Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

An active neural mechanism for relational learning and fast knowledge reassembly

View ORCID ProfileThomas Miconi, Kenneth Kay
doi: https://doi.org/10.1101/2023.07.27.550739
Thomas Miconi
1ML Collective
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thomas Miconi
Kenneth Kay
2Columbia University, NY
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

How do we gain general insights from limited novel experiences? Humans and animals have a striking ability to learn relationships between experienced items, enabling efficient generalization and rapid assimilation of new information. One fundamental instance of such relational learning is transitive inference (learn A>B and B>C, infer A>C), which can be quickly and globally reorganized upon learning a new item (learn A>B>C and D>E>F, then C>D, and infer B>E). Despite considerable study, neural mechanisms of transitive inference and fast reassembly of existing knowledge remain elusive. Here we adopt a meta-learning (“learning-to-learn”) approach. We train artificial neural networks, endowed with synaptic plasticity and neuromodulation, to be able to learn novel orderings of arbitrary stimuli from repeated presentation of stimulus pairs. We then obtain a complete mechanistic understanding of this discovered neural learning algorithm. Remarkably, this learning involves active cognition: items from previous trials are selectively reinstated in working memory, enabling delayed, self-generated learning and knowledge reassembly. These findings identify a new mechanism for relational learning and insight, suggest new interpretations of neural activity in cognitive tasks, and highlight a novel approach to discovering neural mechanisms capable of supporting cognitive behaviors.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • kk3291{at}columbia.edu

  • Adding link to the code available online

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted September 04, 2023.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
An active neural mechanism for relational learning and fast knowledge reassembly
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
An active neural mechanism for relational learning and fast knowledge reassembly
Thomas Miconi, Kenneth Kay
bioRxiv 2023.07.27.550739; doi: https://doi.org/10.1101/2023.07.27.550739
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
An active neural mechanism for relational learning and fast knowledge reassembly
Thomas Miconi, Kenneth Kay
bioRxiv 2023.07.27.550739; doi: https://doi.org/10.1101/2023.07.27.550739

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4838)
  • Biochemistry (10749)
  • Bioengineering (8020)
  • Bioinformatics (27205)
  • Biophysics (13945)
  • Cancer Biology (11088)
  • Cell Biology (16002)
  • Clinical Trials (138)
  • Developmental Biology (8760)
  • Ecology (13249)
  • Epidemiology (2067)
  • Evolutionary Biology (17324)
  • Genetics (11667)
  • Genomics (15888)
  • Immunology (10998)
  • Microbiology (26006)
  • Molecular Biology (10612)
  • Neuroscience (56376)
  • Paleontology (417)
  • Pathology (1729)
  • Pharmacology and Toxicology (2999)
  • Physiology (4530)
  • Plant Biology (9593)
  • Scientific Communication and Education (1610)
  • Synthetic Biology (2674)
  • Systems Biology (6961)
  • Zoology (1508)