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Abstract. Artificial selection is a promising way to improve1

microbial community functions, but previous experiments have2

only shown moderate success. Here, we experimentally evalu-3

ate a new method that was inspired by genetic algorithms to4

artificially select small bacterial communities of known species5

composition based on their degradation of an industrial pollu-6

tant. Starting from 29 randomly generated four-species commu-7

nities, we repeatedly grew communities for four days, selected8

the 10 best-degrading communities, and rearranged them into9

29 new communities with species compositions that resembled10

those of the most successful ones. The best community after 1811

such rounds of selection degraded the pollutant better than the12

best community in the first round. It featured member species13

that degrade well, species that degrade badly alone but improve14

community degradation, and free-rider species that did not con-15

tribute to community degradation. Most species in the evolved16

communities did not differ significantly from their ancestors,17

suggesting that genetic evolution plays a small role at this time18

scale. These experiments show that artificial selection on micro-19

bial communities can work in principle, and inform on how to20

improve future experiments.21

Introduction22

Microbial communities naturally provide us with many23

ecosystem functions like digesting inaccessible nutrients or24

cleaning wastewater. Being able to design such multi-species25

communities from scratch to optimize ecosystem functions26

would be a major biotechnological breakthrough, but know-27

ing which species to combine and how such a choice will af-28

fect ecological and evolutionary dynamics and thereby func-29

tional dynamics is a very challenging problem.30

A first intuitive approach is to collect candidate species, study31

their capacities through genomic and phenotypic analyses32

and then combine them in clever ways that are likely to re-33

sult in high function (1–4). An alternative is to automate the34

optimization process while remaining blind to the properties35

of each species. This blind approach can be taken using arti-36

ficial selection (5, 6).37

Artificial selection – also known as “directed evolution” or38

simply “breeding” – is a powerful approach that takes in-39

spiration from natural selection. Not only has it revolution-40

ized agriculture (7), but artificial selection has also been suc-41

cessfully applied in chemistry to optimize industrial enzymes42

(8, 9), or in pharmacy to reduce HIV drug production costs43

(10). These success stories have sparked the idea of artifi-44

cially selecting microbial communities, promising to enhance45

human and ecosystem health, as well as many industrial ap-46

plications.47

In the year 2000, Swenson et al. (11, 12) published two stud-48

ies selecting natural microbial communities to increase plant49

biomass, to degrade an environmental pollutant or to alter50

the pH of an aquatic ecosystem. Although selected commu-51

nities occasionally improved over time, they also observed52

improvements in some control lines and overall, community53

performance didn’t differ significantly from the start of the54

experiments. Many studies have since followed, selecting for55

various host effects (13–18), production or consumption of56

chemicals (19–21) or simply for population size (22, 23). The57

success of these experiments has also been limited (6, 24),58

often showing inconsistent results between repeats or only a59

moderate increase in function.60

One fundamental difficulty with artificially selecting commu-61

nities is that selection is applied at the group level – rather62

than the individual level as with conventional breeding –63

with individual organisms going through several generations64

within each selection round, resulting in little control over65

ecological and evolutionary dynamics occurring within each66

community and within each species (5, 25, 26). This means67

that over time, (i) competition between species may lead to68

the extinction of slower-growing species that may contribute69

to community function (6, 27), and (ii) assuming a trade-off70

between function and growth, competition within species se-71

lects for cheater mutants that do not contribute to the function72

and sweep to fixation (27, 28).73

A second problem with the existing approaches lies in how74

“offspring” communities are generated from their “parents”75
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at every round: parent communities are either simply diluted76

to make offspring (low abundant species may go extinct)77

or pooled together and then distributed over the offspring78

communities. Both approaches result in offspring commu-79

nities that are very similar to one another, and do not deviate80

much from the communities at the start of the experiment81

(20, 29). The resulting lack of variability between communi-82

ties gives little material for artificial selection to work on. The83

challenge then is to develop a selection method that favors84

cooperation within and between species, while maintaining85

between-community variability and selecting for increased86

function at the community level.87

Here we address these fundamental problems by experimen-88

tally testing a novel selection approach called “disassembly89

selection” that was inspired by optimization algorithms from90

the computational sciences called genetic algorithms (30, 31)91

and that we have evaluated theoretically (29). We use a com-92

putational algorithm to guide lab experiments in real-time to93

automatically explore the species composition search space:94

we randomly generate communities of known species com-95

position, and then repeatedly select the best-scoring com-96

munities, disassemble their member species and re-assemble97

new communities that differ slightly in their composition98

for the next round. This approach improves performance99

while maintaining between-community variability (29). To100

limit competition within communities and avoid aggressive101

species that exclude all others, we penalize communities102

where species extinctions occur.103

We use our approach to find a community that can optimally104

degrade industrial pollutants called Metal Working Fluids105

(MWFs), a challenge we have previously studied using a sin-106

gle four-species bacterial community (32). As this original107

community could only degrade 44.4% of the MWF on aver-108

age, we hypothesized that there would be room for improve-109

ment.110

After 18 rounds of selection, we found a four-species com-111

munity that degraded 75.1% of the MWF on average, signifi-112

cantly better than our original community (32), the best com-113

munity in the first round, and a random control. Despite this114

successful outcome, we separately found a species pair that115

performed at least as well as the top community, suggesting116

that our approach can still be simplified and improved.117

Results118

Degradation efficiency increased over 18 rounds.119

Briefly, we designed a community selection method where 11120

species were first randomly combined into 29 communities121

of four species each. We let these 29 communities grow for122

four days, scored them according to their degradation ability123

(penalizing for species extinctions), “disassembled” the top124

ten by selective plating, sampled viable cells of each species125

and used them to rebuild a new round of 29 communities that126

resembled the best-scoring ones. Resemblance was achieved127

by either rebuilding the exact same communities as in the128

previous round – even with the same starting population sizes129

for each species – or by randomly exchanging one member130

species in a winning community to introduce some variabil-131

ity and to ensure that all 11 species remained in the meta-132

community. We carried out this procedure 18 times, with one133

round per week (Methods, Fig. 1A).134

To test whether our selection approach could find communi-135

ties that degraded better than the random species combina-136

tions at the start and that this was due to community-level se-137

lection, we included a control treatment where communities138

propagated to the next round were selected randomly rather139

than based on their degradation score. We compared the five140

best-degrading communities in the two treatments (“random”141

and “selection”) at each round. Only considering the top five142

allows us to exclude the noise introduced by composing new,143

possibly poorly-performing, communities (Fig. S1). The top144

five communities in the last round of the selection treatment145

scored higher than the top five initial communities from both146

treatments (round 0: 62.28%±4.92 vs. round 18 selection:147

73.42%±7.38, Wilcoxon rank-sum test with continuity cor-148

rection, df = 15, p = 0.012), and than those in the last round149

of the random treatment (round 18 random: 63.47%±5.49,150

random vs. selection df = 9, p = 0.033). In contrast, the top151

5 from the last round of the random treatment did not degrade152

significantly better than the initial communities (random vs.153

initial df = 15, p = 0.85, Fig. 1B).154

Throughout our experiment, we tested 167 different com-155

binations of four species (141 in the selection and 156 in156

the random treatment, with some overlap) out of 174 pos-157

sible permutations of 11 species (some species combinations158

were avoided as they were indistinguishable using selective159

plates, see Methods). The selection treatment tested high-160

performing communities more often than the random treat-161

ment, and this occurred preferentially in the later rounds of162

the experiment (Fig. 1C, S2), showing selection for improved163

degradation and the maintenance of high-performing com-164

munities. Our approach also continued to explore the search165

space by testing many new communities at each round: in166

round 18 there were still communities with low degradation167

scores (Fig. 1C).168

We next asked whether the communities with the highest169

degradation scores resembled each other in terms of species170
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Fig. 1. Selection method and its performance. A) Illustration of the selection method (see Methods for details). Each tube represents a community of four species (two colors
drawn for illustrative purposes): 1) Define 29 communities of randomly drawn species and inoculate each community in MWF+AA. 2) Following growth, measure degradation
score as the difference in pollution load to an abiotic control, illustrated by the gray field at the top of each tube. 3) Select the communities with top 10 degradation scores for
disassembly (illustrated by tubes 2 and 5 here) and plate these on selective media to separate their member species. Plating allows to document extinctions and calculate
final community scores (combining degradation scores and extinction data). 4) Sample viable cells of each species, only from the corresponding single community with the
highest final score. Adjust population size and freeze down. 5a) Generate new communities in proportion to their final community scores. 5b) Randomly choose 21/29 of the
new communities (illustrated with 4) for species exchange. Remove one resident species at random and introduce a new species in its place. Assemble the new communities
in the lab using the frozen species and repeat from step 2). B) Degradation scores of the 5 best communities in each round for the selection (green triangles) and random
(orange circles) treatments, with lines through the average of the 5. C) Community composition (x-axis) vs. degradation score (hue, color bar) for each community over
the 18 rounds of selection (y-axis) in the selection (top panel) and random (bottom panel) treatments. The x-axis is ordered by increasing degradation scores (averaged
over all instances of the same species composition). Note that these are degradation, not final community scores (extinctions not considered). D) Community composition
corresponding to panel C, showing the presence (dark blue) or absence (white/grey) of each species, and illustrating the difference in composition by the Hamming distance
(i.e. the number of substitutions needed to transform a given community to another) to the community with the highest degradation score at the bottom.

composition. We calculated the Hamming distance to the best171

community (number of species that one must exchange in a172

given community to get the same species composition as the173

best community), which can also be seen as a measure of174

the ruggedness of the “fitness landscape” (4). At first glance,175

there was no obvious pattern between the similarity in com-176

munity composition to the top community and degradation177

score. However, the best 5 communities had a distribution of178

Hamming distances that was significantly different from the179

distribution of distances between all pairs of communities in180

our study (Student’s t-test, p = 8.2 ◊ 10≠5, Fig. S3). It also181

appears that some species, such as C. testosteroni (Ct) and A.182

faecalis (Af) tended to be found in the winning communities,183

and P. fulva (Pf) was rarely in badly-performing communities184

(Fig. 1D). We explore this more quantitatively below.185

Selection reduced extinctions, but did not increase186

evenness or total biomass. We first explore whether se-187

lection has favored certain community properties: population188

growth, community evenness or species survival. Since the189

selection method penalizes extinctions (we scaled the degra-190

dation scores by the fraction of surviving species), we quan-191

tified extinctions in each round by plating 10 communities192

per treatment (see Methods) on selective media on day 4 and193

comparing the presence of each species to how we composed194

the community on day 0. The distribution of extinctions195

per round was significantly lower in the selection compared196

to the random control treatment (Kolmogorov–Smirnov test,197

p = 0.013, Fig. 2A, S4, Table S1). As a control, we also198

counted the number of contamination events (any species that199

was present at day 4, despite not being inoculated at day 0),200

which we did not expect to vary significantly between the201

treatments. Indeed, we found no significant difference in202

contamination events per round between the two treatments203

(Kolmogorov–Smirnov, p = 0.8). Despite this difference, an-204

other explanation could be that fewer extinctions occurred205

in the selection than the random treatment because selected206
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Fig. 2. Number of extinctions, evenness and total population size over time. A) Number of extinctions per round (solid lines) and cumulative (dashed lines) in the 10 plated
communities of the selection and random treatments. B-C) Mean (lines) ± SD (shaded areas) values of the 10 plated communities at each round where B) shows evenness
(the effective species number divided by its theoretical maximum value) and C) total population size in CFU/ml. D-E) Degradation percent plotted against D) evenness and
E) total population size with the selection treatment in triangles and the random treatment in circles, and color representing selection rounds. Population size, growth or
evenness could only be calculated for the 10 communities per treatment that we plated (see Methods).

communities more often contained strong growers that pro-207

mote the survival of others and increase degradation score208

(we highlight communities lacking strong growers in Table209

S1).210

Next, we ask if communities in the selection treatment were211

more even than in the random control. We might expect se-212

lection to favor evenness, since species in diverse communi-213

ties may complement one another while communities dom-214

inated by a single species risk excluding others that could215

contribute to degradation. Calculating evenness as the ef-216

fective species number relative to its maximum value (Meth-217

ods, Eq. (1),(33)), the evenness of the 10 communities whose218

populations we quantified increased with time in both treat-219

ments (Fig. 2B). The correlation was stronger in the selec-220

tion treatment compared to the random control (Spearman’s221

fl = 0.45 and 0.24, respectively), but the correlations were not222

very predictive (ordinary least squares regression between223

evenness and round, R2 = 0.19, 0.06 at p = 1.9 ◊ 10≠10,224

7.5◊10≠4 for selection and random, respectively).225

Finally, we might expect the total biomass in communities to226

influence degradation for two reasons: (i) degradation could227

be the aggregated effect of individual cells assuming that all228

species contribute to degradation, and (ii) as species adapt to229

the medium, they might increase their growth rates, which230

should increase degradation. We calculated the total popula-231

tion size on day 4 per community at each round of selection,232

but found no significant effect of total biomass or selection233

treatment on degradation: Total biomass did not correlate234

strongly with time (Spearman’s fl = 0.04,0.07, for selection235

and random, respectively, Fig. 2C) and was not significantly236

different between the two treatments. Indeed, degradation237

score did not even correlate with total biomass (Fig. 2E,238

Spearman’s fl = ≠0.0062, p = 0.904).239

In sum, selection seems to have favored communities whose240

members are less likely to drive each other extinct, but no241

other community features could explain the increase in degra-242

dation scores or the difference between treatments.243

Successful communities were composed of good de-244

graders, their facilitators and freeriders. Noticing that245

certain species were often found in the winning communi-246

ties, we next explored which species features were selected247
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and whether community degradation scores depended on the248

presence of specific species or species combinations.249

First, we analyzed which species were over- or under-250

represented in the meta-community compared to what one251

would expect by chance. For each treatment, we quantified252

how often each species appeared among plated communities253

in the last 5 rounds of the experiment (n = 10 at each round).254

If a species’ frequency was more than one standard deviation255

above or below the frequency one would expect by chance256

(18.18), we designate it as over- or under-represented, re-257

spectively (mean±SD= 18.18 ± 11.8; Fig. 3A dashed line,258

shaded area). Over-represented species were: Ct, Af and Ac259

in the selection treatment, and Pf and Pr in the random treat-260

ment, while Ml and At2 were under-represented in the selec-261

tion treatment and Ac in the random treatment. The commu-262

nities that contained the over-represented species tended to263

be associated with high degradation scores (Fig. 3A).264

The best-scoring community in the selection treatment265

(At1+Ct+Af+Ac) contained all 3 over-represented species,266

which partially explains their over-representation. However,267

it does not answer how its member species were contributing268

to the score. High degradation in these communities could269

either be due to single species degrading well, or to synergis-270

tic effects between the species. To find the answer, we grew271

all 11 species alone and in most pair-wise co-cultures and272

ranked them from best to worst degradation. We included273

four of the best 4-species communities and all eleven species274

grown together, as a reference (Fig. 3B). We observed a wide275

variation in degradation abilities, and to our surprise, all 11276

species together ranked 35th (dashed line in Fig. 3B), which277

is well below what even single species could achieve.278

The best individual degraders were Pf, Ct and At1 (mean279

degradation: 66%, 58% and 50% respectively), while Af, Ea280

and At2 were the worst (mean degradation: 2%, 2% and 4%281

respectively, Fig. 3B, D). Interestingly, Af which is one of the282

worst degraders, was present in many winning communities.283
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This may be because when combined with At1, it achieves284

one of the highest degradation scores (Fig. 3B, D blue high-285

light). Compared to their growth in monoculture, At1 pro-286

moted the growth of Af by more than 3 logs, although Af287

reduced the growth of At1 (Fig. 3E blue highlight).288

Surprisingly, not all good degraders were over-represented in289

the selection treatment. Pf and At1 each featured in only 2 of290

the 10 best communities (Fig. 1D), despite Pf being the best-291

performing species alone and featuring in 8 of the 10 best292

pairs (Fig. 3B, D). In contrast, Ct was present in 7 out of the293

10 winning communities (Fig. 1D).294

We also analyzed which species were most present when ex-295

tinctions occurred, as we selected against extinctions. In the296

20 communities of the selection treatment where extinctions297

occurred, the species most often found were At1, Pr and Pf298

(13, 12 and 12, respectively, Fig. S4). In 9 of the 20 commu-299

nities, At1 and Pr were both present, which may explain why300

they do not feature together in the best 10 communities (Fig.301

1D), despite being one of the best degrading pairs (Fig. 3B, D302

blue highlight). In contrast, only 2 extinction events occurred303

in the selection treatment when Ct was present. Even if At1304

was often associated with extinctions, it greatly increased the305

growth of Af and Pr, resulting in the best-degrading pairs306

(Fig. 3B, D blue highlights), of which one (At1+Af) was307

present in the winning community.308

The third over-represented species is Ac, which on its own309

was one of the worst degraders (mean degradation: 11%).310

And although its degradation improved greatly when together311

with Pf and Ct (mean degradation: 50% and 46%, respec-312

tively), these degradation scores were lower than what Pf313

(mean degradation: 66%) and Ct (58%) could achieve alone.314

Interestingly, Ac’s growth was also significantly promoted315

by the three degrader species (Fig. 3E, Ac row, light green316

highlight) and while it did not reduce the growth of the de-317

graders much, it greatly reduced their capacity to degrade,318

particularly for At1 (mean degradation: 13% as opposed319

to 50% when grown alone). These results suggest that Ac320

may have acted as a “free-rider” species that got carried321

along with the best communities. We tested this idea by322

removing Ac from the winning community and observed a323

reduced variability in its performance (Fig. 3C). Remov-324

ing it from the fourth-best community also significantly in-325

creased the community degradation score (degradation of326

Ct+Af+Ac+Ea: 30.2±4.5%, vs. Ct+Af+Ea: 47.3±3.5%, t-327

test, p = 0.0012), whereas removing Ct from this community328

drastically reduced its degradation score (Af+Ac+Ea: 4.7 ±329

1.2%, p < 0.001, Fig. 3C).330

In sum, selection appears to have favored communities with331

at least one good degrader species, especially if its score332

could be enhanced by “weaker” species, as long as they did333

not cause extinctions. This approach does not seem to elim-334

inate free-riders that appear in the final communities despite335

their deleterious effects on degradation scores.336

Did the best communities improve compared to their337

ancestors?. Up to this point, we have viewed our disas-338

sembly selection approach as a way to recombine different339

species in our original set in a way that increases the degra-340

dation scores. As bacteria undergo many cell divisions over341

the course of the experiment, however, we may also expect342

within-species genetic evolution to have modified the partic-343

ipating species themselves compared to the ancestral strains344

we started with. Within-species selection may act to increase345

growth rates, for example, or to reduce antagonistic geno-346

types that would cause the extinction of other species in the347

community, bringing down community score.348

To determine whether the species at the end of the experi-349

ment grew or degraded differently from their ancestors, we350

compared the 11 species isolated from the different treat-351

ments to their ancestors, measuring their degradation and352

population sizes (Fig. 4A, B). We found that Ct isolated from353

the selection treatment grew significantly better than its an-354

cestor (3.8 ◊ 108 ± 2.2 ◊ 108 vs. 3.3 ◊ 107 ± 4.1 ◊ 107,355

Wilcoxon rank sum, df = 79, p = 4.72 ◊ 10≠16) and than356

its counterpart isolated from the random control treatment357

(9.92 ◊ 107 ± 8.68 ◊ 107, df = 71, p = 1.1 ◊ 10≠12). The358

strain of Ct from the selection treatment also degraded sig-359

nificantly worse than its ancestor (51.7±5.2 vs. 56.4±5.5%,360

df = 79, p = 0.00054), suggesting that it may have evolved to361

invest more into biomass and less into degradation, but we do362

not explore this idea further. Other than that, no significant363

effects were observed.364

We were also curious to see whether inter-species interac-365

tions had changed throughout the selection treatment. In-366

deed, we had chosen to conduct this experiment in growth367

medium containing casamino acids (see Methods), as we368

knew from previous work that competition was stronger in369

this environment compared to MWF without casamino acids370

(32) and we wondered whether selection could reduce com-371

petition. We first used the population size data to estimate372

these interactions in the ancestral species (Fig. 4C), where373

we confirmed that competition was common. We also con-374

firmed previous findings that species that could not grow well375

alone tended to be affected positively by others, particularly376

by strong growers (Fig. 4C, 3E) (32, 34).377

We then selected a few pairs from the random and selec-378
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Fig. 4. Effect of within-species evolution. A) degradation percent or B) population size (log10CFU/ml) of each species at day 3 in three conditions: the ancestral strains
before the experiment, strains harvested after 18 rounds of selection treatment (S) and strains after 18 rounds of the random control treatment (R). Data from mono- (alone)
and pairwise co-cultures are shown (with partner). Significant differences are calculated using a generalized linear model with biological replicate as random variable and
number of species in culture as an explanatory variable, significant p-values with a Bonferroni correction for multiple comparisons are shown. C)-E) Interactions between
ancestral species (C), the species evolved in the random treatment (D) and the selection treatment (E) defined as the log2 fold-change of the focal species in CFU/ml of day 3
in co-culture with the companion species vs mono-culture. Interactions that were not significant (no significant difference between growing alone or with companion species)
are shaded. Positive (facilitative) interactions are in blue, while negative interactions are shown in red. White squares are ones that we did not measure. Overall, we saw very
few changes between ancestral and evolved species.

tion treatment isolates for which we conducted mono- and379

co-cultures to estimate the interactions between the evolved380

species. While some interactions differed after evolution381

(Fig. 4D, E), we found little evidence that competition had382

been weakened, and more generally, no overall pattern. One383

exception was Ct isolated from the selection treatment, which384

was no longer inhibited by any species. The reduction in385

competition can be explained by our finding that it could386

grow better alone (Fig. 4B). We therefore conclude that evo-387

lution at this timescale has not had profound effects on the388

species’ phenotypes.389

Discussion390

Previous community selection experiments have struggled to391

show consistent improvements in community functions com-392

pared to controls (6, 24). We have now devised and tested393

a selection method to improve the degradation of MWF pol-394

lutants in small synthetic bacterial communities. The disas-395

sembly method automatically searches for species combina-396

tions with high degradation scores, while selecting against397

species that cause the extinction of other community mem-398

bers. The best community found using this approach per-399

formed significantly better than the best initial communities400

(Wilcoxon rank sum test, p < 0.001) and 69% better than the401

community studied in our previous work (Fig. S5, Wilcoxon402

rank sum test, p = 0.007) (32).403

Further investigating some of the top communities and many404

species pairs revealed that successful degradation could be405

achieved by combining strong degraders with other species406

that might not be able to survive alone, but enhanced the407

degradation score when paired with the strong degrader. This408

simple heuristic revealed that the best overall performance409
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was achieved by two species in co-culture: At1 and Af.410

Adding two more species to this pair (Ct and particularly the411

free-rider Ac) increased the variance in community perfor-412

mance, and combining all 11 species performed particularly413

poorly (Fig. 3). It appears then that our optimal community414

of four species is in fact too rich.415

Another key observation is that despite our efforts to fa-416

vor within-species evolution – we sampled many colonies417

when disassembling communities through plating to include418

sufficient within-species diversity, and used a competition-419

promoting medium to give room for interactions to evolve to420

become less negative or more positive – it did not have a large421

effect on final population sizes, degradation abilities or inter-422

species interactions. One explanation may be that species are423

changing their biotic environment too often for selection to424

favor any particular interactions. In agreement with this, the425

only change we observed is that Ct evolved in the selection426

treatment grew better than its ancestor alone, and was less427

negatively affected by others than its ancestor (Fig. 4). It428

could be that Ct evolved to invest less into degradation and429

more into growth, although we currently have no evidence to430

back this up. The up-side of finding only minor changes is431

that one may not need to be too concerned that species will432

evolve to become more competitive or invest less into com-433

munity function, at least on this time-scale.434

Given what we have learned, would we now perform artifi-435

cial selection differently? After all, the approach was quite436

cumbersome and would not be easy to set up for a new prob-437

lem.438

A first question is whether the artificial selection approach is439

useful at all, or whether we could have predicted the compo-440

sition of the best community using fewer culture experiments.441

To explore this question, we performed an additional analy-442

sis using a simple linear model that predicts the degradation443

score based on species presence/absence (4). Including the444

data from all our experiments, the linear model had a rea-445

sonable fit (R2 = 0.75) and would have chosen a community446

that performed relatively well (degradation score: 69.2%).447

However, if we only used mono- and co-culture data to fit448

the model, performance dropped (R2 = 0.26) and the best449

predicted communities ranged in performance from 40.3% to450

83.1% (Fig. 5A, B). This analysis suggests that the “fitness451

landscape” of MWF-degrading communities is quite rugged,452

in line with the non-uniformity of the Hamming distance453

analysis in Fig. 1D. It would be interesting to determine the454

minimal amount of data needed to achieve a good prediction455

and explore whether other prediction methods would perform456

better (e.g. (35)).457

A second lesson could be to focus on the strength of our458

method as a search algorithm to efficiently explore the space459

of possible species combinations, analogous to a genetic al-460

gorithm (30, 31). As allowing the species to evolve within461

these communities did not seem to change much, it would462

be simpler to start communities at every round from frozen463

stocks and avoid the challenging experimental step of disas-464

sembling communities (as illustrated in Fig. 5C). We would465

then no longer need selective media for all species in the466

pool and it would suffice to know whether species went ex-467

tinct, which could be achieved through amplicon sequenc-468

ing. Another important modification would be to allow com-469

munity size to change, as opposed to restricting it to four470

species as we have done here. This would involve remov-471

ing or adding species independently, allowing communities472

to grow or shrink in size. This decoupling would increase the473

search space of possible combinations, but might find better474

solutions, for example by avoiding free-rider species like Ac475

to establish in so many communities.476

Allowing community size to change automatically would477

also answer an important question for community function:478

how many species are actually needed to solve the prob-479

lem of interest? In our previous work (32), a mathematical480

model predicted that in harsher environments, more species481

are needed to achieve maximal community function com-482

pared to permissive environments. Experimentally, degrada-483

tion saturated at two species in the more permissive MWF484

with casamino acids, compared to three species in MWF485

alone (32), which is consistent with our best solution here486

having only two species. In hindsight, a more challenging487

environment might have shown a stronger improvement over488

the experiment and required a larger optimal community.489

A final important limitation of our approach is that we fixed490

the initial population size of all species at each round, in or-491

der to select against cheater strains that grow quickly with-492

out contributing, and to improve heritability of the commu-493

nity function (27). It would be interesting to see how our494

best-performing communities would equilibrate over a few495

rounds of growth and dilution, when we do not adjust the ini-496

tial population sizes. It is conceivable that the performance497

of the community at equilibrium would be different. Ideally,498

community stability should be part of the community score,499

although this would require substantial revision to the selec-500

tion algorithm.501

In summary, we have tested an approach to artificially select502

amongst communities composed of different combinations of503

culturable species. Our approach found a four-species com-504

munity that is efficient at degrading MWF pollutants and is505
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Fig. 5. A-B) Linear model analysis. We use a linear model (code taken from (4)) that uses species presence/absence to predict degradation percent based on A) all the
data we generated, or B) only the mono- and co-culture data. Community richness is shown in color. Each dot is one degradation score measurement, such that biological
replicates and technical replicates, if available, are all represented. C) Proposing a new artificial selection method. Rather than disassembling communities, we propose to
use the winning communities as templates to generate the offspring communities in the next round. These communities would then be seeded by taking the clonal ancestral
species from the freezer, such that there would be no within-species evolution over rounds. Step 3) would be to select the top 10 communities, 4a) to generate communities
in proportion to their community scores and 4b) to randomly choose 21/29 of the new communities (illustrated with 4) for either species removal or introduction (see white
asterisks in step 4, 4a and 4b are shown in one step). Freezer icon created by SAM Designs from Noun Project.

superior to the performance of all species in our pool grown506

together. However, the selection experiment was relatively507

complex and a smaller community was also found by testing508

species pairs and comparing them to the winning commu-509

nity. Going forward, we propose a simpler, more effective510

approach (Fig. 5C). Even though the challenges of ensuring511

ecological and evolutionary stability remain open, we argue512

that this first proof-of-concept supports the blind approach to513

automate the breeding of bacterial communities with optimal514

functions.515

Methods and Materials516

Bacterial species and culture conditions. We used 11517

bacterial species listed in Table 1. At1, Ct and Ml were pre-518

viously isolated from MWF as previously described (32, 36,519

37). Note that Ml (Microbacterium liquefaciens) was previ-520

ously referred to as Microbacterium saperdae but a more re-521

cent classification has led us to refer to it differently. At2 was522

kindly donated by Justine Collier (plant associated) and the523

remaining species were isolated from MWF and kindly do-524

nated to us by Peter Küenzi from Blaser Swisslube AG. The525

species were identified at Blaser Swisslube AG by MALDI-526

TOF, and confirmed by PCR amplification and 16S gene se-527

quencing. All experiments were performed in 6ml batch cul-528

tures containing 0.5% (v/v) Castrol HysolTM XF MWF (ac-529

quired in 2016) diluted in water with added salts, metal traces530

(Tables 2, 3), and supplemented with 1% Casamino Acids531

(Difco, UK). Cultures were incubated at 28¶C, shaken at 200532

rpm.533

Species Our acronym
Staphylococcus warneri Sw
Agrobacterium tumefaciens MWF001 At1
Comamonas testosteroni MWF001 Ct
Microbacterium liquefaciens MWF001 Ml
Alcaligenes faecalis Af
Aeromonas caviae Ac
Enterococcus avium Ea
Klebsiella pneumoniae Kp
Pseudomonas fulva Pf
Providencia rettgeri Pr
Agrobacterium tumefaciens C58 At2

Table 1. Bacterial species used in the experiment and the acronyms we use to we
refer to them throughout the manuscript.
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Compound Amount
H2O 1000 ml
K2HPO4 6 g
KH2PO4 6 g

Table 2. Phosphate solution (1%) for the MWF+AA medium as described in Ta-
ble 3.

Compound Amount
H2O 405 ml
Phosphate solution 60 ml
NaCl 1% solution 60 ml
Casamino 1% acids solution 60 ml
Hutner’s vitamin-free mineral base 12 ml
Castrol Hysol 100% 3 ml

Table 3. For 600 ml of MWF+AA medium, mix in the above order, top to bottom.
The phosphate solution is found in Table 2. The MWF needs to be added carefully,
one drop at a time to allow mixing.

Selective media. We designed 10 selective media that al-534

low the growth of only one or two of the 11 species at a535

time. Some species combinations (Ct & At2, Af & Ct, Ml536

& Sw, Ml & Ea, Ac & Pf, Ct & Kp) cannot be easily dis-537

tinguished on these media, and we avoided combining these538

species in the communities (Fig. S6A). This means that in-539

stead of the 330 combinations of 4 species out of 11, we have540

174 possible communities. Our selective media are gener-541

ally composed of a rich base and at least one antibiotic (de-542

tails in Tables S2 and S3). The disassembly plates consist543

of two 24-well plates where we poured 1.5ml of each selec-544

tive media into 4 wells (as shown in the 24-well templates545

in Fig. S6B). Because temperature was helpful to distinguish546

some species, we incubated some media at 28¶C and others at547

37¶C. Disassembly was achieved by plating droplets of each548

diluted community on all the selective media (more details549

below). For each round, we prepared the disassembly plates550

one week in advance and stored them at 4¶C in the dark until551

they were used. Every week, the selectivity of the media was552

verified by inoculating 10µl droplets from a dilution series of553

2-day old cultures of all 11 ancestral species in square plates554

of all selective media.555

Artificial Selection. Each round of the selection experiment556

lasted one week and consisted of five steps (Fig. 1): (1) as-557

sembling communities and letting them grow, (2) measuring558

pollution load, (3) selecting top communities and disassem-559

bling them on agar plates, (4) freezing down species samples,560

and (5) generating species compositions for the next round.561

Community assembly. In each round, we used 60 10ml glass562

tubes, 29 were assigned to communities of the selection treat-563

ment, 29 to the random treatment and two tubes were abi-564

otic controls. The first round started with the same 29 ran-565

domly generated communities of 4 species each in the two566

treatments. These were drawn such that all 11 species were567

present in at least one community and such that species that568

we cannot separate with selective plates never appear in the569

same community.570

Communities for the first round were assembled as follows:571

Single colonies of each of the 11 species were picked and572

grown overnight in 5mL of TSB at 28¶C, shaken at 200rpm.573

The next day, cultures were adjusted to an OD600 of 0.05 in574

10ml of PBS in a 15ml falcon tube. For subsequent rounds,575

similar 15ml tubes containing each of the 11 species for each576

treatment at OD600=0.05 were taken from the freezer (see be-577

low) and thawed. The cells were then washed by centrifug-578

ing at 4000rpm for 15 minutes and resuspended in 10ml of579

MWF+AA medium (see above). For each community cul-580

ture in the experiment (29 for each treatment) and the abiotic581

controls, 6ml of MWF+AA were prepared in the 10ml glass582

tubes and 100µl of each species were added, yielding a total583

of 400µl of four species of similar relative abundances. All584

60 tubes were then incubated at 28¶C and shaken at 200 rpm585

for four days.586

Measuring degradation scores. On day 4, as a proxy for587

pollution load, we measured the chemical oxygen de-588

mand (COD) using NANOCOLOR COD tube tests (de-589

tection range 1-15 g/l by Macherey-Nagel (ref: 985590

038), see (32) for more details). We used these591

measurements to calculate degradation scores as (1 ≠592

COD4(sample)/COD4(control))◊100, i.e. the COD of the593

community after 4 days relative to the COD of the abiotic594

control after 4 days, in percent. Data shown in Fig. 3C595

was generated using expired COD tubes, which explains why596

their values are different from those of the other experiments.597

However, given that the important comparison is between598

treatments within that experiment, we decided not to repeat599

it.600

Selecting and disassembling top communities. We selected601

the 10 out of 29 communities with the highest degradation602

scores from the selection treatment and 10 out of 29 commu-603

nities at random from the random treatment. To disassemble604

the communities and determine species’ population sizes, we605

plated dilutions (10≠1,10≠2,10≠4 and 10≠6) of each com-606

munity onto all selective media (see above, Fig. S6), in-607

cubated the selective plates for two days (either at 28¶C or608

37¶C), and counted colony-forming units (CFUs) for each609

species. This allowed us to disassemble all community mem-610
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bers, estimate population sizes and identify extinction and611

contamination events (species that were inoculated on day 0612

but did not appear on their selective media, and species that613

were not inoculated in a given community but grew on selec-614

tive media, respectively). We penalized extinction by scaling615

the degradation score of each community by the fraction of616

surviving species (contaminants are not counted) 0 < f < 1617

(e.g. f = 0.5 if only two of the four inoculated species are618

detected). The final community score was then calculated as619

(1≠ COD4(sample)/COD4(control))◊100 ◊f .620

Freezing down species. At every round of selection, we froze621

down a representative of each species by isolating it from the622

highest-scoring community where that species was present.623

We sampled several CFUs from the highest dilution in the624

relevant selective plate by adding PBS to the selected well625

and re-suspending by pipetting. We then adjusted the OD600626

of the samples to 0.05 in a total volume of 10 ml of PBS with627

25% glycerol, then aliquoted 2 ◊ 1ml for long-term storage628

in cryo tubes, 3ml for use in the following round and 5ml as629

backup in 15ml falcon tubes and froze all samples at ≠80¶C.630

If a species went extinct in a round of selection, we recovered631

it from its frozen stock collected in a previous round.632

Generating new species compositions. For the following633

round of selection, we used a script that calculates a proba-634

bility distribution from the community scores of the 10 disas-635

sembled communities and generates offspring communities636

by randomly sampling 29 times with replacement in propor-637

tion to this distribution. Communities with higher scores are638

more likely to be selected. In the random control, we sampled639

29 times with uniform probability from the 10 disassembled640

communities.641

To introduce variability into these newly generated commu-642

nities, out of the 29 generated communities in each treatment,643

we randomly chose 21 to receive an invader species that re-644

placed one of the four members. Both the invader and the645

species to be removed were chosen by uniform probability,646

with a few exceptions: We first chose as invaders species647

that were not yet represented in any offspring communities,648

adding them to random receiving communities; once all 11649

species were represented at least once in the new communi-650

ties, we chose the remaining invaders at random but avoided651

invading species that were already present in the receiving652

community, and species that are indistinguishable from res-653

ident species on our selective media. Selection and inva-654

sion thereby result in 2 ◊ 29 lists of four species each, sam-655

pled in proportion to degradation scores (or not for the ran-656

dom treatment) and with 21/29 of them having exchanged an657

old community member for a new one. We then assembled658

the communities in the lab from the frozen species record659

as described above. The script used to automatically gen-660

erate offspring communities is written in python 3 (38) and661

can be found at https://github.com/Mitri-lab/662

disassembly_selection_experiment.git.663

Comparing ancestral and evolved strains. Following the664

artificial selection experiment, we conducted follow-up ex-665

periments to better understand why the selection algorithm666

favored certain species combinations. For each species, the667

frozen stocks from round 18 of the selection and random668

treatments were plated and incubated. Single colonies were669

picked and grown overnight in 5mL of TSB at 28¶C, shaken670

at 200rpm. The next day, cultures were adjusted to an OD600671

of 0.05 in 10ml of TSB and grown for a further 3h. The672

cells were then washed at 4000rpm for 15 minutes and re-673

suspended in 10ml of MWF+AA medium. For each culture,674

6ml of MWF+AA were prepared in 10ml glass tubes and675

100µl of each species were added. These cultures were in-676

cubated at 28¶C, shaken at 200rpm for 3 days. CFUs were677

measured through serial dilution and plating on days 0, 1, 2678

and 3 using the appropriate selective media (Fig. S6). We679

measured CODs of an abiotic control culture at day 0 and680

3, and the culture tubes at day 3. The degradation scores681

were calculated as before. To estimate interactions between682

species, we grew each strain alone or with a given partner683

strain and compared the population size of each focal strain684

as the log2 fold-change in CFU/ml on day 3 in the presence685

or absence of the partner species. CFU/ml were quantified on686

selective media (Fig. S6), but on round agar plates consider-687

ing all dilutions, giving higher resolution compared to the se-688

lection experiment. We used LB agar for Af and Pf instead of689

their selective media, as requirements were less stringent (we690

only need to count them, not disassemble them) and there691

appeared to be differences in growth between the ancestral692

and evolved strains on the selective media for those species.693

These experiments were performed by two different authors694

(GA and BV), which is accounted for in the statistical analy-695

sis (see below).696

Data analysis. We used the Hamming distance between two697

communities to quantify the difference in species composi-698

tion between them (Fig. 1). The community is in this case699

represented by the presence and absence of each of the 11700

species, and the Hamming distance is the fraction of species701

mismatches. We used the implementation from the SciPy li-702

brary in python (39).703
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We calculated evenness as the effective species number, or704

Hill number of order 1 (40):705

1D = exp

A
≠

ÿ

k

pk log(pk)
B

, (1)

divided by its maximum value (similar to Pielou’s evenness706

(33)), where pk is the relative abundance of species k in707

the community. Ordinary least squares regression between708

evenness and round was calculated using the python package709

statsmodels (41).710

We used parametric and non-parametric tests for significant711

differences between groups, preferring the Student’s t-test for712

the former and the Wilcoxon rank sum test for the latter, and713

compared distributions using the Kolmogorov–Smirnov test.714

We measured correlations using Spearman’s fl and quanti-715

fied regressions using the ordinary least-squares implemen-716

tation in the python library statsmodels, (41). When relevant,717

we corrected for multiple comparisons using the Bonferroni718

method.719

To compare the growth and interactions of evolved and an-720

cestral strains, we took into account that experiments were721

performed by two different people. To calculate statistical722

significant differences in growth or degradation, experimen-723

talist was taken to be a random factor in a generalized lin-724

ear model. To calculate interactions (one species growing in725

mono- versus co-culture), we only used data collected by the726

same experimentalist. If it was not available (only one person727

had measured the mono-cultures), we used this instead (see728

dataset 1).729
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