship while having more evolutionary degrees of freedom (see Appendix A). In 

networks of type N3, the activation function of the nodes in the processing layer is non-linear. 

We considered various options for the activation function, but we here only report the results 

on the hyperbolic tangent function ( ( ) tanh( )A z z ), a widely used S-shaped function with 

output values in the interval (-1,1), which also performed best in our preliminary studies. 

In the second part of our study (where the number of learning updates S is variable), we will 

also consider networks which have an additional input that is related to the number of updates 

experienced so far. This way, the NNs could potentially use this kind of information to modulate 

their learning over time. 

3.4  Reproduction and inheritance 

In our simulations, we consider a population with discrete, non-overlapping generations, where 

each generation consists of 1,000N   haploid individuals. Each individual harbours genes that 

encode the connection weights and biases of its NN and the initial estimate 0E  of the reward 

probability. These genes can take any real value. In a network of type N1, for example, there 

are four genes that encode the values Rw , Ew , b and 0E . The alleles of an individual at these 

gene loci determine how the network of the individual functions, i.e., how the reward 

probability E is updated by the presence or absence of a reward (see eq. (3)). 
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When all individuals of a given generation have experienced their K environments, their 

reproductive success is determined as described in Section 3.2. The population reproduces and 

is replaced by the population of their offspring. For each of the N offspring, a parental individual 

is drawn at random, with probability that is proportional to the individual’s reproductive 

success. The offspring inherits all network parameters from its parent. With per-locus mutation 

probability 0.0015 , a parental allele is affected by a mutation. In such a case, a small number 

ε is added to the parental value, where the mutational step size ε is drawn from a normal 

distribution with mean 0 and standard deviation 0.01. 

Most simulations were run for 500K (= 500,000) generations. In case of the networks 

considered by us in detail (Figure 2), an evolutionary equilibrium was usually reached in a much 

shorter time. 

3.5  Network performance and optimally performing NNs 

Our individual-based simulations are subject to stochasticity from different sources, like 

random mutations, limited population size, the random choice of K environmental parameters 

P, and the reward sequence in each environment (i.e., the sequence of reward/no-reward 

outcomes encountered by an individual during the learning process). To overcome the effects 

of this stochasticity, we quantify the “performance” of an evolved NN by the expected error 
2( )E  made by the network when estimating the reward probability of an environment. This 

corresponds to the error to be expected given a large number of environments and reward 

sequences as explained below. 

As above 2 2( )SE P    indicates the squared deviation between the final estimate SE  and the 

true reward probability P, and 2( )E  is the squared deviation to be expected in a random 

learning trial (after S learning events). Notice that 2( )E  is an “inverse” performance measure, 

as a high network performance is associated with a low value of 2( )E . For the linear networks 

N1 and N2 analytical expressions for 2( )E , both for fixed and variable number of updates S, 

are derived in Appendix A. This allows to determine the parameters of the optimally performing 

NN by minimizing 2( ).E   

With the same procedure, we can also determine the performance measure 2( )E  for learning 

rules such as the Rescorla-Wagner rule or the rule for Bayesian updating. Analytical 

expressions for 2( )E  could not be found for networks of type N3 with a non-linear activation 
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function, therefore they were derived numerically (see Appendix A for details). Throughout, 

we will use 2( )E  when comparing NNs with each other or with specific learning rules. 

3.6 Visualisation of results by Rescorla-Wagner plots 

According to equation (1), the Rescorla-Wagner rule is characterized by 

1 ( )t t tE R EE E       . In other words, plotting the change ΔE in association strength 

against tR E  results in a straight line through the origin, with a slope that is given by the 

learning rate  . In order to compare the learning behaviour of our evolved NNs with Rescorla-

Wagner learning, we use the NN to calculate 1t tEE E     for a range of tE  values and both 

options 0R   and 1R  ; subsequently, E  is plotted against tR E . We will call these plots 

“Rescorla-Wagner plots”. Such plots provide an intuitive way to visualise how different NNs 

behave in comparison to each other and in comparison to the Rescorla-Wagner rule and other 

learning rules (see also Appendix B). 

 

4.  Results 

4.1 Simple learning task  

In order to get a firm understanding of network evolution, we will first analyse a baseline 

scenario with a fixed number of S = 10 updates and an initial estimate E0 = 0.5 that is fixed and 

not evolvable. In Section 4.2, we will later investigate a more complex task, where the number 

of updates is not specified beforehand. 

4.1.1 Learning rules 

For this baseline scenario, the optimal value of the learning parameter in the Rescorla-Wagner 

rule is * 0.135  (see Appendix A and [13]). In other words, given the reward R, the optimal 

updating of information according to the Rescorla-Wagner rule is of the form: 

      1 0.135 ( )t t tE R EE      .    (4) 

As shown by Trimmer et al. [13], there is, however, a learning rule (which they call the 

‘optimally performing rule’ or OPR) that is as simple as the Rescorla-Wagner rule but, in the 

baseline scenario, provides on average a better estimate SE  of P than the Rescorla-Wagner rule: 

    1
1 12 ( 0.5)t tE RE      .     (5) 

 After 10S   updates, this rule is equivalent to Bayesian updating, and thus represents the best 
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performance possible under this scenario. 

4.1.2 Evolved network performance in comparison to learning rules 

All our evolving reference networks, N1 to N3 (with and without bias), are able to outperform 

the RW rule to different degrees. The two linear networks without bias (N10 and N20) are able 

to achieve only a slightly better performance level than the best Rescorla-Wagner rule, while 

the two linear networks with bias on the output node (N1 and N2) approximate the performance 

of the optimally performing rule OPR (Figure 3). The non-linear network without bias (N30) is 

able to reach a better performance than the RW rule (Appendix C, Figure A2), but this happens 

only in a few replicates, and it takes a very long time. The non-linear network with bias (N3) 

approaches the performance of ten rounds of Bayesian updating, but this never happens within 

the timeframe of 500K generations used in our simulations (Figure 3). In general, non-linear 

networks perform worse than their linear equivalents.  

Figure 3: Performance of evolved networks in the simple learning task and E0=0.5. The 
graph shows for each type of network how the error decreases (and hence performance 
increases) over the generations. For comparison, the expected error of the Rescorla-Wagner 
rule (green dashed line) and the Optimally Performing Rule (purple dashed line) are also shown. 
Only networks with bias (N1, N2, and N3) clearly outperform the RW rule, with N1 and N2 
reaching optimal performance. Linear networks without bias (N10 and N20), marginally 
outperform the RW rule. Networks of type N30 can outperform the RW rule, but this only 
happens in small fraction of the replicates, and it takes a long evolutionary time (see Appendix 
B, Figure A2). Each solid line in the graph shows the average expected error from 10 replicate 
simulations, where each replicate is represented by best-performing NN in the population at the 
given time. 
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We will now have a closer look at the evolutionary trajectories of the four linear networks. A 

network of type N10 is characterized by two evolvable parameters Rw  and Ew , and the estimate 

of the reward probability is updated according to the linear relationship that is a special case of 

equation (3) with b=0: 

1t R Ew R w EE    .     (6) 

Notice that Rescorla-Wagner updating (1) corresponds to the special case 1R Ew w   (where 

Rw β  and 1Ew β  ). Since a network of type N10 allows for more general updating (two 

free parameters instead of one) one might expect that networks can evolve that outperform the 

best Rescorla-Wagner rule (3). However, mathematical analysis (see Appendix A) shows that 

the optimal network of type N10 uses the updating algorithm 

    1 0.133 0.870t tR EE      ,    (7) 

which is very close to the optimal RW rule (4) and reduces the expected error of that rule by 

only 0.5% (see Table A1, Appendix A). The N10 networks in our individual-based simulations 

evolved weights and performance levels that are very similar to the mathematical optimum. 

As networks of type N10 have only two evolvable parameters, their evolution can be visualized 

on the corresponding fitness landscape. Figure A3 (Appendix D) shows that the single fitness 

peak is very close to the intersection point of the ‘line of attraction’ and the line 1R Ew w   

characterizing all those N10 networks that are equivalent to a RW rule. This explains our 

observation in Fig. 3 that networks of type N10 only achieve a marginally better performance 

than the RW rule, although they have two, rather than one, evolvable parameters. Even though 

optimal networks of type N10 can slightly outperform the Rescorla-Wagner rule in our baseline 

scenario, they were indistinguishable from it when looking at the average population 

performance in the individual-based simulation.  

A network of type N1 has a bias b on its output node, leading to the update rule given by eq. 

(3). Only networks with such a bias can match the performance of the optimally performing 

rule OPR, because a bias is needed to produce the free term 1
12 ( 0.5)   in eq. (5). Mathematical 

analysis reveals that the optimal updating of a N1 network is indeed given by eq. (5), which 

characterizes the OPR (see Table A1, Appendix A). Networks of type N1 do indeed converge 

to the OPR, both in their weighing factors and in performance (Figure 3).  

For networks with non-linear activation function, N3 and N30, we were not able to find the 
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optimal weights (or weight combinations) analytically.  

4.1.3 Learning behaviour of evolved networks 

Trimmer et al. [13] based many of their conclusions on the comparison of performance of 

different binary trees, and not on the actual learning behaviour (they only analysed few binary 

trees in detail). For example, they implicitly assumed that binary trees that match the 

performance of a RW rule show similar updating behaviour as the RW rule. However, this is 

not necessarily the case. To get an impression of the updating behaviour of the evolved NNs, 

we produced Rescorla-Wagner plots for the evolved networks (see Section 3.6), as these plots 

reveal congruences as well as differences in updating behaviour in comparison to both the RW 

rule and the optimally performing rule (see also Appendix B).  

Figure 4 shows that – for the simple learning scenario with S=10 and 0 0.5E   – networks that 

perform like the RW rule or the OPR also tend to show the same (or a very similar) updating 

behaviour as the corresponding rule (but see section 4.2.2 for a different outcome): Evolved 

networks of type N10 and N20 exhibit practically the same updating behaviour as the best RW 

rule; and evolved networks of type N1 and N2 match the updating behaviour of the optimally 

performing rule. The behaviour of the non-linear networks (N30 and N3) resembles the learning 

behaviour of the rules they approximate in performance, but only for a limited range of input 

values. 

As shown in Figure 5, N1 and N2 networks ultimately match the updating behaviour of the 

OPR. Interestingly, these networks show Rescorla-Wagner kind of updating behaviour at an 

intermediate stage of their evolution (see Appendix E, Figure A4). Similarly, Trimmer et al. 

[13] reported that many of their genetic programmes performed similarly to the Rescorla-

Wagner rule in an initial stage of evolution, but that these programmes were eventually replaced 

by programmes outperforming this rule. Our analysis of network behaviour shows that they not 

only resemble RW rule in performance but also in behaviour.  
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Figure 4: Rescorla-Wagner plots of NNs that evolved in the simple learning scenario. 
When the change in estimates ( 1Δ t tE E E  ) in response to an observation R ( 0R  or 1R 
) is plotted against the difference tR E , for a range of values 0 1tE  , the Rescorla-Wagner 
rule (eq. (1)) produces a straight line with slope β through the origin. The green line corresponds 
to the best Rescorla-Wagner rule ( * 0.135β  ). The optimally performing rule OPR (eq. (4)) 
produces two horizontal line segments (purple). The panels show the updating behaviour of 
evolved NNs of the six network types considered. In line with their performance (Figure 3), the 
updating behaviour of linear networks is very close to that of the RW rule when the networks 
do not have bias (N10 : orange dots, N20 : light blue dots) and very close to that of the OPR 
when they have a bias (N1 : red dots, N2 : blue dots). The updating behaviour of the non-linear 
networks corresponds to a concave function that only partly matches the RW rule (N30 : grey 
dots) or the OPR (N3 : black dots). 
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4.1.4 E0 and the interpretation of the Rescorla-Wagner rule 

Until now we considered a situation in which the initial estimate of the probability of receiving 

a reward is fixed to 0 0.5E  . When tE  is interpreted as an estimate of the probability of 

receiving a reward, a prior of 0.5 makes sense, as in our model the reward probabilities are 

drawn from a uniform distribution over the unit interval. However, when the traditional 

interpretation of Rescorla-Wagner rule is used, 0 0.5E   does not seem to be the most obvious 

initial condition. In the classical conditioning experiments that led to the development of the 

RW rule, the conditioned stimulus (CS) is, at the start of the experiment, usually new and neutral 

for the subject. In other words, there is initially no association between different stimuli or 

stimuli and response. Therefore, an initial value 0 0E   seems the most obvious choice when 

tE  is interpreted as the association strength between stimulus and reward. 

Interestingly, in our model the performance of the Rescorla-Wagner rule is much poorer for 

0 0E   than for 0 0.5E  , even if the learning rate β  is optimized separately for both cases (the 

optimal learning rate is * 0.196β   if 0 0E   and * 0.135β   if 0 0.5E  ). This conclusion can 

be drawn from mathematical analysis, which shows that, quite generally, the performance of 

the best RW rule decreases in our model with the distance of 0E  to 0.5. This is confirmed by 

individual-based simulations: when both β  and 0E  evolve, 0E  converges to 0.5, and β  

converges to 0.135.The most likely explanation lies in the fact that, in our model, the RW rule 

is shaped by natural selection and adapted to a situation where the conditioned stimulus is not 

arbitrary (as in a typical learning experiment) but drawn from a fitness-relevant distribution. In 

other words, the organism can already have some “inherited” knowledge of the structure of the 

environment. It would be interesting to see whether the time course of learning in an associative 

learning experiment will differ depending on whether the conditioned stimulus is arbitrary or 

relevant for fitness.  

4.1.5 Effect of E0 on network evolution 

Figure 5 shows that, in contrast to what we observed for the Rescorla-Wagner rule, the neural 

networks evolved the same level of performance, irrespective of whether the initial estimate of 

the reward probability was 0 0.5E   or 0 0E   (Fig. 5AB). The initial value 0 0E   even seems 

to be slightly superior: it speeds up evolution and networks of type N30 achieve a better 

performance. We conclude that network evolution is less sensitive to the initial estimate than 

optimizing the RW rule, most likely because networks have more evolutionary degrees of 

freedom. 
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As shown in Figure 5C, network evolution is speeded up and network performance is generally 

improved when 0E  is a heritable trait that is jointly evolving with the network weights and 

biases. This holds especially for the networks without bias (N10, N20, and N30) that now 

approach optimal performance, while this was not the case when 0E  was fixed. Upon closer 

inspection, these networks evolved 0E  values close to 1
12 , allowing them to perform almost 

as well as the OPR and the networks with bias. The networks with a bias already achieved (N1, 

N2) or approached (N3) optimal performance for a fixed value of 0E  (Fig. 5AB). One might 

have expected that for these networks 0E  would evolve to the value 0.5, the natural prior in our 

model. As shown in Section 4.4.1, this does indeed happen in case of the RW rule, where 0E  

converges to 0.5 when 0E  can jointly evolve with the learning rate β . However, this did not 

happen in the networks with a bias (N1, N2, and N3). Instead, a wide range of 0E  evolved, 

without noticeably affecting the performance of the evolved networks (Appendix F, Figure A9). 

This is in line with theoretical considerations (Appendix A), which show that the linear 

networks (N1 and N2, and the OPR) can evolve optimal performance for any value of 0E . 

Interestingly, our individual-based simulations did not converge to arbitrary values of 0E ; 

instead, values in the interval 00 0.5E   evolved in the majority of simulations (Appendix F, 

Figure A9). We do not entirely understand why the evolution of 0E  should lead to values 

between 0 and 0.5 and conclude that mathematical expectation alone is not always enough to 

understand and predict evolutionary outcomes (see also section 4.1.6), even in systems as 

simple as the ones we used in our simulations. 

 

Figure 5: Effect of E0 on the performance of evolved NNs (simple learning task).  The solid 
lines show the evolutionary increase in performance (= the decrease in expected error) of six 
types of network for three scenarios for the initial estimate 0E  of the reward probability: (A) 

0 0.5E  , (B) 0 0.0E  , (C) 0E  jointly evolves with the other network parameters. The dashed 
lines indicate the performance of the best Rescorla-Wagner rule (green) and the Optimally 
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Performing Rule (purple). For ease of comparison, panel (A) is a replicate of Fig. 3. Panel (B) 
illustrates lower performance (= higher error) of the RW rule when 0 0.0E  , as discussed in 
Section 4.1.4. In this case, all networks outperform the best RW rule, but only the linear 
networks with bias (N1 and N2) achieve optimal performance. Panel (C) shows that all 
networks approach optimal performance if 0E  is allowed to evolve. All graphical conventions 
are as in Figure 3. 

 

4.1.6 Network complexity is not a good predictor of performance in the simple learning 

task 

In this section, we considered six types of networks that vary in complexity. They could have 

one or two layers, a linear or a non-linear activation function and either have an evolving bias 

or no bias at all. The question arises whether there is a clear-cut relationship between network 

complexity and network performance. 

Figure 6: Relationship between network complexity and network performance in the 
simple learning task with a fixed number of updates and E0=0.5. Each small square represents 
a single replicate (20 for each network type) and its colour shows the population mean error 
over the last 1000 generations of the individual-based simulations that were run for 500K 
generations. 

 

Figure 6 shows, for each of the six types of networks, the performance of 20 populations of 

networks that had evolved independently for 500K generations under the conditions of the 

simple learning task ( 10S   and 0 0.5E  ). A darker colour indicates a better performance than 

a lighter colour. It is obvious that networks with a bias (top) achieve a higher performance than 
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the corresponding networks without a bias (bottom). We do not think that the bias in itself is 

responsible for this difference. As we have seen in Fig. 5C, bias-free networks can also evolve 

optimal performance if the initial estimate 0E  is free to evolve. This suggests that having an 

additional evolutionary degree of freedom (be it the bias or 0E ) is what allows networks to 

evolve an optimal performance.  

In contrast, increasing complexity by adding a non-linear activation function usually had a 

detrimental effect, resulting in worsened performance compared to networks with linear 

activation function, with the exception of a few replicates in which N30 achieved better 

performance than N20 (Figure 6 and Appendix C, Figure A2).  

The effect of adding a second (hidden) layer to 1-layer networks is more difficult to interpret. 

On the one hand, it could be said to be negative because, having more weights implied that 

evolution was slower, and that mutation-selection equilibrium decreased average population 

performance. On the other hand, this slower evolution could be advantageous once the network 

performance is close to its optimum. Due to the stochastic nature of the simulations just by 

chance over a period of time individuals can encounter several environments that have 

probability of reward away of the average of 0.5 (e.g., skewed towards larger P values). 

Populations with 1-layer networks could rapidly adapt to these environments, which would 

mean that they would transiently be more severely maladapted when conditions change back to 

less skewed sequences of environments. For the same situation, 2-layer networks seem to show 

some kind of robustness due to their slower evolution: theoretically optimal networks (best over 

all possible P value and combination of reward sequences) are present more consistently in the 

population. Furthermore, N20 and N2 were mathematically equivalent to N10 and N1, 

respectively, but they could achieve this equivalence by different combinations of weights (see 

Appendix A and Appendix E, Figure A5). Although we did not investigate this further, it could 

be expected that this phenotypic redundancy, because of the underlying variability in weights, 

could enhance evolvability in novel environmental conditions [19,20].          

In summary, in the simple task, the complexity of the network is not always the best predictor 

of its performance. In fact, the networks with the best performance, were those with a level of 

complexity just above the minimum (N1).  

Nevertheless, this conclusion might not be very surprising if we acknowledge that so far we 

have considered a very simple learning task. In the next section we will address a learning task 

that is more difficult and slightly more realistic.  
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4.2 A more complicated learning task 

In this set of simulations, we considered a more complex task of estimating P based on a 

variable number of observations S. This can be considered a more realistic case, since in natural 

conditions it is unlikely that organisms face always the same number of observations to learn 

from. For a given P each observation had a fixed chance (of 0.1) to be the last one, with 

maximum number of experiences set to 20 (similar to Trimmer et al. [13]).  

For this task we also considered different initial estimates. Here, we are going to focus on the 

case when E0 was fixed to 0.5 and mention other results only briefly.  

4.2.1 Additional learning rules and networks 

When the initial estimate of probability of reward was set to 0.5, Trimmer et al. [13] calculated 

optimal (truly) Bayesian rule as: 

Et+1 = Et + (R – Et)/(s+2),    (8) 

where s is the number of experiences that have been witnessed so far, including the current one. 

This rule is similar to RW rule, but with learning rate that decreases with each observation 

(1/(s+2)). As Trimmer et al. [13] pointed out, the “optimally performing rule” (eq. (5)) yields 

an optimal estimate only after all updates have taken place but each update is not Bayesian. In 

contrast, the rule in equation (8) is truly Bayesian, giving optimal estimate at every update. Both 

rules also show different behaviour (compare Figures 4 and 8 and see Appendix B). We used 

learning behaviour and error of Bayesian rule and the best performing RW rule as benchmarks 

when comparing the behaviour and performance of NNs (see section 3.5 and Supplementary 

Material for more details). 

None of the networks considered so far (Figure 2) was provided with direct information of the 

number of updates. However, if the number of updates varies between environments, the current 

update number is an important piece of information that could be expected to help the networks 

to approximate Bayesian rule (eq. (11)) and therefore achieve better performance. For this 

reason, we also considered networks that resembled previously analysed networks (Figure 2) 

but had an additional input node, equal to 1/s. We will call these networks N1+1/s … N3+1/s. 

The extra input initially takes the value of 1 and decreases as the number of updates increases.  
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Figure 7 Change in performance of different networks when the number of updates is 
variable. (A) E0 = 0.5, the reference networks reach RW Rule performance. Only non-linear 
networks with additional input (N30+1/s and N3+1/s) can reach better performance. (B) E0 = 
0.0, linear networks without bias perform as good as the RW rule. Other networks perform 
clearly better than it, but optimal performance is not reached within the time limit of the 
simulation. (C) Evolving E0 - for all reference networks E0 evolves towards 0.5 and therefore 
these networks have performance as in (A), N3+1/s and N30+1/s reach much better performance 
with E0 usually different from 0.5. Linear networks with extra input 1/s are not shown as they 
do not significantly differ from their two input counterparts. For linear networks average of 10 
replicates is plotted, where for each replicate the lowest expected error in the population at the 
given time was taken into account. Due to error calculation time for non-liner networks only 
the best replicate is plotted and minimal error is based on a sample of 100 individuals in each 
generation (sample of 100 gives a good indication of the evolutionary trend – data not shown).  

 

Estimating the probability of reward is an intrinsically more difficult task if the number of 

updates is variable, which is evident in the fact that all rules and networks have worse 

performance than in the simple learning task. Even the (optimal) Bayesian rule for the more 

complicated task has a larger error than the RW rule in the simple task (compare scale of Y 

axes in Figures 5 and 7). 

For initial estimate of 0.5, in the task with a variable number of updates all the networks of the 

previous section converge to behave and perform as good as or close to the RW rule (Figure 

7A). Adding an extra input for update count to the linear networks does not improve their 

performance (see Appendix F, Figure A10). Non-linear networks with additional input (1/s), 

N30+1/s and N3+1/s, are the only ones that perform clearly better than RW rule and the rest of 

the networks, although they never reached optimal performance in our simulations. In the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.549996doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.549996
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

following section (4.2.2) we explore this in more depth.  

When E0 is fixed to 0, all the networks perform clearly worse than for E0=0.5 (Figure 7B) and 

when the E0 can evolve for most networks E0 converges to 0.5 and their performance is identical 

to E0 fixed to 0.5 (Figure 7A and 7C). In this case, when the time available for reaching the 

final estimate is unknow, initial estimate that is close to the statistically expected P value (0.5) 

seems to be best for most networks and therefore their evolved initial estimate is close to 0.5. 

Only non-linear networks with 1/s as input evolved different initial estimates and reached 

performance closer to the optimal one (Figure 7C, Appendix F, Figure A12).  

4.2.2 Observing learning behaviour complements understanding 

In order to better understand the difference between the best network (N3+1/s) and networks 

simpler by only a single feature: N3 (the same as N3+1/s but without the extra input) and 

N2+1/s (the same as N3+1/s but without the non-linear activation function), we also looked at 

their behaviour (Figure 8). 

In line with what could be expected from their respective performances (see Figure 7A and 

Appendix F, Figure A10), only N3+1/s and N30+1/s networks showed a behaviour that was 

clearly different than RW rule and reminiscent of that of the Bayesian rule, i.e., they used 

information of the number of updates elapsed, to modulate the amount of change in the estimate 

of probability of reward (Figure 8C).  

The fact that the linear networks with additional input (N2+1/s) did not show this kind of 

behaviour highlights the fact that networks are not always able to efficiently use extra 

information, even if it seems useful. It is only the combination of both features, the additional 

information of the additional input 1/s and the tanh activation function, that enables networks 

to surpass RW rule and get closer to Bayesian, not only in performance but also in behaviour. 

Interestingly, also N3+1/s and N30+1/s networks underwent a stage of their evolution when 

they were performing and behaving similarly to the RW rule, with little effect of the current 

update number on their behaviour. Only at later stages they evolved to meaningfully use the 

additional input information and improve their performance.  

It should be noted that whereas the Bayesian rule performs a product of the (diminishing) 

learning rate and the discrepancy between reward and expected value, the networks are not able 

to perform product operations directly. Instead, the extra information has to undergo a more 

indirect and complex transformation during the operation of the network. This in part may 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.549996doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.549996
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

explain why these networks approximated, but did not fully replicate the behaviour and 

performance of the Bayesian rule. More complex networks with multiple processing layers with 

non-linear activation functions should, in theory, emulate the Bayesian rule and achieve optimal 

performance [18]. However, the network complexity and evolutionary time needed to 

accomplish this is not clear. 

   

Figure 8. Rescorla Wagner Plots for the networks that evolved in learning scenario with 
variable number of updates and initial estimate E0 = 0.5. Different colours represent data 
created with different s values.  Networks N2+1/s (A) and N3 (B) show an updating behaviour 
resembling the RW rule. Network N3+1/s (C), is able to use the information on update number 
to display an updating behaviour that, although not identical to that of the Bayesian rule (straight 
lines in the background), resembles the Bayesian in that early information has larger effect than 
later information, thus for a given R-Et value, change in estimate (ΔE) is larger for early updates 
- small values of s (violet end of the rainbow spectrum) and smaller for later updates - big values 
of s (red end of the rainbow spectrum). This is evident in the clear-cut segregation of data points 
by colour (that is by s), specially for smaller values of s, where their effect is larger.  

 

Investigating the behaviour of different networks allowed us to also notice that performance 

equal to RW rule does not always guarantee a behaviour that is like it. Contrary to all the 

cases considered so far, when initial estimate E0 was fixed to 0 in the task with variable 

number of updates, all networks that outperformed RW Rule never showed a behaviour that 

resembled it (straight line through origin), even during the stage in which their performance 

was corresponding to that or RW Rule.  
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4.2.4 Broader comparison of the relationship between complexity and performance.  

Figure 9 Relationship between network complexity and network performance in both 

learning tasks and E0=0.5. Each small square represents a single replicate and its colour shows 

the population mean error over the last 1000 generations of the individual-based simulations that 

were run for 500K generations. Performance of the networks is relative to the performance of the 

rules for a given learning task and it cannot be compared in absolute terms between tasks. 

 

Unlike what we observed for the simple learning task, for the more difficult task, a slight 

increase in complexity of the networks did not result in improved performance. Intermediate 

levels of complexity were not enough, only the most complex networks studied by us were able 

to evolve beyond RW performance (Figure 9).  

Below we provide a more in detail analysis of the effects of various complexity features on the 

performance of different networks in both learning tasks. 

The very same bias that was beneficial in simple learning task was inconsequential in the more 

difficult task. And reversibly, hidden layer and non-linearity, which were essential (but not 

sufficient) for performance improvement in difficult task, were of less impact (N30) or even 

detrimental in the simple task.  

The only feature that was somewhat consistently beneficial was the extra input 1/s. Noteworthy, 

these beneficial effects of the extra input worked in very different ways for each task. In the 

complex task it worked together with the activation function to allow the networks to 
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approximate Bayesian performance and behaviour, as explained in section 4.2.3, whereas in the 

simple task it seemed to act as an extra degree of freedom (akin to the bias or the evolving initial 

estimate) that allowed the networks to perform and behave similarly to the “optimally 

performing rule” but with variable, s-dependent coefficient (data not shown).    

In summary, the relationship between network complexity and its performance is strongly 

dependent on the learning task. In each task various features of the network can have different 

effect. 

 

5. Discussion 

In this study we investigated the evolution of learning using artificial neural networks. While 

each network did not change during its lifetime, it could be used to improve the estimation of 

the environmental qualities, based on experiences. If the learning task was simple, many 

networks (even the simple ones) were able to achieve optimal performance, or at least better 

than the RW rule that we used as reference. However, some complex networks actually 

performed worse than the simple ones. Similar conclusions have been reached in a different 

learning context by [11]. In a more complicated (and more realistic) task, many networks 

reached RW rule performance, but only more complex networks were able to get closer to the 

optimal performance. Therefore, complexity needed depends on the nature of the learning task 

and complexity is not always a good predictor of performance.  

Even in such a simple system as the one we developed in this study, we had a few findings that 

were not in line with mathematical and statistical expectations. For example, all networks with 

bias and evolving initial estimate are mathematically equivalent because they are all able to 

perform optimally when the number of updates is fixed, regardless of the initial estimate. 

Therefore, we would expect initial estimates to evolve to any number between 0 and 1 (or even 

beyond). However, we saw bias towards lower or higher values (depending on the learning 

task) in our evolutionary simulations. 

We also showed that linear networks with or without processing layer are equivalent from 

mathematical perspective, yet they differ in evolutionary trajectories. Also, more complex 

networks allow for larger variability in the evolved mechanism (weights) potentially having 

higher chance to adapt when the environment changes, increasing their evolvability [21]. 

Our findings highlight the importance of taking mechanisms into consideration, because they 
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can often have evolutionary effects that cannot be predicted on the basis of pure mathematical 

analysis. Additionally, different mechanisms may lead to strikingly different results (see e.g. 

[20,22]). This makes it important to compare different implementations in one study [20,22] or 

perform studies that check the universality of conclusions of the earlier studies using different 

approaches (this study). For example, both us and Trimmer have shown that the RW rule seems 

to evolve readily (at least in the early stages of evolution – see also below), but in our study it 

was much less often replaced by better rules if the task was more challenging.   

Looking at the performance of an evolved network gives only information on how efficient 

learning is, but not how it is achieved. Studying learning behaviour (how experience actually 

changes the current knowledge) gives a fuller picture on the evolution of learning. This is 

especially important when studying complex mechanisms. NNs have multiple parameters and 

potentially complex structure making it difficult to understand their behaviour by looking at the 

network weights (and Trimmer et al. [13] faced equivalent difficulties when comparing the 

equations that resulted from their binary trees). We found a straightforward way to compare 

networks’ behaviour with simple rules and potentially experimental data using RW plots. Using 

RW plots we show that different networks can use the information on the update number in 

different ways. We could also show that in most cases, networks show updating behaviour that 

is similar to the rules they are close to in performance at the moment, but this is not always the 

case. Therefore, basing conclusions only on performance is not always reliable.  

We showed how an assessment of learning behaviour can be achieved through relatively simple 

and straightforward means. Different learning tasks may need different methods, but devising 

proper methods for assessing learning behaviour and using them routinely will allow a much 

better understanding of learning mechanisms and their evolution that cannot be realised on basis 

of studying performance alone. 

Just as Trimmer et al [13], we found that most of the networks perform and behave like the RW 

Rule at least during some stages of evolution. This suggests that RW rule can be so prominent 

because different underlying mechanisms/architectures promote similar observed/behaviour 

response. Nevertheless, some other of our findings point to weaknesses of the RW Rule that 

put into question the assertion that RW Rule is favoured by natural selection. Noteworthy, RW 

performed very poorly compared to most evolved networks when initial estimate was equal to 

0.0, which is the situation actually present in laboratory conditions for which RW was 
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developed (and likely also in nature) since initially neutral stimuli correspond to no initial 

association. 

One possible explanation to this discrepancy is that empirical evidence concordant with RW 

rule is often observed because natural selection has indeed favoured this “rule”, but not 

predominantly in the way that Trimmer et al [13] have proposed. To begin with, their (and our) 

study relies on detailed comparison of quantitative data. But we should bear in mind that RW 

rule was developed to qualitatively (not quantitatively) explain experimental results [12].  

More importantly, Trimmer et al [13] and us studied the simplification of RW model when only 

one stimulus is present. However, RW model was developed and gained all its reputation from 

explaining learning phenomena observed when more than one stimulus is present, such as 

blocking and overshadowing. Actually, one of the most remarkable features of learning (clearly 

observed during blocking and overshadowing experiments and that is consistent with the model 

by Rescorla and Wagner) is that it proceeds in a relatively sophisticated way that would look 

like causal reasoning, rather than just strengthening of associations based on contiguity of 

stimulus and reward [23]. It could be argued that having this kind of learning would be highly 

advantageous. 

The open question is: are quantitative models of evolution of simple RW rule useful to explain 

the success of the full multi-stimuli RW model in experimental psychology? Maybe when 

talking about evolution of learning we should rather focus on more complex scenarios seen both 

in nature and laboratory (see below). In particular, to fully understand the selective advantage 

of RW model, learning situation where more than one stimulus is present have to be considered. 

For studies concerning the evolution of behaviour NNs seem to be especially relevant as they 

allow for a broad range of responses to evolve and also the same responses to be achieved in 

different ways. This allows for much wider flexibility in possible outcomes of evolution that in 

most of the analytical studies (but see [10]) while at the same time it provides a relatively 

straightforward and intuitive framework for linking environmental inputs to behavioural 

outcomes.  However, much more work is needed to fully understand the evolution of learning 

mechanisms. The ecological scenario considered in Trimmer et al. [13] and our study was 

“deliberately very simplistic to allow for comparison of RW rule with optimal rules [and NNs] 

of the same complexity and also to avoid confusion with decision-making systems” [13]. By 

evolving NNs in a more complex environment which includes compound stimuli, and allowing 

more flexible evolution of the structure of ANNs, we could in the future build a more complete 
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evolutionary picture on the types and quality of rules/mechanisms that allow associative 

learning. Additionally, animals may not directly estimate probability of reward. There are likely 

other layers of behaviour, for instance decision making, that could be more important for fitness 

than only how well the estimated association strength between different stimuli is a reflection 

of reality.  

Instead of evolving networks with predefined structure, allowing for evolution of network 

architecture will shed a light on whether sub-networks linked to different tasks, like assessment 

and decision making, will evolve. Inclusion of plastic connection between network nodes, akin 

to synaptic plasticity seen in natural networks, would also add more realism to evolved learning 

mechanisms. Such plasticity is the defining feature of networks used for machine learning 

applications. However, in this field predefined and often biologically implausible learning 

algorithms are used. Nevertheless, an interesting approach was taken by Chalmers [24] – he 

used a genetic algorithm to evolve a learning rule for weight updating in a simple NNs. He 

showed that the delta rule (similar to RW rule) evolves and is one of the most successful rules. 

This learning rule is also used in the field of reservoir computing [25,26] where most of the 

network collects and process information and only part of the network directly linked to output 

is modified by learning. Such approaches provide an interesting avenue in the study of the 

evolution of learning. 

Additionally, learning should be tested in more ecologically realistic scenarios that include for 

example, simultaneous assessment of various stimuli, exploration-exploitation trade-off, 

competition, and environmental variability [27–30]. Our future line of research on the evolution 

of learning does consider foraging decisions in a changing world where learning is achieved by 

modifying part of the neural network, as inspired by the reservoir computing and biological 

observations (Kozielska and Weissing, in preparation). 

 

6. Supplementary Material 

Appendices A-F and simulation code can be found online at 

https://github.com/marmgroup/AssociativeLearning 
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