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Abstract

We continuously detect sensory data, like sights and sounds, and use this information to guide
our behaviour. However, rather than relying on single sensory channels, which are noisy and
can be ambiguous alone, we merge information across our senses and leverage this combined
signal. In biological networks, this process (multisensory integration) is implemented by
multimodal neurons which are often thought to receive the information accumulated by
unimodal areas, and to fuse this across channels; an algorithm we term accumulate-then-
fuse. However, it remains an open question how well this theory generalises beyond the
classical tasks used to test multimodal integration. Here, we explore this by developing novel
multimodal tasks and deploying probabilistic, artificial and spiking neural network models.
Using these models we demonstrate that multimodal units are not necessary for accuracy
or balancing speed/accuracy in classical multimodal tasks, but are critical in a novel set of
tasks in which we comodulate signals across channels. We show that these comodulation
tasks require multimodal units to implement an alternative fuse-then-accumulate algorithm,
which excels in naturalistic settings and is optimal for a wide class of multimodal problems.
Finally, we link our findings to experimental results at multiple levels; from single neurons to
behaviour. Ultimately, our work suggests that multimodal neurons may fuse-then-accumulate
evidence across channels, and provides novel tasks and models for exploring this in biological
systems.
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1 Key Points

• We demonstrate that multimodal units are not necessary for accuracy or balancing speed/accuracy
in classical multisensory tasks.

• We introduce a novel set of tasks, based on comodulating the signals from multiple channels, in which
multimodal units are critical.

• We show that multimodal units enable networks to implement a fuse-then-accumulate algorithm,
which excels in naturalistic settings, like predator-prey interactions, and is optimal for a wide class of
multimodal problems.

• Finally, we explore the link between single neurons properties and network behaviour.

2 Introduction

Animals are equipped with multiple sensory channels, each of which bears rich information about their
environment. To maximise survival, this sensory data must be transformed into behavioural outputs [Barlow,
1961]. However, each channel is inherently noisy and can be ambiguous alone. For example, using just
vision, it would be difficult to determine if an object was metal or a plastic imitation. As such, combining
information across channels (multimodal integration) is advantageous as it reduces noise and ambiguity,
and enables faster and more accurate decision making [Trommershauser et al., 2011]
The computational goal [Marr, 1982] of multimodal integration is to infer the cause of sensory inputs;
whether that be distinguishing self vs external motion from visual and vestibular cues [Fetsch et al., 2012]
or detecting prey in an environment cluttered with distracting sights and sounds. In biological networks,
these computations are implemented by multimodal neurons, which receive inputs from multiple sensory
channels and project to downstream areas. However, how to best describe these network’s input-output
transformations, which we will term algorithms [Marr and Poggio, 1976], remains an open question. One
theory, the multisensory correlation detector [Parise and Ernst, 2016], suggests that multimodal neurons
receive temporally filtered information from each sensory channel and then compute the correlation and
lag between channels. In contrast, the canonical view suggests that they receive the information separately
accumulated by unimodal areas, linearly fuse this across channels, and then signal to decision outputs [Fetsch
et al., 2013] - an algorithm we term accumulate-then-fuse (AtF).
Support for this algorithm comes from work based on a set of classical multisensory tasks in which observers
are presented with directional information in two channels, such as moving bars and lateralised sounds, and are
trained to report the direction with the most evidence. In these tasks both the behaviour of observers [Jones,
2016] and the activity of multimodal neurons [Coen et al., 2023] are well described by the accumulate-then-fuse
algorithm. Moreover, this algorithm is optimal in the sense that it generates unbiased (i.e., correct on average)
estimates with minimum variance [Trommershauser et al., 2011].
However, there are two open questions regarding the accumulate-then-fuse algorithm. First, the extent to
which it generalises beyond the classical tasks used to explore multimodal integration [Jones, 2016]. Second,
its relevance outside of a laboratory context. Indeed, while mice can be trained to use this algorithm, neither
the behaviour nor neural activity of untrained mice are well described by it [Coen et al., 2023].
Here, we explore the algorithms that multimodal neurons implement by developing novel multimodal tasks
which focus on the underlying statistical relationships between channels rather than the details of the sensory
signals themselves. This choice confers three major benefits. First, it allows us to design tasks which
emphasise the importance of learning joint statistics across channels (like the natural relation between lip
movements and speech). Second, it enables us to explore multimodal integration at three levels of abstraction:
probabilistic ideal observers, minimal artificial neural networks and spiking neural networks trained via
surrogate gradient descent [Zenke and Ganguli, 2018]. Third, by remaining agnostic to the specific stimuli,
our tasks can easily be translated across experimental setups and model systems. Our results lead us to
propose a new fuse-then-accumulate (FtA) algorithm for multimodal processing, which generalises and
outperforms the canonical (AtF) algorithm and is optimal for a wide-class of multimodal problems.
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3 Results

3.1 Multimodal units are not necessary for accuracy or balancing speed/accuracy in classical
tasks

We began by training spiking neural networks to perform classical multisensory tasks. In these tasks we
present sequences of directional information (left / right) in two channels, and train networks to report the
direction of overall motion (Figure 1.B1). In a reduced case both channels always signal the same direction,
while in an extended version we include both unimodal and conflicting trials. Each network was composed
of two unimodal areas with feedforward connections to a multimodal layer, connected to two linear output
units representing left and right choices (Figure 1.A1). Following training, multimodal networks achieved a
mean test accuracy of 93.4% (±0.1% std) on the reduced task and 94.2% (±0.05% std) on the extended task.
In line with experimental work [Coen et al., 2023] their accuracy on the extended task varied by trial type
(Figure 7).
To understand the role multimodal units play in these tasks, we trained two additional sets of networks: one
without a multisensory layer (Figure 1.A2) and, to control for network depth, one in which we substituted
the multisensory layer for two additional unimodal areas (Figure 1.A3). Surprisingly, these architectures
performed similarly to the multimodal architecture on both the reduced (unimodal: 93.9%, ±0.2% std;
2-unimodal: 93.0%, ±0.2% std) and extended task (unimodal: 94.1%, ±0.1% std; 2-unimodal: 94.1%, ±0.1%
std), suggesting that multimodal spiking units are not necessary for accuracy on these tasks. So, what
computational role do these units play? One alternative is that they are beneficial in balancing speed/accuracy
[Drugowitsch et al., 2014]. However, we found that all three architectures accumulated evidence at equivalent
rates (Figure 1.C1).
While these results may seem surprising, the optimal strategy in this task simply amounts to accumulating
each channel’s evidence separately, and then linearly fusing this information across channels to form a
final estimate. In our models, this accumulate-then-fuse (AtF) algorithm (Figure 1.D) can be directly
implemented by the output units, as it is a linear computation, and consequently, an intermediate multisensory
layer provides no benefit. Beyond our models, these results raise the question of when or why biological
networks would require multisensory neurons between their unimodal inputs and downstream outputs.

3.2 Multimodal units are critical for extracting comodulated information

To explore when networks need multisensory neurons, we designed a novel task in which we comodulate
signals from two channels to generate trials with two properties (Figure 1.B2):

1. Within each channel there are an equal number of left and right observations, so a single channel
considered in isolation carries no information about the correct global direction.

2. On a fraction of randomly selected time steps (which we term the joint signal strength), both channels
are set to indicate the correct direction. Then the remaining observations are shuffled randomly
between the remaining time steps (respecting property 1). Thus each trials label is encoded jointly
across channels.

As above, we trained and tested all three architectures on this task. Strikingly, both unimodal architectures
remained at chance accuracy (unimodal: 50.4%, ±0.4% std; 2-unimodal: 50.4%, ±0.3% std), while multimodal
networks learned the task well (multimodal: 96.0%, ±1.3% std). Additionally, multimodal network accuracy
increased in line with joint signal strength (Figure 7). However, this task seems unrealistic – as it requires
a perfect balance between labels – so we developed a probabilistic version with the same constraint (i.e.,
information is balanced on average but may vary on any individual trial). Again, both unimodal architectures
remained at chance accuracy, while multimodal networks approached ideal performance (Figure 1.C2).
Together, these results demonstrate that multimodal units are critical for comodulation tasks, though why is
this the case? In contrast to classical multisensory tasks, our comodulation tasks require observers to detect
coincidences between channels and to assign more evidential weight to these than non-coincident time points.
As such, observers must fuse information across channels before evidence accumulation; an algorithm which
we term fuse-then-accumulate (FtA) (Figure 1.E). In our unimodal architectures, fusion happens only at
the decision outputs which are linear, meaning they are unable to assign coincidence a higher weight than
the sum of the individual observations from each channel. Consequently, the algorithm they implement is
equivalent to accumulate-then-fuse. In contrast, our multimodal, leaky integrate-and-fire, units can assign
variable weight to coincidence via their nonlinear input-output function.
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Figure 1: A1-3 Network architectures - spikes flow forward from input channels (Ch0, Ch1) to decision
outputs (D). B1-2 Tasks are sequences of discrete symbols (left, neutral, right) per channel, with a fixed
number of time steps, and a label (left or right). In classical tasks (B1) this label indicates the overall bias
(e.g. L >R). In comodulation tasks (B2) this label is encoded jointly across channels (e.g. LL >RR). C1-2
Test accuracy as a function of time for the reduced classical (C1) and probabilistic comodulation (C2) tasks.
We plot the mean (line) and standard deviation (shaded surround) across 5 networks per architecture, plus
the optimal accuracy from the FtA algorithm (grey line). D In classical tasks the optimal algorithm is to
accumulate-then-fuse evidence across channels. E In comodulation tasks fuse-then-accumulate is optimal.
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3.3 The fuse-then-accumulate algorithm excels in naturalistic settings

Our results demonstrate that the fuse-then-accumulate algorithm can solve comodulation tasks where
accumulate-then-fuse remains at chance level, but would these two algorithms differ in naturalistic settings?
To explore this, we adapted the tasks above to produce a novel detection task in which a predator must use
signals from two channels, e.g., vision and hearing, to determine both whether prey are present and if so
their direction of motion (3-way classification). In this task, trials are generated via a probabilistic model
with 5 parameters which specify the probability of: prey being present in a given trial (pm), emitting cues at
a given time when present (pe), signalling their correct (pc) or incorrect (pi) direction of motion and the level
of background cues (pn) (Figure 2.A-B). This task thus closely resembles those above in structure, but with
the added realism that information arrives at sparse, unspecified intervals through time.
Using this task, we first compared how the accuracy of the two algorithms differed in distinct settings. To do
so, we randomly sampled 10,000 combinations of the 5 task parameters and used ideal Bayesian models to
determine each algorithm’s accuracy. To meaningfully compare the two algorithms we then filtered these
results to keep those above chance but below ceiling accuracy. This process left us with 2,836 (28%) sets
of parameter combinations. Across these settings, FtA always performs better than AtF, and the median
difference (FtA minus AtF) was 0.73%. Though, the maximum difference was 13.7%, showing that while FtA
is always as good as AtF, it excels in specific settings.
To understand when FtA excels compared to AtF, we calculated each parameter’s correlation with the
difference in accuracy and it’s importance in predicting it using a random forest regression model (Section 5.6.2)
(Figure 2.C-D). This approach revealed that FtA excels when prey signal their direction of motion more reliably
(increasing pc), but more sparsely in time (decreasing pe). Critically, these settings resemble naturalistic
conditions in which prey provide reliable cues, but try to minimise their availability to predators by remaining
as concealed as possible.
Next, we focused on a subset of detection settings by fixing pm, pn and pi and identifying combinations of pe

and pc where FtA consistently achieves 80% accuracy. Across this subset, AtF’s accuracy decreases with the
sparsity of the signal, a function of pe and pc (Figure 2.E). Finally, we trained spiking neural networks on the
two extremes of this subset: one in which prey emit unreliable signals, densely in time (dense detection) and
one in which prey emit reliable signals, sparsely in time (sparse detection). In the dense setting, we found
no difference in either accuracy or reaction time between the three architectures (Figure 2.F). In contrast,
the multimodal architecture outperformed both unimodal architectures in the sparse setting (Figure 2.G).
Together these results demonstrate that the FtA algorithm is always as good as AtF, but excels in naturalistic
settings when prey emit reliable signals, sparsely in time.

3.4 The softplus nonlinearity solves a wide class of multimodal problems

Above, we have focused on tasks in which observers must use information from two sensory channels to reach
one of two or three possible decisions. However, even the simplest of organisms are granted more senses and
possible behaviours. Thus, we now compare the accumulate-then-fuse and fuse-then-accumulate algorithms
in more generalised settings. To do so, we consider the more general case of NC channels and ND directions
(or classes, more generally).
In the most general case, solving this task would require learning the joint distribution of all variables, i.e.
NNC

D parameters, which would quickly become infeasible as ND and NC increase. However, when channels
are independent given a shared (underlying time dependent) variable, as in our detection task, it turns out
that the optimal solution requires only a small increase in the number of parameters (a fraction ∼ 1/ND

more parameters) and a single nonlinearity (the softplus function) to the classical linear model (Figure 3.A
and details in Section 5.1.6 and Section 7.3.3).
So, where does this softplus nonlinearity come from? For the isotropic case (for simplicity), following our
derivation (Section 7.3.3) we arrive at the equation:

log P (observation t |M = m) = log(1 + b exp(c · x(t, m)) + a constant (1)

where M is the direction being estimated, and x(t, m) is the number of the NC channels at time t that indicate
direction m (that can take any value between 1 and ND). Our observer then estimates M by computing
x(t, m) at each time t via a linear summation across channels, passing it through the nonlinear softplus
function (softplus(x) = log(1 + b exp(c · x))), summing these values linearly over time to get the log odds
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Figure 2: A-B In the detection task, a 5 parameter probabilistic model generates trials (sequences of discrete
symbols) with different statistics. At each time step t there is either a signal emitted (Et = 1 with probability
pe if there is a prey present) or not (Et = 0) with different probability distributions depending on the value
of Et. C Each parameter’s importance (bars) in predicting the difference in accuracy between the ideal FtA
and AtF models, as determined by a random forest regression model, and each parameters correlation with
the difference (arrows). D The difference in accuracy between the two algorithms as a function of the tasks 5
parameters. For each detection setting (a set of 5 parameters values), we plot the value of each parameter
(subplots) and the difference between the two algorithms across 10,000 trials. Overlaid (coral lines) are linear
regressors per parameter. The rightmost subplot shows a kernel density estimate of the difference across
detection settings. E The accuracy of each ideal algorithm across a subset of detection settings where we vary
the signal sparsity - a function of pe and pc. F-G The test accuracy over time of our three SNN architectures,
plus the optimal accuracy from the FtA algorithm (grey line), on the two extremes of the family in E.
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of each possible direction m and then estimating M to be the value of m which gives the maximum value
(Figure 3.A). This provides us with two insights:

1. As the number of channels (NC) increases, the function gets closer to a shifted rectified linear unit
(ReLU). That is, it gets close to returning the value 0 when x is less than some threshold (xthresh), and
afterwards is proportional to x− xthresh. Consequently, with many channels, the optimal algorithm
should ignore time windows (t) where the evidence is below a certain threshold xthresh, and linearly
weight those above (Figure 3.B).

2. As the input becomes more dense, in our case as pe approaches 1, the optimal algorithm becomes
entirely linear. As such, we can see why classical multisensory studies, which have focused on dense
tasks, concluded that the linear AtF algorithm was optimal (Figure 3.B).

Returning to our ideal observer models, in these extended settings we found that the difference between
the two algorithms (FtA minus AtF) increases with both the number of directions (ND) and channels (NC)
(Figure 3.C). As above (Section 3.3), we observe little difference in dense settings (Figure 3.D) but large
differences, up to 30% improvements of FtA over AtF, in sparse settings (Figure 3.E).
Finally, we adapted the observations in this multi-direction, multi-channel task, from discrete to continuous
values with any probability distribution (Section 5.1.7) and show results for the Gaussian case. Mathematically,
the optimal algorithm in the Gaussian case has the form softplus(quadratic(observations, m)). While this
demonstrates that the exact form of the optimal function will depend upon the distribution of each channel’s
signals; it suggests the softplus function will suit a wide class of multimodal problems. Extending our ideal
observer models to this continuous case, generated similar results to the discrete case. That is, the difference
between the two algorithms was negligible in dense, but large in sparse, settings (Figure 7).
Together, these results explain why prior studies have focused on AtF, and demonstrate how just a small
increase in algorithmic complexity (from AtF to FtA) leads to large improvements in performance across a
wide class of multimodal problems.

Figure 3: A In the case of NC(channels) and ND(directions) the optimal algorithm is to sum the evidence for
each direction across channels, apply a non-linearity (σ) and then accumulate these values. B The optimal
nonlinearity depends on both the number of channels which indicate the same direction (x(m)) and the
sparsity of the signal (pe). C The difference between the two algorithms depends on both the number of
channels and directions. D-E Accuracy over time curves for the AtF (blue) and FtA (coral) algorithms in
dense (D) and sparse (E) settings with 5 channels and 6 directions.
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3.5 Network implementations of FtA

Above, we demonstrated that the softplus nonlinearity is the optimal algorithm for a wide class of multimodal
problems. Here, in the vein of Marr’s hardware level [Marr, 1982, Marr and Poggio, 1976], we explore how
networks can implement this algorithm and how one can distinguish which algorithm (AtF or FtA) an
observer’s behaviour more closely resembles.

3.5.1 Network behaviour is robust across nonlinearities

To explore how precisely networks need to approximate the softplus function (or if any nonlinearity will
do) we trained minimal artificial neural networks on our two channel tasks, and compared networks whose
multimodal units used linear, rectified linear, sigmoidal or softplus activation functions (Section 5.3). In tasks
with little comodulation (classical and dense-detection), linear activations were sufficient (Figure 4.A). In
contrast, tasks with more comodulation (sparse-detection and comod) required non-linear activations, though
all three non-linearities were equivalent in terms of both accuracy and reaction speeds (Figure 7); suggesting
that any non-linear function may be sufficient. Though, how do these mathematical functions relate to the
activity patterns of real spiking neurons?

3.5.2 Simple, single neuron models generate sub- to super-additive states

In experimental studies [Stanford et al., 2005] the input-output functions of individual multimodal neurons are
often inferred by comparing their multimodal response ({(Ch0, Ch1)) to the sum of their unimodal responses
(f(Ch0, 0) + f(0, Ch1)) via a metric known as additivity:

additivity = f(Ch0, Ch1)
f(Ch0, 0) + f(0, Ch1) (2)

Using this metric, neurons can be characterised as being in sub- or super-additive states (i.e., outputting less
or more spikes than expected based on their unimodal responses) [Stanford et al., 2005]. However, the link
between these neuron states and network behaviour remains unclear [Jones, 2016]. To explore this we
conducted two experiments; one at a single neuron level (here) and one at the network level (Section 3.5.3).
To understand how these states arise in spiking neurons, we simulated single multimodal units, with differing
membrane time constants (τ) and mean input weights (w), and calculated their additivity as we varied the
mean firing rates of their input units (ρ) (Figure 4.B). These simulations recapitulated two experimental
results, and yielded two novel insights. In agreement with experimental data [Stanford et al., 2005] most units
(60%) exhibited multiple states, and we found that lower input levels (both weights and firing rates) led to
higher additivity values (Figure 4.B); a phenomenon termed inverse effectiveness [Fetsch et al., 2013]. Moving
beyond experimental data, our simple, feedforward model generated all states, from sub- to super-additive;
suggesting that other proposed mechanisms, such as divisive normalisation Ohshiro et al. [2011], may be
unnecessary in this context. Further, we found that units with shorter membrane time constants, i.e. faster
decay, were associated with higher additivity values (Figure 4.B); suggesting that this may be an interesting
feature to characterise in real multimodal circuits. Notably, an alternative modelling approach (Section 5.4.2),
in which we approximated the firing rates of single multimodal neurons [Goodman et al., 2018, Fourcaud and
Brunel, 2002], generated almost identical results (Figure 4.B-right).

3.5.3 Unit ablations demonstrate a causal link between additivity and network behaviour

To understand how these unit states relate to network behaviour we calculated the additivity of the multimodal
units in our trained spiking neural networks, and compared these values across tasks. We found that most
units were super-additive, though observed slight differences across tasks (Figure 4.C); suggesting a potential
link between single unit additivity and network behaviour.
To test this link, we ranked units by their additivity (within each network), ablated the highest or lowest
k units and measured the resulting change in test accuracy. On the dense detection task, we found that
ablating the units with lowest additivity had the greatest impact on performance, while on sparse detection
we observed the opposite relation (Figure 4.D). The classical and probabilistic comodulation tasks respectively
resembled the dense and sparse detection cases (Figure 8). To understand these relations further we then
ranked unit’s by their membrane time constants (τ) or mean input weights (w) and repeated the k-ablations.
On both tasks ablating units with high input weights and / or long τ significantly impaired performance;
highlighting the importance of accumulator-like units for both tasks. However, on sparse detection, we also
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observed that ablating units with short τ had a symmetrical effect (Figure 4.D); suggesting an additional role
for coincidence-detector-like units on this task.
From these results, we draw two conclusions. First, different multimodal tasks require units with different
properties (e.g. long vs short membrane time constants). Second, additivity can be used to identify the most
important units in a network. However, as a unit’s additivity is a function of its intrinsic parameters (τ, w, ρ),
additivity is best considered a proxy for these informative but harder to measure properties. Notably, an
alternative approach in which we used combinatorial ablations (i.e. ablating unit 1, 1-2, 1-3 etc) to calculate
each unit’s causal contribution to behaviour [Fakhar and Hilgetag, 2022], yielded similar results (Figure 8).

Figure 4: A ANN results. For each task (Cl: reduced classical, Dd: dense detection, Ds: sparse detection,
Cm+: probabilistic comodulation) and activation function (colours) we plot the maximum test accuracy
(across 5 networks) minus the optimal FtA accuracy. B Single unit model results. Each point shows the models
additivity as a function of the membrane time constant (τ) and mean input (wρ). The grey underlay shows
when the multisensory unit fails to spike. The left panel shows the average additivity from 10 simulations.
The right shows the results from an approximation method, with the multisensory unit’s firing rate (Hz)
overlaid. C-D SNN results. C The additivity of each multisensory unit (circles) from spiking networks
trained on different tasks. Bars indicate the mean additivity (across networks) per task. Colours, per unit,
are as in B. Units which spike to multi-, but neither unisensory stimulus are denoted with a plus symbol. D
Network accuracy, from baseline to chance, as we ablate either the top (solid lines) or bottom (dashed lines)
k-units, ranked by different unit properties (colours). We plot the mean and std across networks, and invert
the y-axis for the bottom-k results. Left / right - networks trained and tested on dense or sparse detection.

3.5.4 Behaviour can distinguish which algorithm an observer is implementing

Finally, when testing an observer on a task, we wish to distinguish if their behaviour more closely resembles
either algorithm (AtF or FtA). To do so, we measured the amount of evidence which each algorithm assigns
to each direction (difference in log odds of direction left or right, given the observations), per trial, and then
scattered these in a 2d space.
From this approach we garner two insights. First, by colouring each trial according to it’s ground truth label,
we can visualise both the information available on each trial and the relations between tasks (Figure 5). For
example, in the classical task both algorithms assign the same amount of evidence to each direction, so each
trial lies along y = x. In contrast, in the probabilistic comodulation task only FtA is able to extract any
information, and all trials lie along the y-axis. Second, by colouring each trial according to an observers
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choices, we can compare how closely their behaviour resembles either algorithm (Figure 5). Applying this
approach to our 2-layer unimodal, and multimodal SNN architectures illustrates that while their behaviour
is indistinguishable on the classical and dense-detection tasks, there are a subset of sparse detection trials
where the two algorithms choose opposite directions as their behaviour is respectively closer to the AtF or
FtA algorithms (Figure 5).
Thus, coupled with task accuracy - which is all that is necessary on our comodulation tasks - trial-by-trial
choices are sufficient to distinguish between the two algorithms.

Figure 5: For each subplot we scatter 2000 random trials on the same two axis: the amount of right minus
left evidence according to each algorithm (∆ log odds). Thus, when x=0 the trial contains an equal amount
of left and right information according to the AtF algorithm. Each column contains trials from a different
task (Cl: reduced classical, Dd: dense detection, Ds: sparse detection, Cm+: probabilistic comodulation).
The top row shows each trial’s label (left=blue, absent=off-white, right=orange). The middle and last row
show the most common choice across 10 SNNs of either the 2-layered unimodal (middle) or multimodal
(bottom) architecture. For these rows each trial’s alpha indicates how consistently networks chose the most
common value. For example, on Cm+ the 2-unimodal networks choose randomly - and so these trials have a
low alpha. Black arrows highlight subsets of trials where the two architectures choose opposite directions.

4 Discussion

Prior experimental and theoretical work suggests that multimodal neurons receive the information accumulated
by unimodal areas, and linearly fuse this across channels; an algorithm we term accumulate-then-fuse
(AtF). In contrast, our results, from three levels of abstraction, suggest that they may fuse-then-accumulate
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(FtA) evidence across channels. Resolving which algorithm better describes multimodal processing in biological
systems will require further experimental work. Nevertheless, here, we argue that FtA is likely to be a better
description.
On classical tasks, both algorithms are indistinguishable and so describe multimodal processing equivalently.
As such, prior experimental results are consistent with either algorithm. In contrast, on our novel comodulation
tasks, AtF remains at chance level, while FtA is optimal. Thus, these tasks constitute simple experiments
to determine which algorithm better describes an observer’s behaviour. However, both the classical and
comodulation tasks seem unrealistic for two reasons. First, both are composed of dense signals (i.e. every
time step is informative). Second, both treat the relations between channels in extreme ways: in the former,
the temporal structure of the joint multimodal signal carries no information, while in the latter all the
information is carried in the joint signal and the task is impossible using only one modality.
In contrast, in our detection-based tasks observers must extract periods of signal from background noise,
and both the observations within and across channels are informative. As such, these tasks seems more
plausible, particularly given the added realism that there is sometimes nothing to detect, and the fact
that both algorithms can learn them to some extent. Moreover, unlike pure multisensory synchrony or
coincidence detection tasks [Parise and Ernst, 2016] in which the observer must explicitly detect coincidence,
here coincidence is an informative, implicit feature. FtA is a generalisation of AtF and so always performs at
least as well on our detection tasks. Though, FtA excels in realistic cases where prey signal their direction of
motion reliably but sparsely in time, and in cases where the number of directions or channels is high. Note
that while channels could originate from separate modalities, like vision or sound, our analysis also extends to
independent sources of information from within modalities; so the number of channels may exceed the number
of modalities. In sum, our results suggest that FtA could provide significant benefits in naturalistic settings
and, assuming that performance is ecologically relevant, may constitute a better description of multimodal
processing.
Though, there are three limitations to consider here. First, we focused on discrete stimulus tasks. Though,
extending part of our work to the continuous case yielded similar results, and these tasks benefit from
their interpretability [Hyafil et al., 2023]. Second, we focused on tasks with a fixed trial length. This is
unnaturalistic as real tasks are temporally unbounded however, decoding observer’s accuracy over time hints
at their performance in free-reaction tasks. Finally, we assumed that observations are generated by a single
underlying cause. Relaxing this assumption and extending our work to consider causal inference is an exciting
future direction [Körding et al., 2007].
Beyond behaviour, are there hardware features which make either algorithm a better description of multimodal
processing? In biological systems, these algorithms must be implemented by networks of spiking neurons,
and each has specific requirements. In AtF, information is fused linearly across channels, and so every
transformation in the network must be linear. In contrast, in FtA information should be fused nonlinearly
via the softplus function. As neurons naturally transform their inputs via a spiking nonlinearity, and we show
that the exact form of the nonlinearity is not critical, FtA constitutes a more natural solution for networks of
spiking neurons. This argument is further supported by the that fact that the behaviour of trained SNNs
more closely resembles FtA on both sparse-detection and comodulation tasks.
Ultimately, our work demonstrates that extending the AtF algorithm - with only a few additional parameters
and a single nonlinearity - results in an algorithm (FtA) which is optimal for a wide class of multimodal
problems; and may constitute a better description of multimodal processing in biological systems.

5 Methods

In short, we introduced a family of related tasks (Section 5.1). In general, observers must infer a target
motion (left or right) from a sequence of discrete observations in two or more channels – which each signal left,
neutral or right at each time step. To approximate channels with equal reliability, we simply generated each
channel’s data using the same procedure. For each task we computed ideal performance using maximum a
posteriori estimation (Section 5.2). When working with spiking neural networks (Section 5.5) we represented
task signals via two populations of Poisson neurons per channel (Ch0) and (Ch1) with time-varying and
signal-dependent firing rates. In our spiking networks we modelled hidden units as leaky integrate-and-fire
neurons (Section 5.4). Readout units were modelled using the same equation but were non-spiking. To ensure
fair comparisons between architectures, we varied the number of units to match the number of trainable
parameters as closely as possible. We trained networks using Adam [Kingma and Ba, 2014], and in the
backward pass replaced the derivative with the SuperSpike surrogate function [Zenke and Ganguli, 2018]. For
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all conditions we trained 5-10, networks, and report the mean and standard deviation across networks for
each comparison.

5.1 Tasks

For all tasks, there is a target motion to be inferred, represented by a discrete random variable M . In addition,
there is always a sequence of discrete time windows t = 1, .., n. At each time window t, observations Ci

t are
made in each channel i = 1, . . . , NC . In the case of two channels we will sometimes refer to C1

t = At and
C2

t = Vt (evoking auditory and visual channels). Observations at different time windows will be assumed to
be independent (except for the perfectly balanced comodulation task). For simplicity, we usually assume that
information from each channel is equally reliable, and that each direction of target motion is equally likely,
but these assumptions can be dropped without substantially changing our conclusions.

5.1.1 Classical task

In the classical task we consider two channels, allow M to take values {−1, 1} representing left and right
with equal probability, and assume that the channels are conditionally independent given M . We define a
family of tasks via a signal strength 0 ≤ s ≤ 1 that gives the probability distribution of values of a given
channel at a given time to be:

pc(s) = P (Ci
t = M |M) = (1 + 2s)/3 correct

pi(s) = P (Ci
t = −M |M) = (1− s)/3 incorrect

pn(s) = P (Ci
t = 0 |M) = (1− s)/3 neutral

(3)

This has the properties that (a) when signal strength s = 0 each value is equally likely (pc = pi = pn) and
the task is impossible, (b) as signal strength increases the chance of correct information increases and the
chance of neutral or incorrect information decreases, (c) when signal strength s = 1 all information is correct
(pc = 1, pi = pn = 0). By default we use s = 0.1 for this task.

5.1.2 Extended classical task

In the extended classical task there are motion directions MA, MV for each channel (MA/V = ±1 with equal
probabilities), along with signal strengths sA, sV ∈ [0, 1]2 which both vary across trials. The overall motion
direction M is the direction of whichever modality has the higher signal strength in a given trial - we exclude
trials when sA = sV .

M =
{

MA with probability 1 if sA > sV

MV with probability 1 if sV > sA
(4)

We also includes uni-sensory trials, when sA = 0 or sV = 0. The probability distributions are the same as in
(3) except with s = sA for i = 1 and s = sV for i = 2.

5.1.3 Perfectly balanced comodulation task

In the perfectly balanced comodulation task we use two channels and allow M = ±1 as in the classical task.
We guarantee that in each channel, the number of left (-1), neutral (0) and right (+1) observations are
precisely equal in number (one third of the total observations in each case). We define a signal strength
0 ≤ s ≤ 1/3 and randomly select sn of the n time windows t in which we force At = Vt = M . We set the
remaining values of At and Vt randomly in such a way as to attain the per-channel balance in the number of
observations of each value. Note that this is the only task in which observations in different time steps are
not conditionally independent given M .

5.1.4 Probabilistically balanced comodulation task

The probabilistically balanced comodulation task is designed on the same principle as the perfectly balanced
comodulation task but rather than enforcing a strict balance of left and right observations we only enforce an
expected balance across trials, and this allows us to reintroduce the requirement that different time steps
are independent. We define the notation pav = P (At = kaM, Vt = kvM | M) where a, v can take values c
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(correct), n (neutral) and i (incorrect), and kc = 1, ki = −1 and kn = 0. We assume that the two channels are
equivalent so pav = pva and (to reduce the complexity) we assume pci = pic = pnn = 0 since these cases carry
no information about M . The balance requirement gives us the equation 2pcc + pcn + pnc = 2pii + pin + pni

or (by symmetry) pcc + pcn = pii + pin. This gives us a two parameter family of tasks defined by these
probabilities, and we choose a linear 1D family defined by a signal strength s as follows:

pcc = (1/3)s + (1/9)(1− s)
pii = (1/9)(1− s)

pcn = (1 + pii − 3pcc)/4
pin = (1 + pcc − 3pii)/4

(5)

This has the properties that when s = 0 the task is impossible (pcc = pii and pcn = pin) and when s = 1 the
probability pcc takes the highest possible value it can take (1/3). By default, we use s = 0.2 for this task.

5.1.5 Detection task

In the detection task we have two channels and now allow for the possibility M ∈ {−1, 0, 1} where M = 0
represents the absence of a target. We introduce an additional variable Et ∈ {0, 1} which represents whether
the target is emitting a signal (Et = 1) or not (Et = 0). If M = 0 then Et = 0 for all t, and if M ̸= 0 then Et

is randomly assigned to 0 or 1 at each time step. When Et = 0 the probabilities of observing a left/right in
any given channel are equal, whereas when Et = 1 you are more likely to observe a correct than incorrect
value in a given channel. Channels are conditionally independent given M and Et but dependent given only
M . We can summarise the probabilities as follows:

pm = P (M ̸= 0) target present
pe = P (Et = 1|M ̸= 0) emission
pn = P (At ̸= 0 | Et = 0, M) = P (Vt ̸= 0 | Et = 0, M) noise
pc = P (At = M | Et = 1, M) = P (Vt = M | Et = 0, M) signal correct
pi = P (At = −M | Et = 1, M) = P (Vt = −M | Et = 0, M) signal incorrect

(6)

If we set the probability of a target being present pm = 1 and the emission probability pe = 1 then this
reduces to the classical task.
We create a 1D family of detection tasks by first fixing pm = 2/3 (all values of M equally likely), pn = 1/3
(all observations equally likely when signal not present), pi = 0.01 (signal reliable when present), and then
picking from the smooth subset of values of pc and pe that give the ideal FtA model a performance level
of 80%. We set s = 0 for the point with the lowest value of pc and highest value of pe, and s = 1 for the
opposite extreme.

5.1.6 Multichannel, multiclass detection task

We generalise the detection task to ND directions so M ∈ {1, . . . , ND} and NC channels which can take any
of these ND values, so Ci

t ∈ {1, . . . , ND} for i = 1, . . . , NC . We now assume there is always a target present
and set P (Et = 1) = pe. We make an isotropic assumption that every direction is equally likely (although see
Section 7.3.3 for the non-isotropic calculations). In this case, when Et = 0 every observation is equally likely.
When Et = 1 we let pc be the probability of a correct observation, and all other observations are equally
likely. In summary:

P (Ci
t = j | Et, M) =


pc if Et = 1 and j = M

(1− pc)/(ND − 1) if Et = 1 and j ̸= M

1/ND if Et = 0
(7)

5.1.7 Continuous detection task

In the continuous detection task we allow the same set of values of M ∈ {−1, 0, 1} as in the detection task,
and the same definition of Et, but we now allow NC channels and each channel is a continuous variable
that follows some probability distribution. For the general case, see the calculations in Section 7.3.4, but
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here we make the assumption that channels are normally distributed. If Et = 0 then Ci
t ∼ N(0, 1) and if

Et = 1 then Ci
t ∼ N(µM, σ2). By default we assume pm = 2/3 and µ = 0.5, then vary pe and σ for the dense

(pe = 0.5, σ = 1.0) and sparse (pe = 0.05, σ = 0.1) cases.

5.2 Bayesian models

We define two maximum a posteriori (MAP) estimators for all tasks except the perfectly balanced comodulation
task (because they assume that all time windows are conditionally independent given M). The estimator is:

M̂ = argmaxm P (M = m | C) (8)

Here C is the vector of all observations Ci
t . We give complete derivations in Section 7.3, but in summary this

is equivalent to the following that we call the ideal fuse-then-accumulate (FTA) estimator:

M̂ = argmaxm

(
log P (M = m) +

n∑
t=1

log P (Ct |M = m)
)

(9)

If we additionally assume that channels are conditionally independent given M (which is true for some tasks
but not others) we get the classical estimator that we call accumulate-then-fuse:

M̂ = argmaxm

(
log P (M = m) +

NC∑
i=1

n∑
t=1

log P (Ci
t |M = m)

)
(10)

We call this accumulate-then-fuse because each modality can accumulate the within-channel evidence
ϵi(m) =

∑n
t=1 log P (Ci

t | M = m) separately before it is linearly fused across channels to get ϵ(m) =
log P (M = m) +

∑NC

i=1 ϵi(m). In general, information from across channels needs to be nonlinearly combined
at each time t to compute log P (Ct |M = m) before it is accumulated across time.
Note that when M ̸= 0 and M = ±1 are equally likely, this is akin to a classical drift-diffusion model. Let δt

be the difference in evidence at time t between right and left, δt = log P (Ct|M = 1)− log P (Ct|M = −1).
The decision variable given all the evidence up to time s is Ds =

∑s
t=1 δt which jumps in the positive direction

when evidence in favour of motion right is received, and in the negative direction when evidence in favour of
motion left is received. The estimator in this case is M̂ = sign D(n), i.e. right if the decision variables ends
up positive, otherwise left.
In the classical task, this estimator simplifies to computing whether or not the number of times left is
observed across all channels is greater than the number of times right is observed, and estimating left if so
(or right otherwise). In the more general discrete cases you count the number of times each possible vector of
observations across channels Ct occurs and compute a weighted sum of these counts. In cases where it is not
feasible to exactly compute the ideal weights, we can use a linear classifier using these vectors of counts as
input, and we use this to approximate the AtF and FtA estimators for the perfectly balanced comodulation
task.

5.3 Artificial neural networks

Each minimal network was composed of: four unimodal units, two multimodal units and three decision
outputs (prey-left, prey-absent or prey-right), connected via full, feedforward connections. Unimodal units
were binary, and each sensitive to a single feature (e.g. channel 1 - left). Multimodal units transformed their
weighted inputs via one of the following activation functions: linear, rectified linear (ReLU), sigmoid, or
softplus of the form:

y = log(1 + eax+b) (11)

Where a and b are trainable parameters. To ensure fair comparisons across activations, we added two trainable
biases to the other activations, such that all networks had a total of 16 trainable parameters.
To read out a decision per trial, we summed the activity of each readout unit over time, and took the argmax.
To train networks, we initialised weights uniformly between 0 and 1, both a and b as 1, and used Adam
[Kingma and Ba, 2014] with: lr = 0.005, betas = (0.9, 0.999), and no weight decay.
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5.4 Single spiking neurons

5.4.1 Simulation

We modelled each spiking unit as a leaky integrate-and-fire neuron with a resting potential of 0, a single
membrane time constant τ , a threshold of 1 and a reset of 0. Simulations used a fixed time step of dt =1ms
and therefore had an effective refractory period of 1ms.

τ
dv

dt
= −v continuous time dynamics

v ← v + w on receiving a spike at synapse with weight w

v ≥ 1 condition for generating a spike
v ← 0 after generating a spike

(12)

To generate results for our single unit models (Section 3.5.2) we simulated individual multimodal units
receiving Poisson spike trains from 30 input units over 90 time steps. We systematically varied three
parameters in this model: the multimodal unit’s membrane time constant (τ : 1-20ms), its mean input weights
(w: 0-0.5) and the mean unimodal firing rate (ρ: 0-10Hz). We present the average results across 10 simulation
repeats.

5.4.2 Diffusion approximation

As an alternative approach (Section 3.5.2), we approximated the firing rates of single multimodal neurons
using a diffusion approximation [Goodman et al., 2018, Fourcaud and Brunel, 2002]. In the limit of a large
number of inputs, the equations above can be approximated via a stochastic differential equation:

τ
dv

dt
= µ− v + σ

√
τξ

µ =
∑

wρτ

σ2 =
∑

w2ρτ

(13)

Where ξ is a stochastic differential that can be thought of over a window [t, t + δt] as a Gaussian random
variable with mean 0 and variable 1/

√
δt, and w and ρ are the weights and firing rates of the inputs. Using

these equations we calculated the firing rates of single units:

ISI = τ
√

π

∫ (1−µ)/σ

−µ/σ

ex2
(1 + erf(x))dx

FR = 1/(ISI + trefractory)
(14)

We computed this for both multimodal and unimodal inputs with ρunimodal = ρmultimodal/2, and calculated
additivity as the multimodal firing rate divided by twice the unimodal firing rate.

5.5 Spiking neural networks

5.5.1 Input spikes

We converted the tasks’ directions per timestep (A, V) into spiking data. Input data takes the form of
two channels of 196 units, each of them sub-divided again in two equal sub-populations representing left or
right. Then, at each timestep t, each unit’s probability of spiking depends on the underlying direction of the
stimulus at time t (At, Vt) and spike rates pmin, pmax:

pi
Ch =

{
pmin if i ̸= Cht

pmax if i = Cht
, where i ∈ {L, R} is the subpopulation, and Ch ∈ {A, V } (15)

From those probabilities at each timesteps, we generate the two populations of spikes, resulting in Poisson-
distributed spikes with rates depending on the underlying signal.
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Figure 6: Average spike rates for different channel local directions

5.5.2 Spiking units

We modelled each unit as in Section 5.4.1. Both uni- and multimodal units were initialised with heterogeneous
membrane time constants drawn from a gamma distribution centred around τ = 5ms and clipped between 1
and 100ms. Readout units were modelled using the same equation, but were non-spiking and used a single
membrane time constant τr = 20ms.

5.5.3 Architectures

In our multimodal architecture, 196 input units sent full feed-forward connections to 30 unimodal units,
per channel. In turn, both sets of unimodal units were fully connected to 30 multimodal units. Finally, all
multimodal units were fully connected to two readout units representing left and right outputs. Thus, our
multimodal architecture had a total of 13620 trainable parameters. To ensure fair comparisons between
architectures, we matched the number of trainable parameters, as closely as possible, by varying the number of
units in our unimodal architectures. In our unimodal architecture we used 35 unimodal units per channel
and no multimodal units (13790 trainable parameters). In our double-layered unimodal architecture
we replaced the multimodal layer with two additional unimodal areas with 30 units each (13620 trainable
parameters).

5.5.4 Training

Prior to training we initialised each layers weights uniformly between −k and k where:

k =
√

1
Ninputs

(16)

To calculate the loss per batch, we summed each readout unit’s activity over time, per trial, then applied the
log softmax and negative log likelihood loss functions. Network weights were trained using Adam [Kingma
and Ba, 2014] with the default parameter settings in PyTorch: lr = 0.001, betas = (0.9, 0.999), and no weight
decay. In the backward pass we approximated the derivative using the SuperSpike surrogate function [Zenke
and Ganguli, 2018] with a slope σ = 10.

5.6 Analysis

5.6.1 Shapley values

In Section 3.5.3, we used Shapley Value Analysis to measure the causal roles of individual spiking units
in multimodal networks trained on different tasks. The method was implemented in Fakhar and Hilgetag
[2022], derived from the original work of Keinan et al. [2004]. Shapley values are a rigorous way of attributing
contributions of cooperating players to a game. Taking into account every possible coalition, we can determine
the precise contribution of every player to the overall game performance. This however becomes quickly
infeasible, as it scales exponentially with the number of elements in the system. We can however estimate it
by sampling random coalitions, to then approximate each element’s contributions (Shapley values). In our
case we consider individual neurons (players) performing task inference (the game) following a lesion (where
the coalition consists of the un-lesioned neurons).
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5.6.2 Random forest regression

In Section 3.3, we show the detection tasks parameters importances in predicting the difference of accuracy
between AtF and FtA. To compute those, we trained a random forest regression algorithm to predict the
accuracy difference from the set of parameters needed to produce the data algorithms are fed. We then look
at (impurity-based) feature importances to estimate how informative a parameter is to predict this difference
[Pedregosa et al., 2012].
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7 Supplementary information

7.1 Figures

7.2 Task code

Below, we provide sample Python code to make clear how we generate trials in each task. In our working
code, we actually specify probability distributions using the Lea library [Denis, 2018], and used this both to
efficiently generate samples and compute the log odds for the maximum a posteriori estimators. This code is
included in the repository, but is not shown here as it requires familiarity with the Lea library.

7.2.1 Classical task

from numpy.random import choice
def classical_trial(n, s):

M = choice([ -1, 1], p=[0.5, 0.5])
p = [(1 -s)/3, (1 -s)/3, (1+2*s)/3]
A, V = choice([ -M, 0, M], p=p, size=(2, n))
return M, A, V

7.2.2 Extended classical task

from numpy.random import choice
def classical_trial(n, s_A, s_V):

M_A = choice([ -1, 1], p=[0.5, 0.5])
M_V = choice([ -1, 1], p=[0.5, 0.5])
p = 1.0*(s_A>s_V)+0.5*(s_A==s_V)
M = choice([M_A, M_V], p=[p, 1 -p])
p_A = [(1 -s_A)/3, (1 -s_A)/3, (1+2*s_A)/3]
p_V = [(1 -s_V)/3, (1 -s_V)/3, (1+2*s_V)/3]
if s_A== -1:

p_A = [0, 1, 0]
if s_V== -1:

p_V = [0, 1, 0]
A = []; V = []
for t in range(n):

A.append(choice([ -M, 0, M], p=p_A))
V.append(choice([ -M, 0, M], p=p_V))

return M, A, V
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Figure 7: S1 Each architecture’s (colours) test accuracy (mean and std across networks) per subtask in the
extended classical task. S2 The accuracy over time of multimodal networks trained on the comodulation
task with multiple joint signal strengths. Each line shows the mean and std (shaded surround) across
networks, and trials with different joint signal strengths (darker green = higher). S3 Accuracy over time
curves for the AtF (blue) and FtA (coral) algorithms in dense (A) and sparse (B) settings with 5 channels
and continuous, rather than discrete, directions. S4. Accuracy over time curves for ANN models with
different multisensory activation functions (colours), trained and tested on different tasks (subplots). Ideal
FtA accuracy is overlaid in grey. Tasks, Cl: reduced classical, Dd: dense detection, Ds: sparse detection,
Cm+: probabilistic comodulation.
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Figure 8: S5 Network accuracy, from baseline to chance, as we ablate either the top (solid lines) or bottom
(dashed lines) k-units, ranked by different unit properties (colours). We plot the mean and std across
networks, and invert the y-axis for the bottom-k results. S6 Correlations between different unit properties
(add: additivity, τ : membrane time constant, w: mean input weights) and their causal contribution to task
performance (shap: Shapley value). Tasks, Cl: reduced classical, Dd: dense detection, Ds: sparse detection,
Cm+: probabilistic comodulation.

7.2.3 Comodulation tasks

from numpy.random import choice
def comod_trial(n, pcc, pii, pci, pcn, pin, pnn):

M = choice([ -1, 1], p=[0.5, 0.5])
# dictionary of probabilities of
# particular pairs (A, V)
dist = {(M, M): pcc, ( -M, -M): pii,

(M, -M): pci, ( -M, M): pci,
(M, 0): pcn, (0, M): pcn,
( -M, 0): pin, (0, -M): pin,
(0, 0): pnn}

# flat list of pairs and probabilities
av_pairs = list(dist.keys())
p = list(dist.values())
# generate sequence of observations
A = []; V= []
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for t in range(n):
pair_index = choice(len(p), p=p)
a, v = av_pairs[pair_index]
A.append(a)
V.append(v)

return M, A, V

from numpy.random import shuffle, choice
# n must be a multiple of 3, to ensure exact repartitions of directions
def perfect_comod_task(n) :

M = choice([ -1, 1], p=[0.5, 0.5])
A = np.concatenate([np.ones(n//3) * d for d in [ -1, 0, 1]])
shuffle(A)
V = A.copy()
V[np.where(A == 0)] = -M
V[np.where(A == -M)] = 0
return M, A, V

#n must be a multiple of 3, to ensure exact repartitions of directions
from numpy.random import shuffle, choice, permutation
def perfect_comod_task(n, strength) :

#Setup perfect comod
M = choice([ -1, 1], p=[0.5, 0.5])
A = np.concatenate([np.ones(n//3) * d for d in [ -1, 0, 1]])
shuffle(A)
V = A.copy()
V[np.where(A == 0)] = -M
V[np.where(A == -M)] = 0
#Shuffle randomly some idxs
r_n = int(n * (1 - strength))
random_idxs = choice(n, r_n, replace=False)
A[random_idxs] = A[random_idxs][permutation(r_n)]
V[random_idxs] = V[random_idxs][permutation(r_n)]
return M, A, V

def probabilistically_balanced_comod_trial(n, pcc, pii):
pc = (1+pii -3*pcc)/2
pi = (1+pcc -3*pii)/2
return comod_trial(n, pcc, pii, 0, pc/2, pi/2, 0)

7.2.4 Detection tasks

# Detection task trial
from numpy.random import choice
def detection_trial(n, pm, pe, pn, pc, pi):

M = choice([ -1, 0, 1], p=[pm/2, 1 -pm, pm/2])
E = []; A = []; V = []
for t in range(n):

# emit variable depends on M
if M:

e = choice([0, 1], p=[1 -pe, pe])
else:

e = 0

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.24.550311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.24.550311
http://creativecommons.org/licenses/by/4.0/


# distribution of A and V depends on M, E
if e:

vals = [ -M, 0, M]
p = [pi, 1 -pc -pi, pc]

else:
vals = [ -1, 0, 1]
p = [pn/2, 1 -pn, pn/2]

# make random choices and append
A.append(choice(vals, p=p))
V.append(choice(vals, p=p))
E.append(e)

return M, E, A, V

7.2.5 Multichannel, multiclass detection task

import numpy as np
from numpy.random import choice
def trials(num_channels, num_classes, pe, pc, time_steps=90, repeats=10000):

M = np.random.randint(num_classes, size=repeats)
E = choice(np.arange(2), p=[1 -pe, pe], size=(repeats, time_steps))
E[M==0, :] = 0
# use this when E=0
C0 = np.random.randint(num_classes, size=(repeats, time_steps, num_channels))
# use this when E=1, initially set up so that correct answer is 0, then shift by M
p = np.ones(num_classes)*(1 -pc)/(num_classes -1)
p[0] = pc
C1 = choice(np.arange(num_classes), size=(repeats, time_steps, num_channels), p=p)
C1 = (C1+M[:, None, None]) % num_classes
C = C1*E[:, :, None]+C0*(1 -E[:, :, None])
return M, E, C

7.2.6 Continuous detection task

import numpy as np
from numpy.random import rand, randn
def generate_trials(num_trials, num_channels, num_windows, pm, pe, mu, sigma):

M = choice([ -1, 0, 1], size=(num_trials,), p=[pm/2, 1 -pm, pm/2])
# We choose E values for all trials and windows, but then multiply by 0 where M=0.
# The output has shape (num_trials, num_channels, num_windows) which we'll want below
E = np.array(rand(num_trials, num_windows)[:, None, :]<pe*(M!=0)[:, None, None], dtype=float)
# Now we compute the mean and std for the normal distribution for each point
mu = mu*E*M[:, None, None]
sigma = 1 -E+sigma*E
# Then generate normal random samples according to this
X = randn(num_trials, num_channels, num_windows)*sigma+mu
return M, X

7.3 Derivations

Following Section 5.2, equation (9) to compute the maximum a posteriori (MAP) estimate for the FtA model
we simply need to compute the following for each task:

log P (Ct |M = m) (17)
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If we want to compute the MAP estimator for the AtF model we make the additional assumption that each
channel is independent, i.e. assume:

log P (Ct |M = m) =
n∑

i=1
log P (Ci

t |M = m) (18)

7.3.1 Classical and probabilistic comodulation tasks

For the classical task, for example Ct = (At, Vt) where At and Vt are conditionally independent given M so:

log P (Ct |M = m) = log P (At |M = m) + log P (Vt |M = m) (19)

where

log P (At |M = m) =


pc if At = m

pi if At = −m

pn if At = 0
(20)

and similarly for Vt.
For the probabilistic comodulation task, log P (Ct |M = m) is just one of the values pcc, pcn, etc. depending
on the values of Ct compared to m. For example, log P (Ct = (m, 0) |M = m) = pcn.

7.3.2 Detection tasks

For the detection tasks, we cannot observe the latent variable Et so we have to marginalise over all possible
values and then use conditional independence of channels given M and Et:

log P (Ct |M = m) = log
1∑

e=0
P (Ct |M = m, Et = e)P (Et = e |M = m)

= log
1∑

e=0

NC∏
i=1

P (Ci
t |M = m, Et = e)P (Et = e |M = m)

(21)

7.3.3 Multichannel, multiclass detection task

We derive the estimator for the isotropic case by Substituting (7) into (21). To simplify this, we use the
following notation:

pi = (1− pc)/(ND − 1) probability of incorrect observation
pn = 1/ND probability of any observation when Et = 0

x(t, m) = #{i : Ci
t = m} the number of observations equal to m at time t

(22)

With this, noting that P (Ci
t |M = m, Et = 1) = pc if Ci

t = m or pi otherwise, and that this happens xt(m)
and NC − xt(m) times (respectively) in the product over i:

log P (Ct|M = m) = log(px(t,m)
c p

NC −x(t,m)
i pe + pNC

n (1− pe))
= log((pc/pi)x(t,m)pNC

i pe + pNC
n (1− pe))

= log(α + βγx(t,m))
= log(1 + becx(t,m)) + a

(23)
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where

α = pNC
n (1− pe)

β = pNC
i pe

γ = pc/pi

a = log α

b = α/β

c = log γ

(24)

This is the softplus function mentioned in Section 3.4.

In the general case of (21) where we do not assume isotropy, we need to estimate (NNC

D − 1)ND parameters.
The classical evidence weighting approach assumes conditional independence of channels and is equivalent
to the case P (Et = 1) = 0, giving (ND − 1)NCND parameters P (Ci

t |M = m) as there are NC values of i,
ND values of m and for each i and m there are ND probabilities (but these have to sum to 1 so ND − 1
parameters). Allowing for Et = 1 gives us parameters P (Ci

t |M = m, Et = e) and P (Et = e|M = m) however
when Et = 0 the parameter P (Ci

t |M = m, Et = 0) cannot depend on m by definition. We therefore have an
additional NC(ND − 1) parameters from the P (Ci

t |M = m, Et = e) term and an additional ND parameters
from the P (Et = e|M = m) term. The total extra number of parameters is then NC(ND − 1) + ND or
approximately a fraction 1/ND of the number of parameters for evidence weighting.

7.3.4 Continuous detection task

In general, if Ci
t has a continuous rather than discrete distribution, (21) still holds but this time interpreting

P (Ci
t |M = m, Et = e) as a probability density function rather than a discrete probability.

In Section 3.4 we show results from a special case where Ci
t |Et = 0 ∼ N(0, 1) and Ci

t |Et = 1 ∼ N(µM, σ2).
In this case:

P (Ci
t = ci

t|M = m, Et = 0) = ϕ(0, 1, ci
t)

P (Ci
t = ci

t|M = m, Et = 1) = ϕ(µm, σ, ci
t)

ϕ(µ, σ, c) = 1√
2πσ

exp−(c− µ)2/2σ2
(25)

Expanding this out gives:

log P (Ct = ct|M = m) = log
(

(1− pe)
∏

i

ϕ(0, 1, ci
t) + pe

∏
i

ϕ(µm, σ, ci
t)
)

=
(

log 1− pe

(2π)NC /2σNC

)∑
i

(ci
t)2+

log
(

1 + pe

1− pe
exp

{
1

2σ2

∑
i

(ci
t − µm)2 − 1

2
∑

i

(ci
t)2

})
= (term with no m) + softplus(quadratic(m, ct))

(26)
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