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Abstract

In typical single-cell RNA-seq (scRNA-seq) data analysis, a clustering algorithm is applied
to find putative cell types as clusters, and then a statistical differential expression (DE) test is
used to identify the differentially expressed (DE) genes between the cell clusters. However, this
common procedure uses the same data twice, an issue known as “double dipping”: the same
data is used to define both cell clusters and DE genes, leading to false-positive DE genes
even when the cell clusters are spurious. To overcome this challenge, we propose ClusterDE,
a post-clustering DE test for controlling the false discovery rate (FDR) of identified DE genes
regardless of clustering quality. The core idea of ClusterDE is to generate real-data-based
synthetic null data with only one cluster, as a counterfactual in contrast to the real data, for
evaluating the whole procedure of clustering followed by a DE test. Using comprehensive
simulation and real data analysis, we show that ClusterDE has not only solid FDR control but
also the ability to find cell-type marker genes that are biologically meaningful. ClusterDE is
fast, transparent, and adaptive to a wide range of clustering algorithms and DE tests. Besides
scRNA-seq data, ClusterDE is generally applicable to post-clustering DE analysis, including
single-cell multi-omics data analysis.
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Introduction

The recent development of single-cell RNA-seq (scRNA-seq) technologies has revolutionized
transcriptomic studies by providing unprecedented pictures of gene expression within individual
cells. A major task of scRNA-seq data analysis is to annotate cell types and understand their
biological differences. Hence, the standard workflow of analyzing scRNA-seq data includes two
steps: (1) clustering cells to find potential cell types, (2) finding differentially expressed (DE) genes
between cell clusters as potential cell-type marker genes [1, 2].

Although this post-clustering differential expression (DE) procedure is used in the state-of-the-
art scRNA-seq analysis pipelines such as the R package Seurat (ref [3]) and the Python module
Scanpy (ref [4]), researchers have realized that this procedure is conceptually problematic. For
instance, Seurat contains the warning message that “P values should be interpreted cautiously, as
the genes used for clustering are the same genes tested for differential expression.” This issue is
commonly referred to as “double dipping,” meaning that the same gene expression data are used
twice to define cell clusters and DE genes, thus resulting in an inflation of the false discovery rate
(FDR) of DE genes when the cell clusters are spurious.

We illustrate the double-dipping issue in Fig. 1a, a scenario where only a single cell type
exists, and no genes should be identified as between-cell-type DE genes. However, as clustering
is based on gene expression data, certain genes would be correlated with the resulting cell
clusters if their expression patterns drive the clustering. Hence, these genes would have different
conditional distributions in the two cell clusters and subsequently be identified as between-cell-
cluster DE genes, but they are false-positive between-cell-type DE genes. Therefore, this double-
dipping issue would inflate the false discovery rate (FDR), the expected proportion of false-positive
between-cell-type DE genes among all identified DE genes.

Two attempts to solve the double-dipping issue include the truncated normal (TN) test and
the Countsplit method. The first method TN test has five steps: (1) splitting cells into two sets:
training cells and test cells [5]; (2) applying a clustering algorithm to the training cells to find two
clusters; (3) training a support vector machine classifier on the training cells to predict a cell’s
cluster label from the cell’s gene expression vector; (4) using the trained classifier to predict the
test cells’ cluster labels; (5) finding DE genes between the two test cell clusters using the TN
test. Instead of splitting cells, the second method Countsplit splits the scRNA-seq count matrix
into two count matrices of the same dimensions (cells and genes)—a training matrix and a test
matrix—by a procedure called data thinning [6]. Since the two matrices have exactly matched
cells, Countsplit finds cell clusters by applying a clustering algorithm to the training matrix, and it
subsequently identifies DE genes by applying a DE test to the test matrix given the cell clusters.
Despite the claims made by the TN test and Countsplit that they can provide well-calibrated P

values, uniformly distributed between 0 and 1 under the null hypotheses, our findings indicate that
their P values are anti-conservative in the presence of gene-gene correlations (see Results). The
reason behind this issue is that the validity check of P values in the TN test and Countsplit papers
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relied on simulation studies that implicitly assumed genes to be independent [5, 6], an assumption
that does not hold in real scRNA-seq data. As a result, the P value calibration issue would lead to
inflated false discovery rates (FDRs) when applying the TN test and Countsplit to real scRNA-seq
data.

In addition to the TN test and Countsplit, several cluster-free DE tests have been developed
to circumvent the double-dipping issue by bypassing the cell clustering step [7–12]. However,
it is important to note that these cluster-free methods do not aim to identify potential cell types.
Consequently, the DE genes identified by these methods cannot be interpreted as marker genes
for specific cell types, unlike the DE genes identified after clustering. In other words, the cluster-
free DE genes and the post-clustering DE genes serve different purposes and are not conceptually
comparable. Another stream of methods has been developed to assess the quality of clustering
results, e.g., the “purity” of a cluster or if two clusters should be merged [13–17]. However, these
methods do not provide a direct statistical test for identifying DE genes, and it remains difficult to
determine the threshold for clustering quality above which double dipping is not a concern. In this
study, we focus on addressing the inflated FDR issue when using post-clustering DE genes as cell-
type marker genes. Hence, we do not consider cluster-free DE tests and clustering assessment
methods as competing alternatives in our investigation.

Here we introduce ClusterDE, a post-clustering DE test for identifying potential cell-type marker
genes by avoiding the inflated FDR issue due to double dipping. In particular, ClusterDE controls
the FDR for identifying cell-type marker genes even when the cell clusters are spurious. As an
efficient and interpretable method, ClusterDE adapts to the most widely used pipelines Seurat
(ref [3]) and Scanpy (ref [4]), which include a wide range of clustering algorithms and DE tests. We
benchmarked ClusterDE against the default Seurat (which includes double dipping), the TN test,
and Countsplit, each of which includes a cell clustering step and a DE analysis step. Specifically,
to align with the prevailing practices in single-cell data analysis, we employed the default Seurat
clustering algorithm (which involves data processing steps followed by the Louvain algorithm) for
cell clustering; for DE analysis, we evaluated five widely used DE tests (e.g., the Wilcoxon rank-
sum test and the two-sample t test) included in the Seurat package, with the exception of the TN
test, which utilizes its own DE test. Our benchmarking results demonstrate that ClusterDE is the
only method that effectively controls the FDR across varying thresholds. Moreover, ClusterDE
achieves comparable or superior statistical power compared to the other three methods. When
applied to the scRNA-seq data of five homogeneous cell lines, ClusterDE successfully avoids
finding false-positive DE genes. In contrast, Seurat, the TN test, and Countsplit yield thousands
of DE genes due to double dipping. Moreover, when applied to a well-studied peripheral blood
mononuclear cells (PBMC) scRNA-seq dataset with two biological replicates and four protocols,
ClusterDE excels at discovering the cell-type marker genes of CD14+ monocytes and CD16+

monocytes as its top DE genes, while Seurat’s top DE genes contain many housekeeping genes.
Besides the ability to control the FDR and identify cell-type marker genes, ClusterDE has a notable
practical advantage for allowing users to dissect an abstract statistical null hypothesis as concrete
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synthetic null data, so users can decide whether the synthetic null data accurately reflects the
negative control scenario they have in mind, and if not, how the synthetic null generation should
be adjusted.

Results

ClusterDE uses a contrastive strategy to identify reliable DE genes robust to double dipping
The ClusterDE test consists of four major steps (Fig. 1b), with its core idea being to establish a
negative control for the entire computational pipeline that includes cell clustering followed by DE
analysis. This contrastive strategy enables the identification of trustworthy DE genes by comparing
the result from real-data analysis with that from the negative-control analysis. To implement this
strategy, we introduce a null model that assumes the cells of interest (i.e., the cells divided into
two clusters and subject to DE analysis, referred to as the “target data”) are from a homogeneous
cell type, where no between-cell-type DE genes should be detected.

In step 1 of ClusterDE, we use the model-based simulator scDesign3 (ref [18]) to generate
“synthetic null data” that mimic the target data but represent a homogeneous cell type, with the
same number of cells and the same genes as in the target data. Fig. S1 illustrates the synthetic
null generation process, with the mathematical details described in Methods. Fig. 1c and Fig. S3
show that the synthetic null data preserve the per-gene mean and variance statistics, as well as
the gene-gene correlations in the target data. Meanwhile, irrespective of the clustering pattern in
the target data, the synthetic null data exhibit a homogeneous cell cluster, which is specified as
the “null model” for a single cell type in scDesign3.

In steps 2 and 3 of ClusterDE, users have the flexibility to specify a clustering algorithm and
a DE test, respectively, to analyze the target data and the synthetic null data in parallel. These
two steps yield a “target DE score” and a “null DE score” for each gene. Specifically, we define a
gene’s DE score as a summary statistic measuring the difference of the gene’s expression values
in two clusters; a higher DE score indicates that the gene is more likely DE. For example, the DE
score is by default defined as the negative logarithm of the P value obtained from a statistical DE
test (e.g., the Wilcoxon rank-sum test).

Finally, in step 4 of ClusterDE, a “contrast core” is computed for each gene by subtracting the
gene’s null DE score from its target DE score. True non-DE genes are expected to have contrast
scores symmetrically distributed around 0. Then ClusterDE uses the FDR control method Clipper
(ref [19]) to determine a contrast score cutoff based on a target FDR (e.g., 0.05). Genes with
contrast scores greater than or equal to the cutoff are identified as DE genes.

The detailed procedure of ClusterDE is described in Methods.

ClusterDE achieves reliable FDR control and good statistical power under double dipping
We conducted extensive simulation studies to validate ClusterDE as a post-clustering DE test
with reliable FDR control under double dipping. We also compared ClusterDE with Seurat, the
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most widely used analysis pipeline that involves double dipping, and two existing methods that
attempted to address the double-dipping issue—the TN test (ref [5]) and Countsplit (ref [6]). In the
cell clustering step of all four methods, we used the default Seurat clustering as in most scRNA-
seq data analyses. In the DE analysis step of ClusterDE, Seurat, and Countsplit, we considered
five DE tests in the Seurat package: the Wilcoxon rank-sum test (Wilcoxon; the default option in
the Seurat package), the two-sample t test (t-test), the negative binomial generalized linear model
(NB-GLM), the logistic regression (LR), and the likelihood-ratio test (bimod). The TN test is an
exception because it uses its own TN test in the DE analysis step. As Seurat, Countsplit, and the
TN test all output a P value for each gene, we applied the Benjamini-Hochberg (BH) procedure to
all genes’ P values to find a P value cutoff given a target FDR (e.g., 0.05). Genes with P values
less than or equal to the cutoff are identified as DE genes.

In the first simulation setting, which represents the most severe double-dipping scenario, we
simulated the target data from a single cell type by mimicking the naı̈ve cytoxic T cells in a real
dataset (ref [20]) (Fig. 1c top left; see Methods section “Simulation design”), where any identified
DE genes should be considered false discoveries. At the target FDR of 0.05, all three existing
methods—Seurat, Countsplit, and the TN test—were unable to control the actual FDR under 0.05
(Fig. 1d). As expected, the double-dipping approach employed by Seurat exhibited the worst
performance, with all five DE tests yielding actual FDRs of 1. Although Countsplit and the TN test
were designed to overcome the FDR inflation issue caused by double dipping, their actual FDRs
still far exceeded 0.05. The reason is that their P values are anti-conservative in the presence
of gene-gene correlations (Fig. S2 right), although their own simulation studies verified their P -
value validity under unrealistic settings where genes are assumed to be independent [5, 6]. In
contrast, ClusterDE successfully controlled the FDRs under 0.05 for three out of the five DE tests:
Wilcoxon, t-test, and LR (Fig. 1d). We verified that the contrast scores calculated in step 4 of
ClusterDE satisfied the symmetry requirement around zero (Fig. S2 left). Although ClusterDE did
not control the actual FDRs of the NB-GLM and bimod tests under 0.05 due to possible violations of
these two tests’ parametric modeling assumptions on this dataset, the FDR inflation of ClusterDE
for these two tests was much less severe than that of Countsplit (ClusterDE’s actual FDRs 0.28

and 0.16 vs. Countsplit’s actual FDRs 0.68 and 1 for NB-GLM and bimod, respectively) (Fig. 1d).
In the second simulation setting, we generated datasets with varying degrees of double dip-

ping, still by mimicking the naı̈ve cytoxic T cells in a real dataset (ref [20]) (Fig. 1e top; see
Methods section “Simulation design”). Each dataset consists of two synthetic cell types with pre-
specified 200 true DE genes with varying expression level differences between the cell types, and
the overall difference is summarized as the log fold change (logFC). A larger logFC indicates
a greater distinction between the two cell types. After the default Seurat clustering algorithm
is applied to each dataset to identify two cell clusters, the agreement between the cell clusters
and the cell types is measured by the adjusted Rand index (ARI). A smaller ARI represents a
more severe degree of double dipping, as illustrated by the UMAP visualizations (Fig. 1e top
row). Since Wilcoxon is the default DE test in Seurat and yielded the best FDR control for both
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ClusterDE and Countsplit, we used Wilcoxon as the DE test in ClusterDE, Seurat, and Countsplit,
while the TN test uses its own DE test. The results in Fig. 1e show that ClusterDE consistently
controlled the actual FDRs across a range of target FDR thresholds under varying degrees of
double dipping. In contrast, Seurat, Countsplit, and the TN test failed to control the actual FDRs
under the target thresholds, and as expected, exhibited greater FDR inflation when the degree
of double dipping is more severe (Fig. 1e middle row). Notably, ClusterDE achieved comparable
or superior statistical power to Seurat, Countsplit, and the TN test at the same actual FDR levels
(Fig. 1e bottom). These conclusions remained to hold when ClusterDE, Seurat, and Countsplit
were used with the other four DE tests (t-test, NB-GLM, LR, and bimod) in the DE analysis step
(Fig. S4). Moreover, to reflect the fact that cell types mostly have unbalanced cell numbers in real
data, we further simulated target data in which the two synthetic cell types have size ratios of 1 : 4

and 1 : 9. In these two unbalanced scenarios, we still found ClusterDE to outperform the other
three methods in terms of FDR control across target FDR thresholds and under varying degrees of
double dipping. In particular, ClusterDE consistently exhibited solid FDR control and comparable
or superior statistical power to the other three methods when used with Wilcoxon as the DE test
(Fig. S5-Fig. S6).

Technically, ClusterDE shares the concept of controlling the FDR by generating negative con-
trol data with the knockoffs methods [21]. The knockoffs methods are a suite of statistical methods
developed for identifying important features in a high-dimensional predictive model, a supervised-
learning setting different from our one-test-per-gene test setting. Roughly, the knockoffs methods
generate knockoff data from real data in such a way that each feature is no longer correlated
with the outcome variable given the other features, while the feature-feature correlations are
preserved in the knockoff data. We applied the default model-X knockoffs method (ref [22]) to the
simulated datasets—treating genes as features and the cell cluster label as the outcome variable;
the results indicate that, although this method controlled the FDR, it always led to zero statistical
power, making it impractical for DE gene identification. Moreover, we used the model-X knockoffs
method and the simple permutation strategy (where each gene is independently permuted across
all cells) as two alternative strategies to scDesign3 for the synthetic null generation in step 1 of
ClusterDE, followed by steps 2–4 of ClusterDE. Our results on the simulated datasets demonstrate
that scDesign3 led to the most solid FDR control and the best statistical power among the three
strategies for the synthetic null generation (Fig. S7).

To address the practical concern about the randomness involved in generating synthetic null
data (a random sampling process from the null model fitted on target data), we conducted an
analysis to assess the robustness of DE genes identified by ClusterDE. The results show that the
DE genes identified by ClusterDE remain relatively stable and robust to the randomness (Fig. S8).

In summary, the above simulation studies confirm that ClusterDE is a flexible and stable
method that effectively controls the FDR under varying degrees of double dipping while main-
taining good statistical power.
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ClusterDE identifies cell-type marker genes and excludes housekeeping genes from its top
DE genes
We applied ClusterDE to multiple real scRNA-seq datasets to demonstrate how it can enhance the
rigor and biological relevance of findings from the post-clustering DE analysis. The following real
data applications showcase the effectiveness of ClusterDE in identifying meaningful DE genes
and improving the reliability of DE gene identification.

In the first application, we collected five datasets of pure cell lines [23, 24], so the cells in each
dataset can be trusted as a homogeneous population that should not be divided into more than one
cluster (Fig. 2a left). Hence, any post-clustering DE genes identified from these datasets should
not be interpreted as between-cell-type DE genes. We used these five datasets as real-data
negative examples to demonstrate the inflated FDRs of existing methods and the effectiveness
of ClusterDE in removing the FDR inflation. As a sanity check of ClusterDE, we first verified
that the synthetic null data resembled the target data (Fig. 2a right). Applying ClusterDE, Seurat,
Countsplit, and the TN test to the five datasets, we found that all methods except ClusterDE
identified thousands of DE genes, in many cases even more than 50% of all genes, indicating
severely inflated false discoveries at the target FDR of 5%. In contrast, ClusterDE found zero DE
genes in 22 out of 25 cases when used with the five DE tests (Wilcoxon, t-test, NB-GLM, LR, and
bimod) on the five datasets. In particular, ClusterDE with Wilcoxon consistently found zero DE
genes from the five datasets. Hence, we set Wilcoxon as the default DE test in ClusterDE.

In the second application, we collected eight PBMC datasets of CD14+/CD16+ monocytes
(ref [25]) to demonstrate that ClusterDE can effectively detect known or potential marker genes
of the two cell subtypes. The eight datasets were generated from two technical replicates by four
unique molecular identifier (UMI) based scRNA-seq protocols (10X Genomics Versions 2 and 3,
Drop-seq, and inDrop). After applying the default Seurat clustering to identify two clusters in each
of the eight datasets, we found four datasets to have relatively accurate clustering results (ARI
> 0.5; Fig. 2c left, Fig. S9 top), while the other four datasets had clusters poorly matched with the
two monocyte subtypes (ARI < 0.2; Fig. S9 bottom). Hence, we expected that an effective post-
clustering DE method would be able to detect meaningful marker genes for monocyte subtypes
in the first four datasets, but we did not expect the same level of effectiveness for the latter four
datasets. Hence, we focused on the analysis results of the first four datasets. As a sanity check
of ClusterDE, we first verified that the synthetic null data resembled the target data but had the
gap filled between CD14+ monocytes and CD16+ monocytes, representing a single “hypothetical”
cell type in each dataset (Fig. 2c right). Applied to the first four datasets with relatively accurate
clustering results, ClusterDE with Wilcoxon identified 55–173 DE genes (1–4% of all genes) at the
target FDR of 5%, while Seurat and Countsplit identified 1–1,288 DE genes (0–26% of all genes),
and the TN test consistently identified at least 1,187 genes (25% of all genes) (Fig. 2d). Given
our knowledge that the two monocyte subtypes are not drastically different, we did not expect
thousands of genes to be identified as potential subtype marker genes. Hence, we deemed the
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number of DE genes identified by ClusterDE to be more reasonable.
Examining the post-clustering DE genes identified by ClusterDE or Seurat across the five

DE tests on the four datasets (so ClusterDE and Seurat each had 20 DE gene lists), we found
that ClusterDE better distinguished known subtype marker genes from housekeeping genes than
Seurat did. This distinction was evident in the ranking of specific genes in the DE gene lists.
For example, we considered the genes FCGR3A (CD16), a canonical marker for distinguishing
CD14+ monocytes and CD16+ monocytes, and B2M, a widely recognized housekeeping gene
expressed across various cell types [26]. Notably, ClusterDE consistently ranked FCGR3A among
its top DE genes (with ranks approximately between 1 and 10) while placing B2M consistently low
in its DE gene lists (with ranks below 1,000 in most cases) (Fig. 2e top). In contrast, Seurat ranked
the two genes similarly (with ranks between 10 and 100) in its DE gene lists (Fig. 2e bottom),
making it impossible to discern which of the two genes is more likely a subtype marker without
prior knowledge.

Next, using one of the four datasets “Rep2 10x(V2)” as an example, we examined the five most
frequently identified post-clustering DE genes (defined based on the top 50 DE genes identified
by each of the five DE tests) by ClusterDE or Seurat (Fig. 2f). Again, the two clusters were found
by the default Seurat clustering, and ClusterDE and Seurat both used these two clusters for post-
clustering DE analysis. Our analysis found that the five genes identified by ClusterDE all exhibited
distinct distributions of normalized expression levels between the two clusters, while the five genes
identified by Seurat all had almost indistinguishable distributions between the two clusters (Fig. 2f).
Further, we examined the enrichment of two gene sets—known CD14+/CD16+ monocyte markers
and housekeeping genes—in the post-clustering DE gene lists outputted by ClusterDE and Seurat.
The gene set enrichment analysis (GSEA) revealed that the known monocyte markers had strong
enrichment in the top-ranked DE genes identified by ClusterDE, exhibiting a clear distinction from
the housekeeping genes (Fig. 2g top). In contrast, the monocyte makers exhibited less enrichment
in the top-ranked DE genes identified by Seurat; what is worse, they had similar enrichment
patterns as the housekeeping genes, indicating that Seurat had the monocyte markers and the
housekeeping genes hardly distinguishable in its ranked DE gene list (Fig. 2g bottom). The GSEA
results on the other three datasets confirmed that ClusterDE better distinguished the monocyte
markers from the housekeeping genes than Seurat (Fig. S11).

Considering the common analysis practice that only the top k DE genes (e.g., k = 100) are
used for further investigation, we summarized the numbers of monocyte markers and housekeep-
ing genes among the top k = 1 to 100 DE genes identified by ClusterDE or Seurat across the
five DE tests on the four datasets. Fig. S12 shows that ClusterDE found more monocyte markers
and fewer housekeeping genes among the top DE genes than Seurat. To further explain why
ClusterDE can better distinguish monocyte markers and housekeeping genes, we used the minus-
average (MA) plots (ref [27]) to demonstrate the effectiveness of using synthetic null as a contrast
to remove housekeeping genes from the top DE genes. From the MA plots (Fig. S13), we observed
that four exemplary housekeeping genes (ACTB, ACTG1, B2M, and GAPDH; marked in blue in
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Fig. S13) had both large target DE scores and large null DE scores, resulting in close-to-zero
contrast scores, so these genes were not found by ClusterDE as top DE genes. However, these
four genes were found by Seurat as top DE genes due to their large target DE scores. On the
other hand, we examined four exemplary monocyte markers (CD14, FCGR3A, MS4A7, and LYZ ;
marked in red in Fig. S13) and found them to have large target DE scores but small null DE scores,
so they were identified as top DE genes by ClusterDE.

In conclusion, ClusterDE is an effective solution to the double-dipping issue in post-clustering DE
analysis. Notably, ClusterDE adapts a wide range of clustering algorithms and DE tests. Through
extensive simulation studies and real data analysis, we demonstrated that ClusterDE effectively
avoids false discoveries caused by double dipping and identifies biologically meaningful cell-type
markers. For post-clustering DE analysis with more than two clusters, we recommend using
ClusterDE in a stepwise manner, possibly following a cell cluster hierarchy constructed based on
cluster similarities (Fig. S14). That is, users compare a pair of ambiguous clusters at each step,
so the post-clustering DE genes can be used to decide whether the two clusters are biologically
meaningful and should be distinct. Finally, while ClusterDE focuses on the double-dipping problem
in the post-clustering DE analysis, the concept of synthetic null data (in silico negative control) can
be readily extended to other analyses also affected by double dipping, such as post-pseudotime
DE analysis [28] and data integration analysis.

Data Availability

All datasets used in the study are publicly available. The pre-processed datasets are available at
https://figshare.com/articles/dataset/ClusterDE_datasets/23596764.

Code Availability

The R package ClusterDE is available at https://github.com/SONGDONGYUAN1994/ClusterDE.
The tutorials of ClusterDE are available at https://songdongyuan1994.github.io/ClusterDE/
docs/index.html. The source code and data for reproducing the results are available at: http:
//doi.org/10.5281/zenodo.8161964 [29].
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Figure 1: ClusterDE is a solution to the double-dipping issue in post-clustering DE analysis. a, An illustration of
the double-dipping issue. Each gene’s expression follows a unimodal distribution when cells come from a homogeneous
cell type. However, if clustering divides the cells into two clusters, certain genes are “forced” to have different
distributions between the two clusters. b, An overview of the ClusterDE test. Given the “target data” (real data),
ClusterDE employs the simulator scDesign3 (ref [18]) to generate the corresponding “synthetic null data,” which contains
synthetic cells from one “hypothetical” cell type (the null hypothesis) to mimic the real cells but fill any gap between real
cell types if existent. Then ClusterDE applies a clustering algorithm followed by a DE test to both the target data and
the synthetic null data in parallel, yielding two DE scores for each gene (a “target DE score” and a “null DE score”).
Finally, ClusterDE uses the FDR-control method Clipper (ref [19]) to calculate a contrast score based on the two DE
scores for each gene. ClusterDE identifies DE genes as those whose contrast scores exceed the threshold, which
is determined by finding a contrast score threshold (represented by the vertical dashed line) based on the contrast
score distribution and the desired target FDR (e.g., 0.05). c, When the target data contained cells from a single type
(simulation; see Methods “Simulation design with one cell type and zero DE genes”), the synthetic null data generated
by ClusterDE resembled the target data well in terms of UMAP cell embeddings (left), per-gene expression mean and
variance statistics (middle), and gene-gene correlations (right). d, On the target data in c, ClusterDE (with five DE
tests) outperformed existing methods—including Seurat (which does not consider double dipping), Countsplit (which
aims to address double dipping and works with any DE test), and TN test (which aims to address double dipping
and has its own DE test)—in FDR control. The horizontal dashed line indicates the target FDR of 0.05. The five DE
tests are the Wilcoxon rank sum test (Wilcoxon), t-test, negative binomial generalized linear model (NB-GLM), logistic
regression model predicting cluster membership with likelihood-ratio test (LR), and likelihood-ratio test for single cell
gene expression (bimod). e, The FDRs and power of ClusterDE and the existing methods under various severity levels
of double dipping. The log fold change (logFC) summarizes the average gene expression difference between two
cell types in simulation (see Methods “Simulation design with two cell types and 200 DE genes”). Corresponding to
a small logFC, a small adjusted Rand index (ARI) represents a bad agreement between cell clusters and cell types,
representing a more severe double-dipping issue. Across various severity levels of double dipping, ClusterDE controlled
the FDRs under the target FDR thresholds (diagonal dashed line) and achieved comparable or higher power compared
to the existing methods at the same actual FDRs.

Figure 2: ClusterDE achieves reliable FDR control and good statistical power in identifying DE genes from real
scRNA-seq data. a, UMAP visualizations of target data (left) and synthetic null data (right) of five cell lines. b, Numbers
of DE genes (at the target FDR of 0.05) identified by ClusterDE and the existing methods. While all existing methods
found numerous “false” DE genes within a single cell line, ClusterDE made no false discoveries when used with most
DE tests. The numbers in black and white indicate the number of DE genes and the proportions of DE genes among all
genes, respectively. The five DE tests are the Wilcoxon rank sum test (Wilcoxon), t-test, negative binomial generalized
linear model (NB-GLM), logistic regression model predicting cluster membership with likelihood-ratio test (LR), and
likelihood-ratio test for single cell gene expression (bimod). c, UMAP visualizations of target data (left) and synthetic
null data (right) for four datasets containing two monocyte subtypes: CD14+ monocytes and CD16+ monocytes. The
synthetic null data captured the global topology of the real cells in the target data while filling the gap between the two
cell subtypes. The grey dashed box labels the dataset used in f and g. d, ClusterDE identified DE genes between the
two cell subtypes. The numbers in black and white indicate the number of DE genes and the proportions of DE genes
among all genes, respectively. e, The ranks of two exemplary genes (a monocyte subtype marker FCGR3A in red and
a well-known housekeeping gene B2M in blue) in the DE gene lists of ClusterDE and Seurat across the five DE tests
and the four datasets in c. In each boxplot representing the distribution of 20 ranks, the center horizontal line represents
the median, and the box limits represent the upper and lower quartiles. f, The top DE genes identified by ClusterDE
exhibited distinct expression patterns in the two cell clusters identified by Seurat clustering, a phenomenon not observed
for the top DE genes identified by Seurat. For ClusterDE and Seurat, the top DE genes are defined as the common DE
genes found by the five DE tests in d at the target FDR of 0.05. The UMAP plots show each top DE gene’s normalized
expression levels in the dataset “Rep2 10x(V2)” (marked by the dashed box in c; see Methods section “Dimensionality
reduction and visualization”). The density plots depict each top DE gene’s normalized expression distributions in the
two cell clusters. g, Gene set enrichment analysis (GSEA) of the ranked DE gene lists identified by ClusterDE and
Seurat with five DE tests from the dataset Rep2 10x(V2). The red lines represent the enrichment of the CD14+/CD16+

monocyte marker gene set, and the blue lines represent the enrichment of the housekeeping gene set. The normalized
enrichment score (NES) reflects the direction and magnitude of enrichment, and the P value indicates the significance
of enrichment.
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Online Methods

Practical guidelines for ClusterDE usage

ClusterDE is designed to find potential cell-type marker genes via pairwise comparisons of cell
clusters that might be ambiguous. In practice, we recommend using ClusterDE in the following
steps.

1. Given a set of cell clusters, find two clusters that may be defined as potential cell types or
subtypes. If users use Seurat, they may use the function BuildClusterTree to construct a
hierarchy of the clusters and examine two leaf clusters whose distinctions are ambiguous.

2. Given the two chosen cell clusters, construct a data subset that contains only the cells in
these two clusters.

3. Input the data subset as the “target data” into ClusterDE.

4. Examine the DE genes outputted by ClusterDE and decide whether the two cell clusters are
biologically meaningful cell types or subtypes.

It is worth noting that ClusterDE does not provide an automatic decision about whether two
clusters should be merged, unlike the methods that directly assess the quality of clusters [13–
17]. Instead, ClusterDE focuses on identifying trustworthy post-clustering DE genes as potential
cell-type marker genes, enabling researchers to gain biological insights into clusters by investi-
gating the specific genes that distinguish the clusters. Hence, in contrast to the clustering quality
assessment methods, ClusterDE empowers researchers to explore the functional and molecular
characteristics of clusters.

Specifically, in step 3 of the above procedure, users have the option to input the cell cluster
labels in the target data (the default option in ClusterDE), or they can allow the target data to be
re-clustered by ClusterDE. If the default option is used, then ClusterDE performs clustering on
the synthetic null data only, and the target DE scores will be calculated based on the input cell
clusters. Otherwise, ClusterDE performs clustering on the target data and the synthetic null data
in parallel, but the downside of this approach is that the target cell clusters might not be identical
to the input cell clusters of users’ interest.

ClusterDE method details

Notations for the double-dipping problem in post-clustering DE analysis

The target data is denoted by Y = [Yij ] ∈ Nn×m
≥0 , a cell-by-gene UMI count matrix with n cells as

rows, m genes as columns, and Yij as the UMI count of gene j = 1, . . . ,m in cell i = 1, . . . , n. We
treat each cell i as an observation, which is an m-dimensional vector Yi = (Yi1, · · · , Yim)T.
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In our formulation of the post-clustering DE problem, the n cells belong to two latent cell types
and are partitioned into two clusters by a clustering algorithm. Accordingly, we use Zi ∈ {0, 1} to
denote cell i’s latent cell type.

We define the “ideal DE test” as the one that decides whether a gene has equal mean ex-
pression in two cell types. For gene j, we assume that {(Yij |Zi = 0)}ni=1 share the same
mean denoted by µ0j = IE[Yij |Zi = 0], and {(Yij |Zi = 1)}ni=1 share the same mean denoted by
µ1j = IE[Yij |Zi = 1]. Then the ideal DE test has the following null hypothesis H0j and alternative
hypothesis H1j :

H0j : µ0j = µ1j vs. H1j : µ0j ̸= µ1j .

Hence, gene j is a true DE gene if and only if H0j does not hold. When all n cells belong to one
cell type only, all m null hypotheses, H01, . . . ,H0m, hold simultaneously.

However, since Zi’s are unobserved, standard single-cell data analysis partitions cells into two
clusters using a clustering algorithm g (e.g., the Louvain algorithm in Seurat) applied to Y. We
use Ẑi = gY(Yi) ∈ {0, 1} to denote cell i’s cluster membership, where gY : {Y1, . . . ,Yn} → {0, 1}
is the clustering function, constructed from the clustering algorithm g and the data Y, that maps a
cell’s gene expression vector to a cluster membership.

After cell clustering, standard single-cell analysis performs a DE test for each gene based
on Y1, . . . ,Yn and Ẑ1, . . . , Ẑn. In other words, the data Y is used twice (in clustering and DE
analysis), referred to as the “double-dipping (DD) issue.” The standard post-clustering DE analysis
used in the Seurat pipeline has the DD issue, and it tackles a statistical test different from the
ideal DE test. Specifically, for gene j, we denote µDD

0j = IE[Yij |Ẑi = 0] and µDD
1j = IE[Yij |Ẑi = 1],

two parameters that are the same for all i = 1, . . . , n. Then, the post-clustering DE test in Seurat
corresponds to the following null hypothesis HDD

0j and alternative hypothesis HDD
1j :

HDD
0j : µDD

0j = µDD
1j vs. HDD

1j : µDD
0j ̸= µDD

1j .

Hence, gene j would be detected as a false-positive cell-type marker gene if HDD
0j is rejected but

H0j holds, leading to an inflated FDR in identifying cell-type marker genes. Fig. S15 provides a
toy example illustration of this issue.

ClusterDE step 1: synthetic null generation

Previous findings indicate that, in a single cell type, each gene’s UMI counts can be fitted well by a
negative binomial (NB) distribution [30–32], and all genes’ UMI counts can be well approximated
by a multivariate NB (MVNB) distribution specified by the Gaussian copula [18]. Based on these
findings, in ClusterDE, the null model that indicates a single “hypothetical” cell type is an MVNB
distribution specified by the Gaussian copula. In ClusterDE step 1, the null model would be fitted
on the real data Y by scDesign3 [18], and subsequently, synthetic null data would be sampled from
the fitted null model. The intuition behind this null model is that cells of a single cell type constitute
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a sample from a homogenous population, in which every gene’s marginal count distribution is NB,
and the gene-gene correlation structure is specified by the Gaussian copula. In addition, since
scDesign3 supports many other choices of marginal distributions, ClusterDE can also generate
synthetic null data from multivariate Gaussian, multivariate Poisson, multivariate Zero-Inflated
Poisson, and multivariate Zero-Inflated Negative Binomial distribution.

Note that the idea of fitting a null model on real data, regardless of whether the real data
was generated from the null model, is the core idea of the commonly used likelihood-ratio test in
statistics [33], in which the maximum likelihood under the null hypothesis is estimated from the
real data. Then the null maximum likelihood is compared with the alternative maximum likelihood,
which is also estimated from the real data under a more flexible alternative hypothesis. Finally,
the null hypothesis is only rejected if the null maximum likelihood is significantly smaller than the
alternative maximum likelihood. ClusterDE generalizes this idea by sampling synthetic null data
from the null model fitted by maximum likelihood estimation on the real data, so any clustering-
followed-by-DE pipeline, however complicated, can be applied to the synthetic null data in parallel
to the real data. Then a contrastive strategy can identify trustworthy DE genes as those whose
DE scores are significantly higher from the real data than the synthetic null data.

Fig. S1 illustrates the synthetic null generation process detailed below. In the R package
ClusterDE, this step 1 is implemented by the R package scDesign3 (version 0.99.0) [18].

1. The null model: MVNB specified by the Gaussian copula
Under the null model, we assume that Yij , gene j’s UMI count in cell i, independently follows
the NB(µj , σj) distribution with the probability mass function:

IP(Y = y;µj , σj) =
Γ
(
y + 1

σj

)
Γ
(

1
σj

)
Γ(y + 1)

(
1

1 + σjµj

) 1
σj

(
σjµj

1 + σjµj

)y

; y ∈ {0, 1, 2, · · · } ,

where µj and σj are the mean and dispersion parameters of the NB distribution. That is,

Y1j , · · · , Ynj
i.i.d.∼ NB(µj , σj) ,

with “i.i.d.” short for “independent and identically distributed,” meaning that the n cells’ counts
for gene j represent a random sample from NB(µj , σj).
Denoting Fj as the cumulative distribution function (CDF) of NB(µj , σj), j = 1, . . . ,m, the
MVNB distribution specified by the Gaussian copula is

(
Φ−1(F1(Y11)), · · · ,Φ−1(Fm(Y1m))

)T
, · · · ,

(
Φ−1(F1(Yn1)), · · · ,Φ−1(Fm(Ynm))

)T i.i.d.∼ Nm (0,R) ,

where Φ is the CDF of the standard Gaussian distribution N(0, 1), and Nm (0,R) is an m-
dimensional Gaussian distribution with an m-dimensional 0 mean vector and an m-by-m
correlation matrix R (which is also the covariance matrix because all m Gaussian variables
have unit variances). This null model assumes that, after each gene is transformed to a
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standard Gaussian random variable, the n cells represent a random sample from an m-
dimensional Gaussian distribution with zero means, unit variances, and a correlation matrix
R.
In summary, the null model parameters include {µj , σj}mj=1 and R.

2. Fitting the null model to real data (parameter estimation)
First, the parameters {µj , σj}mj=1 are estimated by employing the maximum likelihood esti-
mation for the m NB distributions: using Y1j , . . . , Ynj to estimate µj and σj as µ̂j and σ̂j ,
respectively, j = 1, . . . ,m. Based on {µ̂j , σ̂j}mj=1, the corresponding CDFs are denoted as
F̂1, . . . , F̂m.
Second, to estimate R, each Yij is first transformed as Uij = Vij ·F̂j(Yij)+(1−Vij)·F̂j(Yij+1),
where Vij

i.i.d.∼ Uniform[0, 1], so that Uij ∼ Uniform[0, 1]. This procedure is referred to as the
“distribution transform” to convert a discrete random variable Yij to a continuous Uniform[0, 1]

random variable [34]. Then, R is estimated as the sample correlation matrix of

(
Φ−1(U11), · · · ,Φ−1(U1m)

)T
, · · · ,

(
Φ−1(Un1), · · · ,Φ−1(Unm)

)T
and denoted as R̂.
In summary, the fitted null model parameters include {µ̂j , σ̂j}mj=1 and R̂.

3. Sampling from the fitted null model (synthetic null data generation)
First, n Gaussian vectors of m dimensions are independently sampled Nm(0, R̂) as

(Z̃11, · · · , Z̃1m)T, · · · , (Z̃n1, · · · , Z̃nm)T .

Second, The n Gaussian vectors are converted to NB count vectors as

Ỹ1 :=
(
F̂−1
1 (Φ(Z̃11)), · · · , F̂−1

m (Φ(Z̃1m))
)T

, · · · , Ỹn :=
(
F̂−1
1 (Φ(Z̃n1)), · · · , F̂−1

m (Φ(Z̃nm))
)T

,

which represent the n synthetic null cells, each of which contains m genes’ synthetic null
counts sampled from the null model.
In summary, the real data is an n-by-m count matrix Y with the n real cells Y1, . . . ,Yn as
the rows, while the synthetic null data is also an n-by-m count matrix Ỹ with the n synthetic
null cells Ỹ1, . . . , Ỹn as the rows. Note that there is no one-to-one correspondence between
the real cells and the synthetic null cells because the synthetic null cells are independently
sampled from the null model.

ClusterDE step 2: cell clustering

While ClusterDE allows any clustering algorithm, to align with the most common practice, we used
the R package Seurat (version 4.2.0) for cell clustering in the results. That is, we applied the
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default Seruat clustering to the target data and the synthetic null data in parallel, obtaining two cell
clusters in each dataset respectively.

Specifically, the default Seurat clustering includes the following steps applied to both the target
data and the synthetic null data, each of which is stored as a Seurat object. We denote each
Seurat object as Seurat.obj.

1. Normalize each cell to have a total count of 10,000; then perform log(normalized count + 1)

transformation.
NormalizeData(Seurat.obj, normalization.method = "LogNormalize", scale.factor

= 10000)

2. Select 2,000 highly variable genes.
FindVariableFeatures(Seurat.obj, selection.method = "vst", nfeatures = 2000)

3. Scale the data.
ScaleData(Seurat.obj)

4. Run PCA on the data.
RunPCA(Seurat.obj, features = VariableFeatures())

5. Compute cells’ k-nearest neighbors.
FindNeighbors(Seurat.obj, dims = 1:30, nn.method = "rann", k.param = 20)

6. Perform Louvain clustering on the cells.
FindClusters(Seurat.obj, resolution)

Since the Louvain clustering cannot pre-specify the cluster number, we tried resolutions
starting from the default resolution of 0.5 and adjusted the resolution until two clusters were
found.

After applying the above clustering procedure, we obtained the cluster labels Ẑ1, . . . , Ẑn from
the target data Y, and Z̃1, . . . , Z̃n from the synthetic null data Ỹ, respectively, where Ẑi, Z̃i ∈
{0, 1}, i = 1, . . . , n. Again, there exists no one-to-one correspondence between Ẑ1, . . . , Ẑn and
Z̃1, . . . , Z̃n.

ClusterDE step 3: DE analysis

ClusterDE allows any DE test. In the results, we used five DE tests included in the Seurat
function FindMarkers, including the Wilcoxon rank-sum test (Wilcoxon, the default test), t-test,
negative binomial generalized linear model (NB-GLM), logistic regression model predicting cluster
membership with likelihood-ratio test (LR), and likelihood-ratio test for single cell gene expression
(bimod, ref [35]).

Given a DE test, on the target data, ClusterDE computes a P value Pj for each gene j for
testing the null hypothesis HDD

0j : µDD
0j = µDD

1j , where µDD
0j = IE[Yij |Ẑi = 0] and µDD

1j = IE[Yij |Ẑi =

1]. Then the target DE score of gene j is defined as Sj := − log10 Pj .
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In parallel, on the synthetic null data, ClusterDE calculates a P value P̃j for each gene j for
testing the null hypothesis H̃DD

0j : µ̃DD
0j = µ̃DD

1j , where µ̃DD
0j = IE[Ỹij |Z̃i = 0] and µ̃DD

1j = IE[Ỹij |Z̃i =

1]. Then the null DE score of gene j is defined as S̃j := − log10 P̃j .
In summary, the m genes have the target DE scores S1, . . . , Sm and the null DE scores

S̃1, . . . , S̃m.

ClusterDE step 4: FDR control

Given the target DE scores S1, . . . , Sm and the null DE scores S̃1, . . . , S̃m, we use the FDR-control
method Clipper to identify DE genes given a target FDR threshold q ∈ (0, 1) [19]. Given a set of
identified DE genes, the FDR is defined as

FDR := IE

[
# false discoveries
# discoveries ∨ 1

]
,

where a ∨ b is defined as the maximum of two numbers a and b.
To ensure a valid FDR control, Clipper requires each gene to have a contrast score such that

the true non-DE genes have contrast scores symmetric about zero. In ClusterDE, gene j’s contrast
score Cj is defined as

Cj := Sj − S̃j .

Then ClusterDE uses Clipper to find a contrast score cutoff T within C (i.e., the set of non-zero
contrast score values) given the target FDR threshold q:

T := min

{
t ∈ C :

|{j : Cj ≤ −t}|+ 1

|{j : Cj ≥ t}| ∨ 1
≤ q

}
and outputs {j ∈ {1, · · · ,m} : Cj ≥ T} as discoveries. Here |A| defines the size of a set A. The
FDR control of this contrast-score thresholding procedure was from the knockoffs method [21].

Under the assumption that the majority of genes are non-DE genes, we would expect that
the distribution of all genes’ contrast scores has a mode at zero, so the symmetry requirement of
Clipper is satisfied. That is, in the ideal scenario, slightly less than 50% of all genes’ contrast scores
should be negative. However, in some real data scenarios, this symmetry requirement might not
hold. For example, the contrast score distribution might have a positive mode such that too few
contrast scores are negative, leading to inflated false discoveries made by Clipper. Or it could be
that the contrast score distribution has a negative mode such that too many contrast scores are
negative, leading to a loss of statistical power. Hence, in practice, ClusterDE verifies the symmetry
assumption by employing Yuen’s trimmed mean test (using the function yuen.t.test() from the
R package PariedData (version 1.1.1)). This test examines the symmetry of the contrast score
distribution after excluding the smallest 10% and largest 10% of the contrast scores.

If symmetry is rejected by Yuen’s trimmed mean test, ClusterDE applies an adjustment to
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the contrast score distribution so that the symmetry requirement can approximately hold. In detail,
ClusterDE applies the “robust fitting of linear models” (using the function rlm() from the R package
MASS (version 7.3-60)) to adjust the null DE scores; that is, a linear model is fitted between the
target DE scores (the response variable y) and the null DE scores (the explanatory variable x),
and the fitted values (the predicted response variable ŷ) are taken as the adjusted null DE scores.
Then the adjusted contrast scores, defined as the differences between the target DE scores and
the adjusted null DE scores, would better satisfy the symmetry requirement.

Since we would like to be conservative regarding the adjustment of contrast scores, ClusterDE
uses the one-sided (“greater than”) Yuen’s trimmed mean test at the significance level of 0.001.
Hence, adjustment is performed only when too few contrast scores are negative, a scenario that
would lead to inflated false discoveries made by Clipper.

Implementation of the TN test and Countsplit

We compared ClusterDE with two existing methods—the TN test (ref [5]) and Countsplit (ref [6])—
that attempted to address the double-dipping issue in post-clustering DE analysis.

For the TN test, we used the Python module truncated-normal (version 0.4). We followed
the GitHub tutorial for the implementation (https://github.com/jessemzhang/tn_test/blob/
master/experiments/experiments_pbmc3k.ipynb). In the clustering step, we used the same
procedure as in ClusterDE step 2. In the DE analysis step, unlike ClusterDE and Countsplit, the
TN test has its own DE test, so we did not use any DE tests included in the R package Seurat
(version 4.2.0).

For Countsplit [6], we used the R package countsplit (version 1.0) to split the original count
matrix into a training matrix (for clustering) and a test matrix (for DE analysis). In the clustering
step, we used the same procedure as in ClusterDE step 2. In the DE analysis step, we used the
five DE tests included in the R package Seurat (version 4.2.0).

Alternative strategies for synthetic null generation

Although the model-X knockoffs method was developed for selecting features in a multivariate
predictive model (e.g., the Lasso) [22], not for marginal DE tests (where each feature is examined
separately), we compared model-X knockoffs to ClusterDE because both methods use the real-
data-based negative control idea.

For a direct implementation of the model-X knockoffs method on the post-clustering DE anal-
ysis, we used the R package knockoff (version 0.3.6) to construct the knockoff data (i.e., the
negative control) and used the default glmnet method for binary logistic regression (where the
cluster labels are considered as the response variable y, and the genes are considered as the
features) to select features as DE genes. We test this approach on 50 simulated datasets with
logFC = 2.6 (see “Simulation design with two cell types and 200 DE genes) and found that it
always selected 0 DE genes (i.e., the power was always 0).
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Moreover, we used the knockoff data constructed above and the permuted data (where each
gene was independently permuted across all cells) as two alternative synthetic null generation
strategies (alternatives to scDesign3) in ClusterDE step 1. Our results on the simulated datasets
indicate that scDesign3 led to more solid FDR control and better statistical power than these two
alternative strategies for the synthetic null generation (Fig. S7).

Simulation designs

To benchmark post-clustering DE methods in terms of the FDR and statistical power, we needed
ground truths of DE genes and non-DE genes. Hence, we used the R package scDesign3 (version
0.99.0) [18] to generate realistic synthetic scRNA-seq data containing true DE genes and non-DE
genes, based on the model parameters learned from real scRNA-seq data. Under each simulation
setting, we generated 200 synthetic replicates.

For each replicate, we simulated a dataset with n = 998 cells and m = 9239 genes, the same
dimensions as those of the naı̈ve cytotoxic T cells in the Zhengmix4eq dataset [20] after the default
Seurat preprocessing step that removed the genes expressed at very low levels. In the following,
we let i and j denote the indices of cells and genes, respectively, i = 1, . . . , n; j = 1, . . . ,m.

The first step was to estimate the following model parameters from the naı̈ve cytotoxic T cells
in the Zhengmix4eq dataset by scDesign3 [18]. For details of the model formulation, please refer
to the previous section “ClusterDE step 1: synthetic null generation.”

• Per-gene NB mean parameter µj ∈ R+, j = 1, · · · ,m;

• Per-gene NB dispersion parameter σj ∈ R+, j = 1, · · · ,m;

• Gene-gene Gaussian copula correlation matrix R ∈ [0, 1]m×m.

Given the mode model parameters include {µ̂j , σ̂j}mj=1 and R̂, the next steps belonged to two
settings: (1) one cell type with zero true DE genes; (2) two cell types with 200 true DE genes.

Simulation setting with one cell type and zero true DE genes

All of the n = 998 cells were simulated from one cell type with an MVNB distribution specified
by the Gaussian copula, whose correlation matrix was R̂, so gene j’s counts followed the NB
distribution with mean µ̂j and dispersion σ̂j , j = 1, · · · ,m. For the simulation details, please refer
to the previous section “ClusterDE step 1: synthetic null generation.” The R package scDesign3
(ref [18]) was used to simulate a cell-by-gene count matrix Y ∈ Nn×m

≥0 , which was used as the
one-cell-type target data (Fig. 1c) in simulation studies.

Simulation setting with two cell types and 200 true DE genes

All of the n = 998 cells were designed to belong to two cell types, with each cell type having its own
MVNB distribution specified by the Gaussian copula. For each replicate, we randomly specified
200 true DE genes to have different mean parameters µ0

j and µ1
j based on the estimate µ̂j .
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For the two cell types, we simulated three cell-type size ratios r ∈ {1, 4, 9} such that cells
i = 1, . . . ,

[
n

r+1

]
were designed to be of cell type 0, and cells i =

[
n

r+1

]
+ 1, . . . , n were designed

to be of cell type 1. For each replicate, the set 200 true DE genes were specified with the index
set JDE ⊂ {1, · · · ,m}.

For each specified true DE gene j ∈ JDE, we set its mean parameter in cell type 0 as the
estimate, i.e., µ0

j = µ̂j . Then we modified its mean parameter in cell type 1, µ1
j , using a pre-

specified log fold change logFC with a 50% probability of up-regulation and a 50% probability of
down-regulation:

µ1
j =

{
µ̂j × 2logFC, if Zj = 1

µ̂j × 2−logFC, if Zj = 0
, with Zj ∼ Ber(0.5), j ∈ JDE .

For the remaining true non-DE genes, we set

µ0
j = µ1

j = µ̂j , j ∈ {1, · · · ,m}\JDE .

The parameter logFC determines the differences between the two cell types, and it is expected
to have an inverse relationship with the severity level of double dipping (that is, the more different
the two cell types, the less severe the double dipping). Hence, we simulated two cell types with a
sequence of logFC values

logFC = 1.05, 1.1, · · · , 1.95, 2, 2.1, · · · , 2.9, 3.

For each logFC value, we simulated cells from cells 0 and 1, each with an MVNB distribution
specified by the Gaussian copula, whose correlation matrix was R̂. That is, gene j’s counts in cell
types 0 and 1 followed NB distributions with different mean parameters µ0

j and µ1
j , respectively,

and the same dispersion parameter σ̂j , j = 1, · · · ,m. For the simulation details, please refer to the
previous section “ClusterDE step 1: synthetic null generation.” The R package scDesign3 (ref [18])
was used to simulate a cell-by-gene count matrix Y ∈ Nn×m

≥0 , which was used as the two-cell-type
target data (Fig. S3) in simulation studies.

Real data analysis

Collection of real data

We collected five scRNA-seq datasets of cell lines, including the three datasets of A549, H2228,
and HCC827 from the study [24] and downloaded from the link https://github.com/LuyiTian/

sc_mixology/tree/master/data, and the two datasets HEK293T and JUKART from the study
[23] and downloaded from https://cf.10xgenomics.com/samples/cell-exp/1.1.0/jurkat/jurkat_

filtered_gene_bc_matrices.tar.gz and https://cf.10xgenomics.com/samples/cell-exp/1.

1.0/293t/293t_filtered_gene_bc_matrices.tar.gz.
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We also collected eight peripheral blood mononuclear cell (PBMC) datasets from the study
[25], which were downloaded from https://github.com/satijalab/seurat-data. The datasets
were from the same biological sample with two technical replicates (Rep1/Rep2) measured by four
protocols (10X Genomics Versions 2 and 3, Drop-seq, and inDrop). In each dataset, we selected
the cells with cell type labels “CD14+ monocytes” and “CD16+ monocytes.”

Data preprocessing

We filtered out lowly expressed genes. For the cell line datasets A549, H2228, and HCC827, we
removed the genes expressed in fewer than 20% cells. For the cell line datasets HEK293T and
JUKART, we removed genes expressed in fewer than 10% cells. For PBMC datasets, we removed
genes expressed in fewer than 10% of the selected monocyte cells. When performing the default
Seurat clustering, Seurat automatically removed the cells with fewer than three genes expressed
and the genes expressed in fewer than 200 cells.

Dimensionality reduction and visualization

To visualize the high-dimensional single-cell data, we first applied the PF-logPF transformation to
a cell-by-gene count matrix [36]. We then used the R package irlba (version 2.3.5.1) to calculate
the top 50 principal components (PCs) of the transformed matrix. Next, we used the R package
umap (version 0.2.10.0) to project the cells from the 50-dimensional PC space to the 2-dimensional
UMAP space.

When comparing the target data and the synthetic null data, we calculated the PCs and UMAPs
jointly by concatenating the two datasets so the target cells and synthetic null cells were projected
to the same 2-dimensional UMAP space.

We used the R package ggplot2 (version 3.4.2) to make all plots.
For the UMAP visualizations in Fig. 2f, we truncated each gene’s normalized expression levels

to be below the 99-th percentile to better visualize the gene expression pattern.

Gene set enrichment analysis

We used the R package clusterProfiler (4.4.4) to perform the gene set enrichment analysis (GSEA);
the test method was fgsea, and the number of permutations was 100,000. The gene set “CD14+/CD16+

Monocyte Markers” was from the original study [25] and downloaded from https://bitbucket.

org/jerry00/scumi-dev/raw/61f7f001d20b2fc8fa7c2f4f4147bff1b0d620d8/R/marker_gene/human_

pbmc_marker.rda. The gene set “Housekeeping Genes”, HSIAO HOUSEKEEPING GENES, was down-
loaded from the Molecular Signature Database (MSigDB); the source study was [37].
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Validity checks of the contrast scores of ClusterDE and the P values of Seurat,
Countsplit, and the TN test

For ClusterDE, the major assumption is that the contrast scores of true non-DE genes are sym-
metric around zero. In Fig. S2 left, we checked the symmetry of the contrast scores of ClusterDE
using the five DE tests (Wilcoxon, t-test, NB-GLM, LR, and bimod; corresponding to Fig. S2a–e
left) in a simulated one-cell-type dataset where all genes are true non-DE genes (see Methods
“Simulation setting with one cell type and zero true DE genes”; the dataset is one of the 200

synthetic replicates).
For Seurat, Countsplit, and the TN test methods, their FDR control validity requires that the P

values of true non-DE genes follow the Uniform[0, 1] distribution. First, we divided the genes in
the same simulated dataset into two groups by applying hierarchical clustering (using the default
R function hclust()) to the estimated correlation matrix R̂ used in the Gaussian copula. Due
to the block pattern of R̂ (Fig. 1c), the two groups include the genes that are highly correlated
and those that are not much correlated, respectively. We examined the P values of the genes in
the two groups separately. Note that all genes in this simulated dataset are true non-DE genes.
In Fig. S2 middle and right, we plotted the histograms of the P values and the quantile-quantile
plots (Q-Q plots) of the negative log-transformed P values of Seurat, Countsplit (both using the
five DE tests; corresponding to Fig. S2a–e) and the TN test (using its own test; the same panels
plotted five time in Fig. S2a–e). We also used the R function KL.empirical (from the R package
entropy (version 1.3.1)) to calculate the empirical Kullback–Leibler divergence (KL div.) between
the P -value distribution and the theoretical Uniform[0, 1] distribution. A larger Kullback–Leibler
divergence value represents a more severe violation of the P -value uniformity assumption. The
results show that Countsplit and the TN test had close-to-uniform P values in the uncorrelated
gene group, but their P values exhibited a severe departure from the uniform distribution in the
correlated gene group.
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Supplementary Figures
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Figure S1: The generation process of synthetic null data from target data (top left) by scDesign3. We show the bivariate
case (with two genes) for illustration purposes, and the real case is high-dimensional with thousands of genes. The
null model consists of two parts: for marginal gene modeling, each gene’s counts follow a negative binomial (NB)
distribution; for joint gene modeling, the genes’ dependence structure is specified by the Gaussian copula. For the
marginal gene modeling part (top), a negative binomial (NB) distribution is fitted to each gene’s counts in the target
data, obtaining the two NB parameters (mean and dispersion) for each gene. For the joint gene modeling part (bottom),
there are three steps. First, each gene’s counts in the target data are transformed into cumulative distribution function
(CDF) values, via the fitted NB distribution or the counts’ empirical distribution (if the target cell number is large), so the
gene’s CDF values are uniform between 0 and 1. Second, each gene’s CDF values are transformed into quantiles of
the standard Gaussian N(0, 1) distribution. Third, a multivariate Gaussian distribution (a bivariate Gaussian distribution
for illustration) is fitted to the transformed Gaussian values of the many genes whose correlations are to be modeled.
The correlation matrix of the fitted multivariate Gaussian distribution specifies the Gaussian copula. After the marginal
and joint modeling, the generation of the same genes’ synthetic counts takes three steps. First, the genes’ standard
Gaussian values are jointly sampled from the fitted multivariate Gaussian distribution. Second, each gene’s standard
Gaussian values are transformed into the CDF values of the standard Gaussian distribution. Third, each gene’s CDF
values are transformed into quantiles of the gene’s fitted NB distribution and thus become counts, which constitute the
synthetic null data (top right).
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Figure S2: Validity checks of the contrast scores of ClusterDE and P values of Seurat, Countsplit, and the TN test on
an exemplary one-cell-type dataset, which does not contain any true DE genes by the simulation design (see Methods
“Simulation setting with one cell type and zero true DE genes”). The panels (rows) a–e represent the five DE tests
in Seurat used in ClusterDE, Seurat, and Countsplit (see Methods “ClusterDE step 3: DE analysis”); since the TN
test has its own DE test, its results are the same in the panels a–e. The first column shows that the ClusterDE
contrast scores of all genes (true non-DE genes) are approximately symmetric around 0, which meets the assumption
of ClusterDE for the FDR control. The second column shows the histograms of the P -values of the correlated genes
(top) and the uncorrelated genes (bottom) from Seurat, Countsplit, and the TN test. A larger empirical Kullback-Leibler
divergence (KL div.) between the P -value distribution and the theoretical Uniform[0, 1] distribution represents a more
severe violation of the P -value uniformity assumption. The results show that Countsplit and the TN test have close-to-
uniform P values for the uncorrelated genes, but their P values exhibit a severe departure from the uniform distribution
for the correlated genes. The third column contains the quantile-quantile plots of the negative log-transformed P values
corresponding to the second column.
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Figure S3: When the target data contains cells from two cell types (simulation; see Methods “Simulation design with
one cell type and zero DE genes”), the synthetic null data generated by ClusterDE fills the gap between the two cell
types but resembles the target data in other visual aspects of UMAP cell embeddings (left), per-gene expression mean
and variance statistics (middle), and gene-gene correlations.
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Figure S4: The FDRs and power of ClusterDE and the existing methods under various severity levels of double dipping
when the two cell types have a size ratio of 1 : 1. The log fold change (logFC) summarizes the average gene expression
difference between the two cell types in simulation (see Methods “Simulation design with two cell types and 200 DE
genes”). Corresponding to a small logFC, a small adjusted Rand index (ARI) represents a bad agreement between
cell clusters and cell types, representing a more severe double-dipping issue. Across various severity levels of double
dipping and the five DE tests, ClusterDE controls the FDRs under the target FDR thresholds (diagonal dashed line) and
achieves comparable or higher power compared to the existing methods at the same actual FDRs.
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Figure S5: The FDRs and power of ClusterDE and the existing methods under various severity levels of double dipping
when the two cell types have a size ratio of 1 : 4. The log fold change (logFC) summarizes the average gene expression
difference between the two cell types in simulation (see Methods “Simulation design with two cell types and 200 DE
genes”). Corresponding to a small logFC, a small adjusted Rand index (ARI) represents a bad agreement between
cell clusters and cell types, representing a more severe double-dipping issue. Across various severity levels of double
dipping and the five DE tests, ClusterDE controls the FDRs under the target FDR thresholds (diagonal dashed line) and
achieves comparable or higher power compared to the existing methods at the same actual FDRs.
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Figure S6: The FDRs and power of ClusterDE and the existing methods under various severity levels of double dipping
when the two cell types have a size ratio of 1 : 9. The log fold change (logFC) summarizes the average gene expression
difference between the two cell types in simulation (see Methods “Simulation design with two cell types and 200 DE
genes”). Corresponding to a small logFC, a small adjusted Rand index (ARI) represents a bad agreement between
cell clusters and cell types, representing a more severe double-dipping issue. Across various severity levels of double
dipping and the five DE tests, ClusterDE controls the FDRs under the target FDR thresholds (diagonal dashed line) and
achieves comparable or higher power compared to the existing methods at the same actual FDRs.
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Figure S7: The FDRs and power of ClusterDE with three approaches for synthetic null generation: scDesign3 (the
default in ClusterDE), the model-X knockoffs, and independent permutations of all genes across cells. Compared with
the other two approaches, scDesign3 controls the FDR and yields higher power.
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Figure S8: Stability of the DE genes identified by Cluster in relation to the randomness of synthetic null generation.
Given one target dataset simulated with two cell types (see Methods “Simulation design with two cell types and 200 DE
genes”), 50 synthetic null datasets are generated with 50 random seeds, and DE genes are identified by ClusterDEusing
each syntheticnull dataset. The red curve shows the mean and standard deviation (half of the vertical bar height) of
the numbers of DE genes identified at each target FDR across the 50 random seeds. The cyan curve shows the mean
and standard deviation (half of the vertical bar height) of the numbers of DE genes shared between two random seeds,
across

(
50
2

)
pairs of random seeds, at each target FDR. The results show that the DE genes identified by ClusterDE

remain relatively stable and robust to the randomness.
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Figure S9: UMAP visualizations and Seurat clustering accuracies (ARIs) of the eight PBMC monocyte datasets
(ordered by ARIs from high to low). The first and second columns show the UMAP visualizations of the eight datasets as
the target data, with the cells labeled by the monocyte subtypes (the first column) or the clusters (the second column).
The third column shows the UMAP visualizations of the synthetic null data corresponding to the eight target datasets.
The horizontal dashed line between rows 4 and 5 divides the eight datasets based on the clustering accuracy. It is
expected that monocyte-subtype markers are more likely to be identified as post-clustering DE genes from the top four
datasets than the bottom four datasets. 42
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Figure S10: ClusterDE avoids false discoveries under double dipping. Although the datasets contain two monocyte
subtypes, the clustering results poorly match the subtype labels (the bottom four datasets in Fig. S9), and thus no DE
genes should be discovered. The numbers in black and white are the number of DE genes and the proportion of DE
genes among all genes, respectively. In most cases, ClusterDE does not find DE genes, as expected.
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Figure S11: Gene set enrichment analysis (GSEA) of the ranked DE gene lists identified by ClusterDE and Seurat
with five DE tests from three datasets. The red lines represent the enrichment of the “CD14+/CD16+ Monocyte Marker
Genes” set, and the blue lines represent the enrichment of the “Housekeeping Genes” set. The short vertical lines at the
bottom show the rank distributions of the genes in the two gene sets within each ranked DE gene list. The normalized
enrichment score (NES) reflects the direction and magnitude of enrichment, and the P value indicates the significance
of enrichment.

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.550107doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550107
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S12: Overlaps between monocyte markers/housekeeping genes and the top k DE genes, with k ranging from 1
to 100. The horiontal axis represents k (for example, k = 100 means we select the top 100 DE genes from the DE gene
lists). The vertical axis indicates the number of monocyte markers (the top row in each panel) or housekeeping genes
(the bottom row in each panel) among the top k DE genes found by each of the five DE tests (columns). In most cases,
ClusterDE (blue line) identifies more monocyte subtype markers and fewer housekeeping genes compared to Seurat
(red line).
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Figure S13: The minus-average (MA) plots of ClusterDE contrast scores (target DE score minus null DE score) vs.
averages of target DE scores and null DE scores. The red color labels four well-known CD14+/CD16+ subtype
markers, and the blue color labels four well-known housekeeping genes. The dashed black line indicates the contrast
scores of 0. For housekeeping genes, their DE scores are large in both target data and synthetic null data, so their
contrast scores are centered around 0. Hence, these housekeeping genes would be ranked top by Seurat (which only
examines target DE scores) but not by ClusterDE. On the other hand, the DE scores of subtype markers are much
larger in target data than in synthetic null data, so their contrast scores are large and ranked top by ClusterDE.
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Figure S14: A demonstration of using ClusterDE in the presence of multiple cell clusters. a, A UMAP visualization
of Seurat clusters found in the PBMC dataset Rep1 10x(v3). The blue box labels two neighboring clusters, which
roughly represent the CD14+/CD16+ monocytes. b, The cluster tree constructed by Seurat, with clusters 2 and 8
corresponding to the two clusters in the blue box in a. It is recommended that ClusterDE can help annotate two
neighboring cell clusters in UMAP or a cluster tree, based on the more trustworthy post-clustering DE genes identified
by ClusterDE. The reason is that neighboring clusters are more likely to be spurious.

Figure S15: A toy example to showcase the double-dipping issue. The two genes’ expressions follow a bivariate
Gaussian distribution as the cells come from a homogeneous cell type. However, if we run the K-means clustering to
divide the cells into two clusters, the two genes are forced to exhibit different distributions in the two clusters.
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