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Abstract

Animals continuously detect information via multiple sensory channels, like vision and hearing,
and integrate these signals to realise faster and more accurate decisions; a fundamental neural
computation known as multisensory integration. A widespread view of this process is that
multimodal neurons linearly fuse information across sensory channels. However, does linear
fusion generalise beyond the classical tasks used to explore multisensory integration? Here,
we develop novel multisensory tasks, which focus on the underlying statistical relationships
between channels, and deploy models at three levels of abstraction: from probabilistic ideal
observers to artificial and spiking neural networks. Using these models, we demonstrate that
when information provided by different channels is not independent, linear fusion performs
sub-optimally and even fails in extreme cases. This leads us to propose a simple nonlinear
algorithm for multisensory integration which is compatible with our current knowledge
of multimodal circuits, excels in naturalistic settings and is optimal for a wide class of
multisensory tasks. Thus, our work emphasises the role of nonlinear fusion in multisensory
integration, and provides testable hypotheses for the field to explore at multiple levels: from
single neurons to behaviour.
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1 Key Points

• We introduce a novel set of tasks, based on comodulating the signals from multiple channels.

• We show that linear fusion performs sub-optimally on these tasks and even fails in extreme cases.

• In contrast, nonlinear fusion is optimal and excels in naturalistic settings, like predator-prey
interactions.

• We demonstrate that networks of spiking neurons approximate the behaviour of this nonlinear
algorithm, when trained on these tasks.

• Finally, we explore how single neuron properties allow networks to approximate nonlinear fusion.

2 Introduction

We continuously detect sensory data, like sights and sounds, and use this information to guide our behaviour
[Barlow, 1961]. However, rather than relying on single sensory channels, which are noisy and can be ambiguous
alone, we merge information across our senses and leverage this combined signal [Trommershauser et al.,
2011]. In biological networks, this process (multisensory integration) is implemented by multimodal neurons,
which receive inputs from multiple sensory channels and project to downstream areas. However, how to best
describe these network’s input-output transformations, which we will term algorithms [Marr and Poggio,
1976, Marr, 1982], remains an open question.
As such, a range of algorithms have been proposed [Jones, 2016]. At one extreme, are 1-look algorithms
which use only a single channel at a time. Imagine a multimodal network which, due to energy constraints,
uses only a single pathway at a time. In the middle are 2-look algorithms which produce an independent
output per channel, then use a decision rule to decide between these outputs. For example, in parallel race
models, the fastest channel’s output is interpreted as the "multimodal" output [Townsend and Wenger, 2004,
Otto and Mamassian, 2012]. At the other extreme are algorithms which fuse information across sensory
channels, either linearly [Fetsch et al., 2012, Drugowitsch et al., 2014, Hou et al., 2019, Coen et al., 2023] or
non-linearly [Jones, 2016]. In deeper networks this view raises the interesting question of when in the sensory
hierarchy information should be merged across channels [Bizley et al., 2016, Nagrani et al., 2021]. Though, if
all the operations in a network are linear then the order does not matter, and early and late fusion would be
equivalent (see supplementary materials section 7.1). Consequently, we group these algorithms under the
term linear fusion.
In theory, nonlinear fusion should outperform linear fusion [Jones, 2016]. However, in practice, both the
behaviour of observers and the activity of multimodal neurons seem to approximate linear fusion across a
range of classical multisensory tasks. In these tasks, observers are presented with directional cues in two
channels and are trained to report the direction with the most evidence. For example, to estimate heading
direction from visual and vestibular cues [Fetsch et al., 2012, Drugowitsch et al., 2014, Hou et al., 2019] or
to report the direction of a stimulus from auditory and visual cues [Coen et al., 2023]. Moreover, in these
tasks linear fusion is optimal, in the sense that it generates unbiased (i.e., correct on average) estimates with
minimum variance [Trommershauser et al., 2011].
However, there are two open questions regarding linear fusion: does it generalise beyond the classical tasks
used to explore multimodal integration and, what role do neurons with nonlinear responses to multimodal
stimuli play? For example, "super-additive" neurons which respond to multimodal stimuli more than predicted
by the sum of their unimodal responses [Stanford et al., 2005, Stein and Stanford, 2008].
Here, we explore these questions in three steps. First, we begin by considering the role of multimodal neurons.
To do so, we develop novel multimodal tasks which focus on the underlying statistical relationships between
channels, and compare the performance of a range of a models on these tasks. Next, we mathematically
derive the optimal algorithm for solving these tasks. Then, finally, in the vein of Marr’s hardware level [Marr
and Poggio, 1976, Marr, 1982] we explore how networks can implement this algorithm. Our results lead us to
propose a nonlinear fusion algorithm for multimodal processing, which outperforms linear fusion and is
optimal for a wide-class of multisensory tasks.
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3 Results

3.1 Multimodal units are not necessary for accuracy or balancing speed/accuracy in classical
tasks

We began by training spiking neural networks, via surrogate gradient descent [Zenke and Ganguli, 2018], to
perform classical multisensory tasks. In these tasks we present sequences of directional information (left /
right) in two channels, and train networks to report the direction of overall motion (Figure 1.B1). In a reduced
case both channels always signal the same direction, while in an extended version we include both unimodal
and conflicting trials. Each network was composed of two unimodal areas with feedforward connections to
a multimodal layer, connected to two linear output units representing left and right choices (Figure 1.A1).
Following training, multimodal networks achieved a mean test accuracy of 93.4% (±0.1% std) on the reduced
task and 94.2% (±0.05% std) on the extended task. In line with experimental work [Coen et al., 2023] their
accuracy on the extended task varied by trial type (Figure 7).
To understand the role multimodal units play in these tasks, we trained two additional sets of networks: one
without a multisensory layer (Figure 1.A2) and, to control for network depth, one in which we substituted
the multisensory layer for two additional unimodal areas (Figure 1.A3). Surprisingly, these architectures
performed similarly to the multimodal architecture on both the reduced (unimodal: 93.9%, ±0.2% std;
2-unimodal: 93.0%, ±0.2% std) and extended task (unimodal: 94.1%, ±0.1% std; 2-unimodal: 94.1%, ±0.1%
std), suggesting that multimodal spiking units are not necessary for accuracy on these tasks. So, what
computational role do these units play? One alternative is that they are beneficial in balancing speed/accuracy
[Drugowitsch et al., 2014]. However, we found that all three architectures accumulated evidence at equivalent
rates (Figure 1.C1).
While these results may seem surprising, the optimal strategy in this task simply amounts to linearly fusing
evidence across channels and time to form a final estimate. In our models, this linear fusion algorithm
(Figure 1.D) can be directly implemented by the output units, as it is a linear computation, and consequently,
the nonlinearity granted by an intermediate multisensory layer provides no benefit. Beyond our models, these
results raise the question of when or why biological networks would require multisensory neurons between
their unimodal inputs and downstream outputs.

3.2 Multimodal units are critical for extracting comodulated information

To explore when networks need multisensory neurons, we designed a novel task in which we comodulate
signals from two channels to generate trials with two properties (Figure 1.B2):

1. Within each channel there are an equal number of left and right observations, so a single channel
considered in isolation carries no information about the correct global direction.

2. On a fraction of randomly selected time steps (which we term the joint signal strength), both channels
are set to indicate the correct direction. Then the remaining observations are shuffled randomly
between the remaining time steps (respecting property 1). Thus each trial’s label is encoded jointly
across channels.

As above, we trained and tested all three architectures on this task. Strikingly, both unimodal architectures
remained at chance accuracy (unimodal: 50.4%, ±0.4% std; 2-unimodal: 50.4%, ±0.3% std), while multimodal
networks learned the task well (multimodal: 96.0%, ±1.3% std). Additionally, multimodal network accuracy
increased in line with joint signal strength (Figure 7). However, this task seems unrealistic – as it requires
a perfect balance between labels – so we developed a probabilistic version with the same constraint (i.e.,
information is balanced on average but may vary on any individual trial). Again, both unimodal architectures
remained at chance accuracy, while multimodal networks approached ideal performance (Figure 1.C2).
Together, these results demonstrate that multimodal units are critical for comodulation tasks, though why
is this the case? In contrast to classical multisensory tasks, our comodulation tasks require observers to
detect coincidences between channels and to assign more evidential weight to these than non-coincident
time points. As such, observers must fuse information across channels nonlinearly; an algorithm which we
term nonlinear fusion (Figure 1.E). In our unimodal architectures, fusion happens only at the decision
outputs which are linear, meaning they are unable to assign coincidence a higher weight than the sum of
the individual observations from each channel. Consequently, the algorithm they implement is equivalent
to linear fusion. In contrast, our multimodal, leaky integrate-and-fire, units can assign variable weight to
coincidence via their nonlinear input-output function.
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Figure 1: A1-3 Network architectures - spikes flow forward from input channels (Ch0, Ch1) to decision
outputs (D). B1-2 Tasks are sequences of discrete symbols (left, neutral, right) per channel, with a fixed
number of time steps, and a label (left or right). In classical tasks (B1) this label indicates the overall bias
(e.g. L >R). In comodulation tasks (B2) this label is encoded jointly across channels (e.g. LL >RR). C1-2
Test accuracy as a function of time (the number of elapsed time steps within a trial) for the reduced classical
(C1) and probabilistic comodulation (C2) tasks. We plot the mean (line) and standard deviation (shaded
surround) across 5 networks per architecture, plus the optimal accuracy from the nonlinear fusion algorithm
(NLF, grey line). D In classical tasks the optimal algorithm is to linearly fuse evidence across channels and
time. E In comodulation tasks nonlinear fusion is optimal - denoted here by σ.
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To illustrate this difference, consider the following two situations. In situation 1, at time t = 0, one channel
gives evidence in favour of left, and the other gives no evidence, while at time t = 1 the first channel gives
no evidence and the other gives evidence of left. In situation 2 at t = 0 both channels give evidence of left,
and neither channel gives evidence at t = 1. To a linear algorithm, these situations provide exactly the same
amount of evidence in favour of left as each modality and each time step are independent (and equally reliable
by assumption). In contrast, a nonlinear algorithm can assign more weight to the multimodal observation at
t = 0 in situation 2 than the sum of the unimodal observations in situation 1, and so detect coincidence.

3.3 Nonlinear fusion excels in naturalistic settings

Our results demonstrate that nonlinear fusion can solve comodulation tasks where linear fusion remains at
chance level, but would these two algorithms differ in naturalistic settings? To explore this, we adapted the
tasks above to produce a novel detection task in which a predator must use signals from two channels, e.g.,
vision and hearing, to determine both whether prey are present and if so their direction of motion (3-way
classification). In this task, trials are generated via a probabilistic model with 5 parameters which specify
the probability of: prey being present in a given trial (pm), emitting cues at a given time when present
(pe), signalling their correct (pc) or incorrect (pi) direction of motion and the level of background cues (pn)
(Figure 2.A-B). This task thus closely resembles those above in structure, but with the added realism that
information arrives at sparse, unspecified intervals through time.
Using this task, we first compared how the accuracy of the two algorithms differed in distinct settings. To do
so, we randomly sampled 10,000 combinations of the task’s 5 parameters and used ideal Bayesian models to
determine each algorithm’s accuracy. To meaningfully compare the two algorithms we then filtered these
results by discarding parameter sets which were either trivially easy or overly difficult (Section 5.6.1). This
process left us with 2,836 (28%) sets of parameter combinations. By definition, nonlinear fusion always
performs at least as well as linear fusion, and across these settings the median difference (nonlinear minus
linear) was 0.73%. Though, the maximum difference was 13.7%, showing that it excels in specific settings.
To understand when nonlinear fusion excels compared to linear fusion, we calculated each parameter’s
correlation with the difference in accuracy and it’s importance in predicting it using a random forest regression
model (Section 5.6.2) (Figure 2.C-D). This approach revealed that nonlinear fusion excels when prey signal
their direction of motion more reliably (increasing pc), but more sparsely in time (decreasing pe). Critically,
these settings resemble naturalistic conditions in which prey provide reliable cues, but try to minimise their
availability to predators by remaining as concealed as possible.
Next, we focused on a subset of detection settings by fixing pm, pn and pi and identifying combinations of pe

and pc where nonlinear fusion consistently achieves 80% accuracy. Across this subset, linear fusion’s accuracy
decreases with the sparsity of the useful signal buried in the noise, varying with both pe and pc (Figure 2.E).
Finally, we trained spiking neural networks on the two extremes of this subset: one in which prey emit
unreliable signals, densely in time (dense detection) and one in which prey emit reliable signals, sparsely in
time (sparse detection). In the dense setting, we found no difference in either accuracy or reaction time
between the three architectures (Figure 2.F). In contrast, the multimodal architecture outperformed both
unimodal architectures in the sparse setting (Figure 2.G).
Together these results demonstrate that the nonlinear fusion algorithm is always as good as linear fusion,
but excels in naturalistic settings when prey emit reliable signals, sparsely in time. Notably, in natural
settings signals from separate channels will likely arrive and be processed at different speeds. However, it is
reasonable to assume that these temporal mismatches can be compensated for by appropriate delays.

3.4 The softplus nonlinearity solves a wide class of multimodal tasks

Above, we have focused on tasks in which observers must use information from two sensory channels to reach
one of two or three possible decisions. However, even the simplest of organisms are granted more senses and
possible behaviours. Thus, we now compare linear and nonlinear fusion in more generalised settings. To do
so, we consider the more general case of NC channels and ND directions (or classes, more generally).
In the most general case, solving this task would require learning the joint distribution of all variables, i.e.
NNC

D parameters, which would quickly become infeasible as ND and NC increase. However, when channels
are independent given a shared (underlying time dependent) variable, as in our detection task, it turns out
that the optimal solution requires only a small increase in the number of parameters (a fraction ∼ 1/ND
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Figure 2: A-B In the detection task, a 5 parameter probabilistic model generates trials (sequences of discrete
symbols) with different statistics. At each time step t there is either a signal emitted (Et = 1 with probability
pe if there is a prey present) or not (Et = 0) with different probability distributions depending on the value of
Et. C Each parameter’s importance (bars) in predicting the difference in accuracy between the ideal nonlinear
and linear models, as determined by a random forest regression model, and each parameters correlation with
the difference (arrows). D The difference in accuracy between the two algorithms (nonlinear minus linear
fusion) as a function of the tasks 5 parameters. For each detection setting (a set of 5 parameters values), we
plot the value of each parameter (subplots) and the difference between the two algorithms across 10,000 trials.
Overlaid (coral lines) are linear regressors per parameter. The rightmost subplot shows a kernel density
estimate of the difference across detection settings. E The accuracy of each ideal algorithm across a subset
of detection settings where we vary the signal sparsity - a function of pe and pc. F-G The test accuracy
over time (the number of elapsed time steps within a trial) of our three SNN architectures, plus the optimal
accuracy from the nonlinear fusion algorithm (NLF, grey line), on the two extremes of the family in E.
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more parameters) and a single nonlinearity (the softplus function) to the classical linear model (Figure 3.A
and details in Section 5.1.6 and Section 7.5.3).
So, where does this softplus nonlinearity come from? For the isotropic case (for simplicity), following our
derivation (Section 7.5.3) we arrive at the equation:

log P (observation t |M = m) = log(1 + b exp(c · x(t, m))) + a constant (1)

where M is the direction being estimated, and x(t, m) is the number of the NC channels at time t that indicate
direction m (that can take any value between 1 and ND). Our observer then estimates M by computing
x(t, m) at each time t via a linear summation across channels, passing it through the nonlinear softplus
function (softplus(x) = log(1 + b exp(c · x))), summing these values linearly over time to get the log odds
of each possible direction m and then estimating M to be the value of m which gives the maximum value
(Figure 3.A). This provides us with two insights:

1. As the number of channels (NC) increases, the function gets closer to a shifted rectified linear unit
(ReLU). That is, it gets close to returning the value 0 when x is less than some threshold (xthresh), and
afterwards is proportional to x− xthresh. Consequently, with many channels, the optimal algorithm
should ignore time windows (t) where the evidence is below a certain threshold xthresh, and linearly
weight those above (Figure 3.B).

2. As the input becomes more dense, in our case as pe approaches 1, the optimal algorithm becomes
entirely linear. As such, we can see why classical multisensory studies, which have focused on dense
tasks, concluded that the linear fusion was optimal (Figure 3.B).

Returning to our ideal observer models, in these extended settings we found that the difference between the
two algorithms (nonlinear minus linear) increases with both the number of directions (ND) and channels
(NC) (Figure 3.C). As above (Section 3.3), we observe little difference in dense settings (Figure 3.D) but
large differences, up to 30% improvements of nonlinear over linear, in sparse settings (Figure 3.E).
Finally, we adapted the observations in this multi-direction, multi-channel task, from discrete to continuous
values with any probability distribution (Section 5.1.7) and show results for the Gaussian case. Mathematically,
the optimal algorithm in the Gaussian case has the form softplus(quadratic(observations, m)). While this
demonstrates that the exact form of the optimal function will depend upon the distribution of each channel’s
signals; it suggests the softplus function will suit a wide-class of multisensory tasks. Extending our ideal
observer models to this continuous case, generated similar results to the discrete case. That is, the difference
between the two algorithms was negligible in dense, but large in sparse, settings (Figure 7).
Together, these results explain why prior studies have focused on linear fusion, and demonstrate how just a
small increase in algorithmic complexity (from linear to nonlinear fusion) leads to large improvements in
performance across a wide-class of multisensory tasks.

3.5 Network implementations of nonlinear fusion

Above, we demonstrated that the softplus nonlinearity is the optimal algorithm for a wide-class of multisensory
tasks. Here, in the vein of Marr’s hardware level [Marr, 1982, Marr and Poggio, 1976], we explore how
networks can implement this algorithm and how one can distinguish which algorithm (linear or nonlinear
fusion) an observer’s behaviour more closely resembles.

3.5.1 Network behaviour is robust across nonlinearities

To explore how precisely networks need to approximate the softplus function (or if any nonlinearity will
do) we trained minimal artificial neural networks on our two channel tasks, and compared networks whose
multimodal units used linear, rectified linear, sigmoidal or softplus activation functions (Section 5.3). In tasks
with little joint signal across across channels (classical and dense-detection), linear activations were sufficient
(Figure 4.A). In contrast, tasks with more joint signals (sparse-detection and comodulation) required non-linear
activations, though all three non-linearities were equivalent in terms of both accuracy and reaction speeds
(Figure 7); suggesting that any non-linear function may be sufficient. Though, how do these mathematical
functions relate to the activity patterns of real spiking neurons?
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Figure 3: A In the case of NC(channels) and ND(directions) the optimal algorithm is to sum the evidence for
each direction across channels, apply a non-linearity (σ) and then accumulate these values. B The optimal
nonlinearity depends on both the number of channels which indicate the same direction (x(m)) and the
sparsity of the signal (pe). C The difference in accuracy between linear and nonlinear fusion (LF and NLF)
depends on both the number of channels and directions. D-E Accuracy over time (the number of elapsed
time steps within a trial) curves for linear (blue) and nonlinear (coral) fusion in dense (D) and sparse (E)
settings with 5 channels and 6 directions.

3.5.2 Simple, single neuron models generate sub- to super-additive states

In experimental studies [Stanford et al., 2005] the input-output functions of individual multimodal neurons are
often inferred by comparing their multimodal response f(Ch0, Ch1) to the sum of their unimodal responses
f(Ch0, 0) + f(0, Ch1) via a metric known as additivity:

additivity = f(Ch0, Ch1)
f(Ch0, 0) + f(0, Ch1) (2)

Using this metric, neurons can be characterised as being in sub- or super-additive states (i.e., outputting less
or more spikes than expected based on their unimodal responses) [Stanford et al., 2005]. However, the link
between these neuron states and network behaviour remains unclear [Jones, 2016]. To explore this we
conducted two experiments; one at a single neuron level (here) and one at the network level (Section 3.5.3).
To understand how these states arise in spiking neurons, we simulated single multimodal units (Section 5.4.1),
with differing membrane time constants (τ) and mean input weights (w), and calculated their additivity as
we varied the mean firing rates of their input units (ρ) (Figure 4.B). These simulations recapitulated two
experimental results, and yielded two novel insights. In agreement with experimental data [Stanford et al.,
2005] most units (60%) exhibited multiple states, and we found that lower input levels (both weights and
firing rates) led to higher additivity values (Figure 4.B); a phenomenon termed inverse effectiveness [Fetsch
et al., 2013]. Moving beyond experimental data, our simple, feedforward model generated all states, from
sub- to super-additive; suggesting that other proposed mechanisms, such as divisive normalisation Ohshiro
et al. [2011], may be unnecessary in this context. Further, we found that units with shorter membrane time
constants, i.e. faster decay, were associated with higher additivity values (Figure 4.B); suggesting that this
may be an interesting feature to characterise in real multimodal circuits. Notably, an alternative modelling

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2024. ; https://doi.org/10.1101/2023.07.24.550311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.24.550311
http://creativecommons.org/licenses/by/4.0/


approach (Section 5.4.2), in which we approximated the firing rates of single multimodal neurons [Goodman
et al., 2018, Fourcaud and Brunel, 2002], generated almost identical results (Figure 4.B-right).

3.5.3 Unit ablations demonstrate a causal link between additivity and network behaviour

To understand how these unit states relate to network behaviour we calculated the additivity of the multimodal
units in our trained spiking neural networks, and compared these values across tasks. We found that most
units were super-additive, though observed slight differences across tasks (Figure 4.C); suggesting a potential
link between single unit additivity and network behaviour.
To test this link, we ranked units by their additivity (within each network), ablated the highest or lowest
k units and measured the resulting change in test accuracy. On the dense detection task, we found that
ablating the units with lowest additivity had the greatest impact on performance, while on sparse detection
we observed the opposite relation (Figure 4.D). The classical and probabilistic comodulation tasks respectively
resembled the dense and sparse detection cases (Figure 8). To understand these relations further we then
ranked unit’s by their membrane time constants (τ) or mean input weights (w) and repeated the k-ablations.
On both tasks ablating units with high input weights and / or long τ significantly impaired performance;
highlighting the importance of accumulator-like units for both tasks. However, on sparse detection, we also
observed that ablating units with short τ had a symmetrical effect (Figure 4.D); suggesting an additional role
for coincidence-detector-like units on this task.
From these results, we draw two conclusions. First, different multimodal tasks require units with different
properties (e.g. long vs short membrane time constants). Second, additivity can be used to identify the most
important units in a network. However, as a unit’s additivity is a function of its intrinsic parameters (τ, w, ρ),
additivity is best considered a proxy for these informative but harder to measure properties. Notably, an
alternative approach in which we used combinatorial ablations (i.e. ablating unit 1, 1-2, 1-3 etc) to calculate
each unit’s causal contribution to behaviour [Fakhar and Hilgetag, 2022], yielded similar results (Figure 8).

3.5.4 Behaviour can distinguish which algorithm an observer is implementing

Finally, when testing an observer on a task, we wish to distinguish if their behaviour more closely resembles
either algorithm (linear or nonlinear fusion). To do so, we measured the amount of evidence which each
algorithm assigns to each direction (difference in log odds of direction left or right, given the observations),
per trial, and then scattered these in a 2d space.
From this approach we garner two insights. First, by colouring each trial according to it’s ground truth
label, we can visualise both the information available on each trial and the relations between tasks (Figure 5).
For example, in the classical task both algorithms assign the same amount of evidence to each direction,
so each trial lies along y = x. In contrast, in the probabilistic comodulation task only nonlinear fusion is
able to extract any information, and all trials lie along the y-axis. Second, by colouring each trial according
to an observers choices, we can compare how closely their behaviour resembles either algorithm (Figure 5).
Applying this approach to our 2-layer unimodal, and multimodal SNN architectures illustrates that while
their behaviour is indistinguishable on the classical and dense-detection tasks, there are a subset of sparse
detection trials where the two architectures choose opposite directions as their behaviour is respectively closer
to the linear or nonlinear fusion algorithms (Figure 5). These trials are essentially linear-nonlinear conflict
trials as there is an overall bias in one direction (e.g. L > R) but more coincident information in the other
(e.g. LL < RR).
Thus, coupled with task accuracy - which is all that is necessary on our comodulation tasks - trial-by-trial
choices are sufficient to distinguish whether an observer’s behaviour more closely resembles linear or nonlinear
fusion.
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Figure 4: A ANN results. For each task (Cl: reduced classical, Dd: dense detection, Ds: sparse detection,
Cm+: probabilistic comodulation) and activation function (colours) we plot the maximum test accuracy
(across 5 networks) minus the optimal nonlinear fusion accuracy (NLF). B Single unit model results. Each
point shows the models additivity as a function of the membrane time constant (τ) and mean input (wρ). The
grey underlay shows when the multisensory unit fails to spike. The left panel shows the average additivity
from 10 simulations. The right shows the results from an approximation method, with the multisensory
unit’s firing rate (Hz) overlaid. C-D SNN results. C The additivity of each multisensory unit (circles) from
spiking networks trained on different tasks. Bars indicate the mean additivity (across networks) per task.
Colours, per unit, are as in B. Units which spike to multi-, but neither unisensory stimulus are denoted with
a plus symbol. D Network accuracy, from baseline to chance, as we ablate either the top (solid lines) or
bottom (dashed lines) k-units, ranked by different unit properties (colours). We plot the mean and std across
networks, and invert the y-axis for the bottom-k results. Left / right - networks trained and tested on dense
or sparse detection.

4 Discussion

Prior experimental and theoretical work suggests that multimodal neurons linearly fuse unimodal information
across channels. In contrast, our results, from three levels of abstraction, suggest that fusion may be nonlinear.
Resolving which algorithm better describes multimodal processing in biological systems will require further
experimental work. Nevertheless, here, we argue that nonlinear fusion is likely to be a better description.
On classical tasks, both algorithms are indistinguishable and so describe multimodal processing equivalently.
As such, prior experimental results are consistent with either algorithm. In contrast, on our novel comodulation
tasks, linear fusion remains at chance level, while nonlinear fusion is optimal. Thus, these tasks constitute
simple experiments to determine which algorithm better describes an observer’s behaviour. However, both
the classical and comodulation tasks seem unrealistic for two reasons. First, both are composed of dense
signals (i.e. every time step is informative). Second, both treat the relations between channels in extreme
ways: in the former, the temporal structure of the joint multimodal signal carries no information, while in
the latter all the information is carried in the joint signal and the task is impossible using only one modality.
In contrast, in our detection-based tasks observers must extract periods of signal from background noise,
and both the observations within and across channels are informative. As such, these tasks seems more
plausible, particularly given the added realism that there is sometimes nothing to detect, and the fact
that both algorithms can solve them to some extent. Moreover, unlike pure multisensory synchrony or
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Figure 5: For each subplot we scatter 2000 random trials on the same two axis: the amount of right minus
left evidence according to each algorithm (∆ log odds). Thus, when x=0 the trial contains an equal amount
of left and right information according to the linear fusion algorithm. Each column contains trials from a
different task (reduced classical, dense detection, sparse detection, probabilistic comodulation). The top
row shows each trial’s label (left=blue, absent=off-white, right=orange). The middle and last row show
the most common choice across 10 SNNs of either the 2-layered unimodal (middle) or multimodal (bottom)
architecture. For these rows each trial’s alpha indicates how consistently networks chose the most common
value. For example, on probabilistic comodulation the 2-unimodal networks choose randomly - and so these
trials have a low alpha. Otherwise networks choose consistently - so most trials have high alpha. Black arrows
highlight subsets of trials where the two architectures choose opposite directions.
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coincidence detection tasks [Parise and Ernst, 2016] in which the observer must explicitly detect coincidence,
here coincidence is an informative, implicit feature. Nonlinear fusion is a generalisation of linear fusion and
so always performs at least as well on our detection tasks. Though, nonlinear fusion excels in realistic cases
where prey signal their direction of motion reliably but sparsely in time, and in cases where the number
of directions or channels is high. Note that while channels could originate from separate modalities, like
vision or sound, our analysis also extends to independent sources of information from within modalities; so
the number of channels may exceed the number of modalities. In sum, our results suggest that nonlinear
fusion could provide significant benefits in naturalistic settings and, assuming that performance is ecologically
relevant, may more plausibly describe multisensory behaviour.
Though, there are four limitations to consider here. First, we focused on discrete stimulus tasks with a
fixed trial length. This is un-naturalistic as tasks in the real-world are likely to be temporally unbounded
and composed of continuous stimuli. However, our decoding of observer’s accuracy over time hints at their
performance in free-reaction tasks, and extending part of our work to the continuous case yielded similar
results. In a similar vein, extending our work to consider non-evidence accumulation-based tasks would
further generalise our results. Second, we focused on small network models with simple architectures. This
is problematic as it elides the complexity of real multimodal circuits, like the presence of skip connections
[Ohyama et al., 2015], and may make our results difficult to relate to real circuits. However, our multimodal
architecture is optimal for all the tasks we considered - suggesting that additional complexity may only be
necessary for even more challenging tasks, and the multimodal units in our model simply represent the first
neurons to receive inputs from multiple modalities - wherever they may be found in the brain. Third, we only
considered equally reliable channels. In the tasks we consider, it would be straightforward to model channels
with differing reliability via some additional parameters, though it would not substantially change our results.
Moreover, reliability is not well defined for non-independent channels (see 7.2). Finally, we assumed that
observations are generated by a single underlying cause. Relaxing this assumption and extending our work to
consider causal inference is an exciting future direction [Körding et al., 2007, Zhang et al., 2019, Rideaux
et al., 2021].
Beyond behaviour, are there hardware features which make either algorithm a better description of multimodal
processing? In biological systems, these algorithms must be implemented by networks of spiking neurons.
As neurons naturally transform their inputs via a spiking nonlinearity, and we show that the exact form of
this nonlinearity is not critical, nonlinear fusion constitutes a more natural solution for networks of spiking
neurons. Concurrently, the behaviour of trained SNNs more closely resembles nonlinear fusion on both our
sparse-detection and comodulation tasks.
Ultimately, our work demonstrates that extending the linear fusion algorithm - with only a few additional
parameters and a single nonlinearity - results in an algorithm (nonlinear fusion) which is optimal for a wide
class of multimodal tasks; and may constitute a better description of multimodal processing in biological
systems.
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5 Methods

In short, we introduce a family of related tasks (Section 5.1). In general, observers must infer a target
motion (left or right) from a sequence of discrete observations in two or more channels – which each signal
left, neutral or right at each time step. To model channels with equal reliability, we simply generated each
channel’s data using the same procedure. For each task we computed ideal performance using maximum a
posteriori estimation (Section 5.2). When working with spiking neural networks (Section 5.5) we represented
task signals via two populations of Poisson neurons per channel (Ch0) and (Ch1) with time-varying and
signal-dependent firing rates. In our spiking networks we modelled hidden units as leaky integrate-and-fire
neurons (Section 5.4). Readout units were modelled using the same equation but were non-spiking. To ensure
fair comparisons between architectures, we varied the number of units to match the number of trainable
parameters as closely as possible. We trained networks using Adam [Kingma and Ba, 2014], and in the
backward pass replaced the derivative with the SuperSpike surrogate function [Zenke and Ganguli, 2018]. For
all conditions we trained 5-10, networks, and report the mean and standard deviation across networks for
each comparison.

5.1 Tasks

For all tasks, there is a target motion to be inferred, represented by a discrete random variable M . In addition,
there is always a sequence of discrete time windows t = 1, .., n. At each time window t, observations Ci

t are
made in each channel i = 1, . . . , NC . In the case of two channels we will sometimes refer to C1

t = At and
C2

t = Vt (evoking auditory and visual channels). Observations at different time windows will be assumed to
be independent (except for the perfectly balanced comodulation task). For simplicity, we usually assume that
information from each channel is equally reliable, and that each direction of target motion is equally likely,
but these assumptions can be dropped without substantially changing our conclusions.

5.1.1 Classical task

In the classical task we consider two channels, allow M to take values {−1, 1} representing left and right
with equal probability, and assume that the channels are conditionally independent given M . We define a
family of tasks via a signal strength 0 ≤ s ≤ 1 that gives the probability distribution of values of a given
channel at a given time to be:

pc(s) = P (Ci
t = M |M) = (1 + 2s)/3 correct

pi(s) = P (Ci
t = −M |M) = (1− s)/3 incorrect

pn(s) = P (Ci
t = 0 |M) = (1− s)/3 neutral

(3)

This has the properties that (a) when signal strength s = 0 each value is equally likely (pc = pi = pn) and
the task is impossible, (b) as signal strength increases the chance of correct information increases and the
chance of neutral or incorrect information decreases, (c) when signal strength s = 1 all information is correct
(pc = 1, pi = pn = 0). By default we use s = 0.1 for this task.

5.1.2 Extended classical task

In the extended classical task there are motion directions MA, MV for each channel (MA/V = ±1 with equal
probabilities), along with signal strengths sA, sV ∈ [0, 1]2 which both vary across trials. The overall motion
direction M is the direction of whichever modality has the higher signal strength in a given trial - we exclude
trials when sA = sV .

M =
{

MA with probability 1 if sA > sV

MV with probability 1 if sV > sA
(4)

We also includes uni-sensory trials, when sA = 0 or sV = 0. The probability distributions are the same as in
(3) except with s = sA for i = 1 and s = sV for i = 2.
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5.1.3 Perfectly balanced comodulation task

In the perfectly balanced comodulation task we use two channels and allow M = ±1 as in the classical task.
We guarantee that in each channel, the number of left (-1), neutral (0) and right (+1) observations are
precisely equal in number (one third of the total observations in each case). We define a signal strength
0 ≤ s ≤ 1/3 and randomly select sn of the n time windows t in which we force At = Vt = M . We set the
remaining values of At and Vt randomly in such a way as to attain the per-channel balance in the number of
observations of each value. Note that this is the only task in which observations in different time steps are
not conditionally independent given M .

5.1.4 Probabilistically balanced comodulation task

The probabilistically balanced comodulation task is designed on the same principle as the perfectly balanced
comodulation task but rather than enforcing a strict balance of left and right observations we only enforce an
expected balance across trials, and this allows us to reintroduce the requirement that different time steps
are independent. We define the notation pav = P (At = kaM, Vt = kvM | M) where a, v can take values c
(correct), n (neutral) and i (incorrect), and kc = 1, ki = −1 and kn = 0. We assume that the two channels are
equivalent so pav = pva and (to reduce the complexity) we assume pci = pic = pnn = 0 since these cases carry
no information about M . The balance requirement gives us the equation 2pcc + pcn + pnc = 2pii + pin + pni

or (by symmetry) pcc + pcn = pii + pin. This gives us a two parameter family of tasks defined by these
probabilities, and we choose a linear 1D family defined by a signal strength s as follows:

pcc = (1/3)s + (1/9)(1− s)
pii = (1/9)(1− s)

pcn = (1 + pii − 3pcc)/4
pin = (1 + pcc − 3pii)/4

(5)

This has the properties that when s = 0 the task is impossible (pcc = pii and pcn = pin) and when s = 1 the
probability pcc takes the highest possible value it can take (1/3). By default, we use s = 0.2 for this task.

5.1.5 Detection task

In the detection task we have two channels and now allow for the possibility M ∈ {−1, 0, 1} where M = 0
represents the absence of a target. We introduce an additional variable Et ∈ {0, 1} which represents whether
the target is emitting a signal (Et = 1) or not (Et = 0). If M = 0 then Et = 0 for all t, and if M ̸= 0 then Et

is randomly assigned to 0 or 1 at each time step. When Et = 0 the probabilities of observing a left/right in
any given channel are equal, whereas when Et = 1 you are more likely to observe a correct than incorrect
value in a given channel. Channels are conditionally independent given M and Et but dependent given only
M . We can summarise the probabilities as follows:

pm = P (M ̸= 0) target present
pe = P (Et = 1|M ̸= 0) emission
pn = P (At ̸= 0 | Et = 0, M) = P (Vt ̸= 0 | Et = 0, M) noise
pc = P (At = M | Et = 1, M) = P (Vt = M | Et = 0, M) signal correct
pi = P (At = −M | Et = 1, M) = P (Vt = −M | Et = 0, M) signal incorrect

(6)

If we set the probability of a target being present pm = 1 and the emission probability pe = 1 then this
reduces to the classical task.
We create a 1D family of detection tasks by first fixing pm = 2/3 (all values of M equally likely), pn = 1/3 (all
observations equally likely when signal not present), pi = 0.01 (signal reliable when present), and then picking
from the smooth subset of values of pc and pe that give the ideal nonlinear fusion algorithm a performance
level of 80%. We set s = 0 for the point with the lowest value of pc and highest value of pe, and s = 1 for the
opposite extreme.

5.1.6 Multichannel, multiclass detection task

We generalise the detection task to ND directions so M ∈ {1, . . . , ND} and NC channels which can take any
of these ND values, so Ci

t ∈ {1, . . . , ND} for i = 1, . . . , NC . We now assume there is always a target present
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and set P (Et = 1) = pe. We make an isotropic assumption that every direction is equally likely (although see
Section 7.5.3 for the non-isotropic calculations). In this case, when Et = 0 every observation is equally likely.
When Et = 1 we let pc be the probability of a correct observation, and all other observations are equally
likely. In summary:

P (Ci
t = j | Et, M) =


pc if Et = 1 and j = M

(1− pc)/(ND − 1) if Et = 1 and j ̸= M

1/ND if Et = 0
(7)

5.1.7 Continuous detection task

In the continuous detection task we allow the same set of values of M ∈ {−1, 0, 1} as in the detection task,
and the same definition of Et, but we now allow NC channels and each channel is a continuous variable
that follows some probability distribution. For the general case, see the calculations in Section 7.5.4, but
here we make the assumption that channels are normally distributed. If Et = 0 then Ci

t ∼ N(0, 1) and if
Et = 1 then Ci

t ∼ N(µM, σ2). By default we assume pm = 2/3 and µ = 0.5, then vary pe and σ for the dense
(pe = 0.5, σ = 1.0) and sparse (pe = 0.05, σ = 0.1) cases.

5.2 Bayesian models

We define two maximum a posteriori (MAP) estimators for all tasks except the perfectly balanced comodulation
task (because they assume that all time windows are conditionally independent given M). The estimator is:

M̂ = argmaxm P (M = m | C) (8)

Here C is the vector of all observations Ci
t . We give complete derivations in Section 7.5, but in summary this

is equivalent to the following that we call the ideal nonlinear fusion estimator:

M̂ = argmaxm

(
log P (M = m) +

n∑
t=1

log P (Ct |M = m)
)

(9)

If we additionally assume that channels are conditionally independent given M (which is true for some tasks
but not others) we get the classical estimator that we call linear fusion:

M̂ = argmaxm

(
log P (M = m) +

NC∑
i=1

n∑
t=1

log P (Ci
t |M = m)

)
(10)

We call this estimator linear fusion because each modality can accumulate the within-channel evidence
ϵi(m) =

∑n
t=1 log P (Ci

t | M = m) separately before it is linearly summed across channels to get ϵ(m) =
log P (M = m)+

∑NC

i=1 ϵi(m). In the more general case addressed by the nonlinear fusion estimator, information
from across channels needs to be nonlinearly combined at each time t to compute log P (Ct |M = m) before
it is accumulated across time.
Note that when M ̸= 0 and M = ±1 are equally likely, this is akin to a classical drift-diffusion model. Let δt

be the difference in evidence at time t between right and left, δt = log P (Ct|M = 1)− log P (Ct|M = −1).
The decision variable given all the evidence up to time s is Ds =

∑s
t=1 δt which jumps in the positive direction

when evidence in favour of motion right is received, and in the negative direction when evidence in favour of
motion left is received. The estimator in this case is M̂ = sign D(n), i.e. right if the decision variables ends
up positive, otherwise left.
In the classical task, this estimator simplifies to computing whether or not the number of times left is
observed across all channels is greater than the number of times right is observed, and estimating left if so
(or right otherwise). In the more general discrete cases you count the number of times each possible vector of
observations across channels Ct occurs and compute a weighted sum of these counts. In cases where it is not
feasible to exactly compute the ideal weights, we can use a linear classifier using these vectors of counts as
input, and we use this to approximate the linear and nonlinear fusion estimators for the perfectly balanced
comodulation task.
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5.3 Artificial neural networks

Each minimal network was composed of: four unimodal units, two multimodal units and three decision
outputs (prey-left, prey-absent or prey-right), connected via full, feedforward connections. Unimodal units
were binary, and each sensitive to a single feature (e.g. channel 1 - left). Multimodal units transformed their
weighted inputs via one of the following activation functions: linear, rectified linear (ReLU), sigmoid, or
softplus of the form:

y = log(1 + eax+b) (11)

Where a and b are trainable parameters. To ensure fair comparisons across activations, we added two trainable
biases to the other activations, such that all networks had a total of 16 trainable parameters.
To read out a decision per trial, we summed the activity of each readout unit over time, and took the argmax.
To train networks, we initialised weights uniformly between 0 and 1, both a and b as 1, and used Adam
[Kingma and Ba, 2014] with: lr = 0.005, betas = (0.9, 0.999), and no weight decay.

5.4 Single spiking neurons

5.4.1 Simulation

We modelled each spiking unit as a leaky integrate-and-fire neuron with a resting potential of 0, a single
membrane time constant τ , a threshold of 1 and a reset of 0. Simulations used a fixed time step of dt =1ms
and therefore had an effective refractory period of 1ms.

τ
dv

dt
= −v continuous time dynamics

v ← v + w on receiving a spike at synapse with weight w

v ≥ 1 condition for generating a spike
v ← 0 after generating a spike

(12)

To generate results for our single unit models (Section 3.5.2) we simulated individual multimodal units
receiving Poisson spike trains from 30 input units over 90 time steps. We systematically varied three
parameters in this model: the multimodal unit’s membrane time constant (τ : 1-20ms), its mean input weights
(w: 0-0.5) and the mean unimodal firing rate (ρ: 0-10Hz). We present the average results across 10 simulation
repeats.

5.4.2 Diffusion approximation

As an alternative approach (Section 3.5.2), we approximated the firing rates of single multimodal neurons
using a diffusion approximation [Goodman et al., 2018, Fourcaud and Brunel, 2002]. In the limit of a large
number of inputs, the equations above can be approximated via a stochastic differential equation:

τ
dv

dt
= µ− v + σ

√
τξ

µ =
∑

wρτ

σ2 =
∑

w2ρτ

(13)

Where ξ is a stochastic differential that can be thought of over a window [t, t + δt] as a Gaussian random
variable with mean 0 and variable 1/

√
δt, and w and ρ are the weights and firing rates of the inputs. Using

these equations we calculated the firing rates of single units:

ISI = τ
√

π

∫ (1−µ)/σ

−µ/σ

ex2
(1 + erf(x))dx

FR = 1/(ISI + trefractory)
(14)

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2024. ; https://doi.org/10.1101/2023.07.24.550311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.24.550311
http://creativecommons.org/licenses/by/4.0/


We computed this for both multimodal and unimodal inputs with ρunimodal = ρmultimodal/2, and calculated
additivity as the multimodal firing rate divided by twice the unimodal firing rate.

5.5 Spiking neural networks

5.5.1 Input spikes

We converted the tasks’ directions per timestep (A, V) into spiking data. Input data takes the form of
two channels of 196 units, each of them sub-divided again in two equal sub-populations representing left or
right. Then, at each timestep t, each unit’s probability of spiking depends on the underlying direction of the
stimulus at time t (At, Vt) and spike rates pmin, pmax:

pi
Ch =

{
pmin if i ̸= Cht

pmax if i = Cht
, where i ∈ {L, R} is the subpopulation, and Ch ∈ {A, V } (15)

From those probabilities at each timesteps, we generate the two populations of spikes, resulting in Poisson-
distributed spikes with rates depending on the underlying signal.

Figure 6: Average spike rates for different channel local directions

5.5.2 Spiking units

We modelled each unit as in Section 5.4.1. Both uni- and multimodal units were initialised with heterogeneous
membrane time constants drawn from a gamma distribution centred around τ = 5ms and clipped between 1
and 100ms. Readout units were modelled using the same equation, but were non-spiking and used a single
membrane time constant τr = 20ms.

5.5.3 Architectures

In our multimodal architecture, 196 input units sent full feed-forward connections to 30 unimodal units,
per channel. In turn, both sets of unimodal units were fully connected to 30 multimodal units. Finally, all
multimodal units were fully connected to two readout units representing left and right outputs. Thus, our
multimodal architecture had a total of 13620 trainable parameters. To ensure fair comparisons between
architectures, we matched the number of trainable parameters, as closely as possible, by varying the number of
units in our unimodal architectures. In our unimodal architecture we used 35 unimodal units per channel
and no multimodal units (13790 trainable parameters). In our double-layered unimodal architecture
we replaced the multimodal layer with two additional unimodal areas with 30 units each (13620 trainable
parameters).

5.5.4 Training

Prior to training we initialised each layers weights uniformly between −k and k where:

k =
√

1
Ninputs

(16)

To calculate the loss per batch, we summed each readout unit’s activity over time, per trial, then applied the
log softmax and negative log likelihood loss functions. Network weights were trained using Adam [Kingma
and Ba, 2014] with the default parameter settings in PyTorch: lr = 0.001, betas = (0.9, 0.999), and no weight
decay. In the backward pass we approximated the derivative using the SuperSpike surrogate function [Zenke
and Ganguli, 2018] with a slope σ = 10.
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5.6 Analysis

5.6.1 Accuracy filter

In Section 3.3, we randomly sampled detection task parameters and evaluated the accuracy of the linear and
nonlinear fusion algorithms. To filter out trivial or excessively challenging trials, we used the performance
of a majority class classifier (i.e. 0.7 accuracy if 70% of trials share a single label) to define an accuracy
filter. Here, a represents the accuracy of this classifier. We define w = 1− a as a measure of the remaining
variability unexplained by the classifier, indicating the potential for algorithm improvement over this strict
baseline. We retained results only where both of the following conditions hold:

• max(linear accuracy, nonlinear accuracy) > a + w/8
• min(linear accuracy, nonlinear accuracy) < 1− w/8

The first condition ensures that the best algorithm is performing reasonably well. The second ensures that
the performance of the two algorithms is not saturated. This ensures that both algorithms are evaluated
under conditions that are neither overly trivial nor challenging, allowing a more meaningful comparison of
their performance.

5.6.2 Random forest regression

In Section 3.3, we show the detection tasks parameters importances in predicting the difference in accuracy
between linear and nonlinear fusion. To compute these, we trained a random forest regression algorithm to
predict the accuracy difference from the task parameters. Then use (impurity-based) feature importances to
estimate how informative each parameter is in predicting this difference [Pedregosa et al., 2012].

5.6.3 Shapley values

In Section 3.5.3, we used Shapley Value Analysis to measure the causal roles of individual spiking units
in multimodal networks trained on different tasks. The method was implemented in Fakhar and Hilgetag
[2022], derived from the original work of Keinan et al. [2004]. Shapley values are a rigorous way of attributing
contributions of cooperating players to a game. Taking into account every possible coalition, we can determine
the precise contribution of every player to the overall game performance. This however becomes quickly
infeasible, as it scales exponentially with the number of elements in the system. We can however estimate it
by sampling random coalitions, to then approximate each element’s contributions (Shapley values). In our
case we consider individual neurons (players) performing task inference (the game) following a lesion (where
the coalition consists of the un-lesioned neurons).
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7 Supplementary information

7.1 In linear models, early and late fusion are equivalent

If xct is the evidence in channel c at time t then early fusion can be represented by the equation
∑

t f(
∑

c xct)
for some fusion function f , while late fusion would be represented as

∑
c f(
∑

t xct). If the function f is linear
then these two are equivalent:

∑
t f(
∑

c xct) (Early fusion) (17)
= f(

∑
t

∑
c xct) (by linearity of f) (18)

= f(
∑

c

∑
t xct) (exchanging summations) (19)

=
∑

c f(
∑

t xct) (Late fusion, by linearity of f) (20)

7.2 Reliability is not well defined for non-independent channels

We do not know of any attempt to precisely define the reliability of a channel in a multimodal setting.
However, let us assume that any such definition would have the property that if all channels had zero
reliability, then it would not be possible to solve the task. We can show that this property cannot hold in
general when channels are not independent, and therefore there cannot be a sensible definition of reliability.
For example, consider the following two channel task definition:

M = ±1 with equal likelihood (21)
C0t = ±1 with equal likelihood (22)
C1t = C0tM (23)

Clearly, C0t is independent of M so just knowing C0t tells you nothing about M and therefore channel 0 has
zero reliability. Similarly, if you only know C1t then this indicates nothing about the value of M because you
do not know if it is M or −M at any given time t. Therefore, channel 1 also has zero reliability. However,
simply computing Dt = C0tC1t = C2

0tM = M immediately tells you M even from a single observation.

7.3 Figures

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2024. ; https://doi.org/10.1101/2023.07.24.550311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.24.550311
http://creativecommons.org/licenses/by/4.0/


Figure 7: S1 Each architecture’s (colours) test accuracy (mean and std across networks) per subtask in the
extended classical task. S2 The accuracy over time (the number of elapsed time steps within a trial) of
multimodal networks trained on the comodulation task with multiple joint signal strengths. Each line shows
the mean and std (shaded surround) across networks, and trials with different joint signal strengths (darker
green = higher). S3 Accuracy over time curves for linear (blue) and nonlinear (coral) fusion in dense (A)
and sparse (B) settings with 5 channels and continuous, rather than discrete, directions. S4. Accuracy over
time curves for ANN models with different multisensory activation functions (colours), trained and tested on
different tasks (subplots). Ideal nonlinear fusion accuracy is overlaid in grey. Tasks, Cl: reduced classical, Dd:
dense detection, Ds: sparse detection, Cm+: probabilistic comodulation.
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Figure 8: S5 Network accuracy, from baseline to chance, as we ablate either the top (solid lines) or bottom
(dashed lines) k-units, ranked by different unit properties (colours). We plot the mean and std across
networks, and invert the y-axis for the bottom-k results. S6 Correlations between different unit properties
(add: additivity, τ : membrane time constant, w: mean input weights) and their causal contribution to task
performance (shap: Shapley value). Tasks, Cl: reduced classical, Dd: dense detection, Ds: sparse detection,
Cm+: probabilistic comodulation.

7.4 Task code

Below, we provide sample Python code to make clear how we generate trials in each task. In our working
code, we actually specify probability distributions using the Lea library [Denis, 2018], and used this both to
efficiently generate samples and compute the log odds for the maximum a posteriori estimators. This code is
included in the repository, but is not shown here as it requires familiarity with the Lea library.

7.4.1 Classical task

from numpy.random import choice
def classical_trial(n, s):

M = choice([ -1, 1], p=[0.5, 0.5])
p = [(1 -s)/3, (1 -s)/3, (1+2*s)/3]
A, V = choice([ -M, 0, M], p=p, size=(2, n))
return M, A, V

7.4.2 Extended classical task
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from numpy.random import choice
def classical_trial(n, s_A, s_V):

M_A = choice([ -1, 1], p=[0.5, 0.5])
M_V = choice([ -1, 1], p=[0.5, 0.5])
p = 1.0*(s_A>s_V)+0.5*(s_A==s_V)
M = choice([M_A, M_V], p=[p, 1 -p])
p_A = [(1 -s_A)/3, (1 -s_A)/3, (1+2*s_A)/3]
p_V = [(1 -s_V)/3, (1 -s_V)/3, (1+2*s_V)/3]
if s_A== -1:

p_A = [0, 1, 0]
if s_V== -1:

p_V = [0, 1, 0]
A = []; V = []
for t in range(n):

A.append(choice([ -M, 0, M], p=p_A))
V.append(choice([ -M, 0, M], p=p_V))

return M, A, V

7.4.3 Comodulation tasks

from numpy.random import choice
def comod_trial(n, pcc, pii, pci, pcn, pin, pnn):

M = choice([ -1, 1], p=[0.5, 0.5])
# dictionary of probabilities of
# particular pairs (A, V)
dist = {(M, M): pcc, ( -M, -M): pii,

(M, -M): pci, ( -M, M): pci,
(M, 0): pcn, (0, M): pcn,
( -M, 0): pin, (0, -M): pin,
(0, 0): pnn}

# flat list of pairs and probabilities
av_pairs = list(dist.keys())
p = list(dist.values())
# generate sequence of observations
A = []; V= []
for t in range(n):

pair_index = choice(len(p), p=p)
a, v = av_pairs[pair_index]
A.append(a)
V.append(v)

return M, A, V

from numpy.random import shuffle, choice
# n must be a multiple of 3, to ensure exact repartitions of directions
def perfect_comod_task(n) :

M = choice([ -1, 1], p=[0.5, 0.5])
A = np.concatenate([np.ones(n//3) * d for d in [ -1, 0, 1]])
shuffle(A)
V = A.copy()
V[np.where(A == 0)] = -M
V[np.where(A == -M)] = 0
return M, A, V

#n must be a multiple of 3, to ensure exact repartitions of directions
from numpy.random import shuffle, choice, permutation
def perfect_comod_task(n, strength) :

#Setup perfect comod
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M = choice([ -1, 1], p=[0.5, 0.5])
A = np.concatenate([np.ones(n//3) * d for d in [ -1, 0, 1]])
shuffle(A)
V = A.copy()
V[np.where(A == 0)] = -M
V[np.where(A == -M)] = 0
#Shuffle randomly some idxs
r_n = int(n * (1 - strength))
random_idxs = choice(n, r_n, replace=False)
A[random_idxs] = A[random_idxs][permutation(r_n)]
V[random_idxs] = V[random_idxs][permutation(r_n)]
return M, A, V

def probabilistically_balanced_comod_trial(n, pcc, pii):
pc = (1+pii -3*pcc)/2
pi = (1+pcc -3*pii)/2
return comod_trial(n, pcc, pii, 0, pc/2, pi/2, 0)

7.4.4 Detection tasks

# Detection task trial
from numpy.random import choice
def detection_trial(n, pm, pe, pn, pc, pi):

M = choice([ -1, 0, 1], p=[pm/2, 1 -pm, pm/2])
E = []; A = []; V = []
for t in range(n):

# emit variable depends on M
if M:

e = choice([0, 1], p=[1 -pe, pe])
else:

e = 0
# distribution of A and V depends on M, E
if e:

vals = [ -M, 0, M]
p = [pi, 1 -pc -pi, pc]

else:
vals = [ -1, 0, 1]
p = [pn/2, 1 -pn, pn/2]

# make random choices and append
A.append(choice(vals, p=p))
V.append(choice(vals, p=p))
E.append(e)

return M, E, A, V

7.4.5 Multichannel, multiclass detection task

import numpy as np
from numpy.random import choice
def trials(num_channels, num_classes, pe, pc, time_steps=90, repeats=10000):

M = np.random.randint(num_classes, size=repeats)
E = choice(np.arange(2), p=[1 -pe, pe], size=(repeats, time_steps))
E[M==0, :] = 0
# use this when E=0
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C0 = np.random.randint(num_classes, size=(repeats, time_steps, num_channels))
# use this when E=1, initially set up so that correct answer is 0, then shift by M
p = np.ones(num_classes)*(1 -pc)/(num_classes -1)
p[0] = pc
C1 = choice(np.arange(num_classes), size=(repeats, time_steps, num_channels), p=p)
C1 = (C1+M[:, None, None]) % num_classes
C = C1*E[:, :, None]+C0*(1 -E[:, :, None])
return M, E, C

7.4.6 Continuous detection task

import numpy as np
from numpy.random import rand, randn
def generate_trials(num_trials, num_channels, num_windows, pm, pe, mu, sigma):

M = choice([ -1, 0, 1], size=(num_trials,), p=[pm/2, 1 -pm, pm/2])
# We choose E values for all trials and windows, but then multiply by 0 where M=0.
# The output has shape (num_trials, num_channels, num_windows) which we'll want below
E = np.array(rand(num_trials, num_windows)[:, None, :]<pe*(M!=0)[:, None, None], dtype=float)
# Now we compute the mean and std for the normal distribution for each point
mu = mu*E*M[:, None, None]
sigma = 1 -E+sigma*E
# Then generate normal random samples according to this
X = randn(num_trials, num_channels, num_windows)*sigma+mu
return M, X

7.5 Derivations

Following Section 5.2, equation (9) to compute the maximum a posteriori (MAP) estimate for the nonlinear
fusion algorithm we simply need to compute the following for each task:

log P (Ct |M = m) (24)

If we want to compute the MAP estimator for linear fusion we make the additional assumption that each
channel is independent, i.e. assume:

log P (Ct |M = m) =
n∑

i=1
log P (Ci

t |M = m) (25)

7.5.1 Classical and probabilistic comodulation tasks

For the classical task, for example Ct = (At, Vt) where At and Vt are conditionally independent given M so:

log P (Ct |M = m) = log P (At |M = m) + log P (Vt |M = m) (26)

where

log P (At |M = m) =


pc if At = m

pi if At = −m

pn if At = 0
(27)

and similarly for Vt.
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For the probabilistic comodulation task, log P (Ct |M = m) is just one of the values pcc, pcn, etc. depending
on the values of Ct compared to m. For example, log P (Ct = (m, 0) |M = m) = pcn.

7.5.2 Detection tasks

For the detection tasks, we cannot observe the latent variable Et so we have to marginalise over all possible
values and then use conditional independence of channels given M and Et:

log P (Ct |M = m) = log
1∑

e=0
P (Ct |M = m, Et = e)P (Et = e |M = m)

= log
1∑

e=0

NC∏
i=1

P (Ci
t |M = m, Et = e)P (Et = e |M = m)

(28)

7.5.3 Multichannel, multiclass detection task

We derive the estimator for the isotropic case by Substituting (7) into (28). To simplify this, we use the
following notation:

pi = (1− pc)/(ND − 1) probability of incorrect observation
pn = 1/ND probability of any observation when Et = 0

x(t, m) = #{i : Ci
t = m} the number of observations equal to m at time t

(29)

With this, noting that P (Ci
t |M = m, Et = 1) = pc if Ci

t = m or pi otherwise, and that this happens xt(m)
and NC − xt(m) times (respectively) in the product over i:

log P (Ct|M = m) = log(px(t,m)
c p

NC −x(t,m)
i pe + pNC

n (1− pe))
= log((pc/pi)x(t,m)pNC

i pe + pNC
n (1− pe))

= log(α + βγx(t,m))
= log(1 + becx(t,m)) + a

(30)

where

α = pNC
n (1− pe)

β = pNC
i pe

γ = pc/pi

a = log α

b = α/β

c = log γ

(31)

This is the softplus function mentioned in Section 3.4.

In the general case of (28) where we do not assume isotropy, we need to estimate (NNC

D − 1)ND parameters.
The classical evidence weighting approach assumes conditional independence of channels and is equivalent
to the case P (Et = 1) = 0, giving (ND − 1)NCND parameters P (Ci

t |M = m) as there are NC values of i,
ND values of m and for each i and m there are ND probabilities (but these have to sum to 1 so ND − 1
parameters). Allowing for Et = 1 gives us parameters P (Ci

t |M = m, Et = e) and P (Et = e|M = m) however
when Et = 0 the parameter P (Ci

t |M = m, Et = 0) cannot depend on m by definition. We therefore have an
additional NC(ND − 1) parameters from the P (Ci

t |M = m, Et = e) term and an additional ND parameters
from the P (Et = e|M = m) term. The total extra number of parameters is then NC(ND − 1) + ND or
approximately a fraction 1/ND of the number of parameters for evidence weighting.
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7.5.4 Continuous detection task

In general, if Ci
t has a continuous rather than discrete distribution, (28) still holds but this time interpreting

P (Ci
t |M = m, Et = e) as a probability density function rather than a discrete probability.

In Section 3.4 we show results from a special case where Ci
t |Et = 0 ∼ N(0, 1) and Ci

t |Et = 1 ∼ N(µM, σ2).
In this case:

P (Ci
t = ci

t|M = m, Et = 0) = ϕ(0, 1, ci
t)

P (Ci
t = ci

t|M = m, Et = 1) = ϕ(µm, σ, ci
t)

ϕ(µ, σ, c) = 1√
2πσ

exp−(c− µ)2/2σ2
(32)

Expanding this out gives:

log P (Ct = ct|M = m) = log
(

(1− pe)
∏

i

ϕ(0, 1, ci
t) + pe

∏
i

ϕ(µm, σ, ci
t)
)

=
(

log 1− pe

(2π)NC /2σNC

)∑
i

(ci
t)2+

log
(

1 + pe

1− pe
exp

{
1

2σ2

∑
i

(ci
t − µm)2 − 1

2
∑

i

(ci
t)2

})
= (term with no m) + softplus(quadratic(m, ct))

(33)
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