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Abstract 

The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. 

Here we describe Splam, a novel method for predicting splice junctions in DNA based on deep residual 

convolutional neural networks. Unlike some previous models, Splam looks at a relatively limited window of 400 

base pairs flanking each splice site, motivated by the observation that the biological process of splicing relies 

primarily on signals within this window. Additionally, Splam introduces the idea of training the network on donor 

and acceptor pairs together, based on the principle that the splicing machinery recognizes both ends of each intron at 

once. We compare Splam’s accuracy to recent state-of-the-art splice site prediction methods, particularly SpliceAI, 

another method that uses deep neural networks. Our results show that Splam is consistently more accurate than 

SpliceAI, with an overall accuracy of 96% at predicting human splice junctions. Splam generalizes even to non-

human species, including distant ones like the flowering plant Arabidopsis thaliana. Finally, we demonstrate the use 

of Splam on a novel application: processing the spliced alignments of RNA-seq data to identify and eliminate errors. 

We show that when used in this manner, Splam yields substantial improvements in the accuracy of downstream 

transcriptome analysis of both poly(A) and ribo-depleted RNA-seq libraries. Overall, Splam offers a faster and more 

accurate approach to detecting splice junctions, while also providing a reliable and efficient solution for cleaning up 

erroneous spliced alignments.  
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1. Introduction  

Ever since the discovery of RNA splicing 1, our understanding of gene transcription and expression has 
grown steadily more complex. Alternative splicing (AS), where exons and introns are spliced in different 
combinations to create multiple gene isoforms, is a fundamental mechanism for increasing the diversity of 
gene function. We now know that the vast majority of human multi-exon genes undergo at least some 
alternative splicing 2, 3, 4, 5, 6, 7. 

Recognizing splice sites computationally is a crucial step in accurately assembling gene transcripts and 
annotating genomes. The most direct method for finding splice sites is to use spliced alignment programs 
such as TopHat 8, SpliceMap 9, MapSplice 10, STAR 11, and HISAT2 12 to align RNA-seq reads directly 
onto a reference genome. These alignments provide clear evidence of the locations where introns have 
been spliced out of messenger RNA. However, splice junctions predicted from read alignments are not 
always reliable, and they may contain false positives due to alignment errors, as well as transcriptional 
and splicing noise 13. Computational tools based on machine learning methods such as GeneSplicer 14, 
MaxEntScan 15, SplicePort 16, SpliceMachine 17, and others 18, can help identify some of these false 
positives. These tools are trained on known splice sites from a target species and are able to recognize 
splice sites based on the properties of the genome sequence alone. In recent years, convolutional neural 
networks (CNNs), which have been highly successful in a variety of areas (e.g., 19, 20, 21, 22) have been 
explored as a possible approach to splice site recognition. Several new splice site predictors, including 
SpliceAI 23, SpliceFinder 24, Spliceator 25, and SpliceRover 26, have adopted CNN-based architectures. 
Attention-based deep learning models have also been recently introduced into the field of splice site 
prediction, inspired by the success of Google’s Transformer architecture 27. Two examples of these 
models are DNABERT 28 and Nucleotide Transformer 29. Among these newer methods, SpliceAI is 
considered to represent the state of the art because it has the highest accuracy 23.  

In this paper, we introduce Splam, a new deep learning approach that recognizes splice sites from 
genomic sequences alone more accurately than previous methods. Compared to SpliceAI, our method 
uses a much shorter flanking context sequence to predict the splice sites, making our model more 
biologically realistic. In our experiments here, we demonstrate Splam’s accuracy and show how it can be 
used to improve the accuracy of genome-guided transcript assemblies by removing spurious alignments 
produced by spliced aligners. 
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2. Results 

2.1 Splam: an accurate splice junction recognition model  
We implemented Splam using a framework based on deep convolutional neural networks to predict splice 
junctions. The design is illustrated in Figure 1a and is discussed in more detail in Methods. As illustrated 
in Figure 1b and c, the input to Splam is a DNA sequence composed of 200 nucleotides (nt) on both sides 
of the donor and acceptor sites, totaling 800nt, and the output is the probability for every base pair of 
being a donor site, an acceptor site, or neither (see Methods).  

The Splam algorithm focuses on training the model to recognize splice junction patterns at the “splice 
junction” level; i.e., it attempts to recognize donor and acceptor sites in pairs, just as the spliceosome 
operates in the cell when it splices out an intron. Note that most human genes have multiple splice 
isoforms, with current annotation catalogs containing 5-10 isoforms per gene. Thus, an accurate model of 
splicing should be able to predict all of the introns in these multiple variants. Splam demonstrates this 
ability, as our experiments will show.  

In contrast, the current state-of-the-art tool, SpliceAI, was trained on a single isoform per gene, and 
moreover was trained on protein-coding genes only. It was originally tested by measuring its ability to 
predict a single set of splice sites from the canonical isoform for each protein-coding gene. Designing a 
splice site recognition method based only on one transcript per gene may result in mislabeling alternative 
splice sites even when they are perfectly valid. Our experiments sought to test the hypothesis that our 
training regimen, which uses the splice sites from multiple isoforms for each gene, might result in better 
predictions.  

To assess the accuracy of Splam versus SpliceAI in recognizing splice junctions, we created two distinct 
inputs to SpliceAI for our experiments. The first, simply called SpliceAI, provided 10,400nt of sequence 
for each splicing event, following the original SpliceAI study’s approach, which included 200nt upstream 
and downstream of the donor and acceptor sites plus 5,000nt of flanking sequence on both sides of each 
sequence being scored. For the second set of inputs, called SpliceAI-10k-Ns, only 400nt of flanking 
sequence was provided (along with the entire sequence of the intron). The precise inputs are shown in 
Figure S1a and discussed in Methods. Figure S1b shows the relative amount of sequence data used for 
prediction by Splam, SpliceAI, and SpliceAI-10k-Ns. As the figure illustrates, SpliceAI uses far more 
context to predict splice sites, even when we replace its normal 10 kilobase (Kb) flanking input with Ns, 
because it uses the entire length of the intron. For our experiments, SpliceAI had 14–20 times as many 
base pairs available to make predictions, but despite this advantage, Splam had superior accuracy, as we 
demonstrate below.  
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Figure 1: (a) The Splam model architecture consists of 20 residual units (RU), where (b) each RU comprises two 
convolutional layers. The convolutional layers utilize a parameter group of 4, along with batch normalization and 
leaky rectified linear unit (LReLU) activations. Blue arrows indicate forward connections, while red arrows 
represent residual connections. Within each RU, the input is connected to the output through a residual connection. 
Overall, the Splam model contains a total of 651,715 parameters. (c) Splam’s inputs and outputs. The input sequence 
(in blue) uses 400nt flanking the donor site and another 400nt flanking the acceptor site. The output (in yellow) is an 
array of labels for all 800nt. (d) The one-hot encoding procedure for the inputs and outputs of Splam employed 
during model training and testing with 𝐴 represented as [1,0,0,0], 𝐶 as [0,1,0,0], 𝐺 as [0,0,1,0], 𝑇 as [0,0,0,1], and 𝑁 
as [0,0,0,0]. Each pair of donor and acceptor sites is concatenated into an 800nt sequence as shown, and the 200th 

and 600th nucleotides are labeled as [0, 1, 0] (for a donor site) and [0, 0, 1] (for an acceptor site) respectively. 
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In all experiments described here, programs were trained on genes from all chromosomes except Chr1 
and Chr9, and then tested on genes from chromosomes 1 and 9, after first removing homologous 
sequences (see Methods). This mirrors the training strategy for SpliceAI, which also trained on genes 
from all chromosomes except Chr1 and Chr9 and then tested on chromosomes 1 and 9.  

We computed the accuracy of distinguishing positive splice junctions in randomly selected subsets of two 
datasets, designated Positive-MANE and Positive-Alt, from a random subset of negative examples of splice 
junctions in the Negative-1 and Negative-Random datasets. Positive-MANE comprises splice junctions 
selected from the MANE annotation 30 that are supported by a minimum of 100 alignments in a large 
collection of RNA-seq samples from GTEx. Positive-Alt consists of splice junctions present in protein-
coding genes from the RefSeq 31 annotation but not in MANE, and also supported by at least 100 
alignments. Thus, all positive examples derive from protein-coding genes, and for many genes, the data 
includes more than one isoform. Negative-1 contains splice junctions on the opposite strand of annotated 
gene loci, supported by exactly 1 alignment, while Negative-Random comprises random GT-AG pairs on 
the opposite strand of annotated genes (see Methods for more details).  

Table 1: Accuracy, recall, and precision for predicting human splice junctions using a score threshold of 0.8 for 
Splam and SpliceAI in the Test40K dataset, which contained 20,000 positive examples and 20,000 negative 
examples (see Methods). 

Tools Junction Accuracy (%) Junction Recall (%) Junction Precision (%) 

Splam 96.1 92.5 99.6 

SpliceAI 74.1 48.1 99.9 

The range of precision-recall values at different thresholds obtained by Splam and SpliceAI are shown in 
Figure 2. Figure 2a displays receiver operating characteristic curves (ROC) and precision-recall curves 
(PRC) for both Splam and SpliceAI at the junction level. It demonstrates that Splam and SpliceAI 
perform nearly identically on splice sites from the MANE database but show a noticeable difference in 
predicting alternative splice sites, with Splam performing better. Furthermore, when SpliceAI is not 
provided the 10Kb flanking sequence, its performance drops noticeably. Thus, in this data, Splam predicts 
splice junctions in non-canonical transcripts (Positive-Alt) with far fewer false negatives than SpliceAI 
and SpliceAI-10k-Ns.  

Although the ROC and PR curves for SpliceAI appear excellent, we observed that the raw scores for true 
donor and acceptor sites were often very low, even if they were slightly higher than the scores for false 
sites. Ideally, real splice sites will score close to 1, while false ones will be closer to 0. Figure 2b shows 
that the optimal threshold for SpliceAI is very small (0.0054) and performance quickly drops as the 
threshold increases. In contrast, the performance of Splam remains stable under a much wider range of 
thresholds. For instance, when using a reasonably high score threshold of 0.8, Splam achieved an overall 
accuracy of 96.1% on a test set of 40,000 randomly selected examples, with equal numbers of true and 
false splice junctions, called Test40K (see Methods); here, accuracy reflects the proportion of correct 



predictions (positive and negative) out of all predictions. A junction was considered correct if both the 
donor and acceptor sites were predicted correctly. Precision, defined as the proportion of predicted 
positive junctions out of all predictions, was even higher, at 99.6%. Recall, defined as the proportion of 
true junctions that were correctly predicted, was slightly lower but still high, at 92.5%. The precision and 
recall rates for donor and acceptor sites considered separately were very similar, at 99.6% and 93.0% for 
both types of sites. By comparison, at the same threshold, SpliceAI had an overall accuracy of 74.1% for 
splice junctions, and 82.1%/84.5% for donors and acceptors on the same data (Table 1). 

We also investigated whether the donor and acceptor scores were in accord with one another; i.e., if the 
two scores on both ends of an intron were similar. Figure 2c-d displays the score differences between 
donor and acceptor sites for Splam and SpliceAI. The plot reveals that although both programs tend to 
assign very similar scores to both the donor and acceptor flanking an intron, Splam’s scores are in closer 
agreement. Figure 2d shows a zoomed-in view that illustrates how, in a small fraction of cases, SpliceAI 
has a score near zero for one site while the other site scores near 1, while the scores for Splam almost 
never diverge in this manner.  

To better understand the score distribution, we investigated the scores produced by Splam and SpliceAI 
on the Test40K dataset (plotted in Figure S2). Figure 3 shows the distributions of scores that Splam and 
SpliceAI assigned to both true and false donor and acceptor sites at a threshold of 0.1. For clarity in the 
figure, we omitted the points where Splam and SpliceAI agree and are correct, which totaled 16,820 
positives and 19,809 negatives, so the figure only shows junctions where at least one program was wrong. 
The largest class of disagreements were the 2,609 true splice junctions where Splam was correct and 
SpliceAI was wrong, shown in red. In contrast, there were only 202 true junctions (light blue) where 
SpliceAI was correct and Splam was wrong. Figure 3a.1 illustrates how the Splam scores cluster into two 
groups, near (0, 0) and (1, 1), corresponding to splice sites where both donor and acceptor are either low-
scoring or high-scoring. As shown in Figure 3a.2, SpliceAI is more likely to assign high scores to one 
splice site and very low scores to the other; i.e., the junction scores are inconsistent.   

Although SpliceAI has many more false negatives (missed splice sites), Splam does have slightly more 
false positives, 145 versus just 16 for SpliceAI. In general, for splice site recognition, we consider the 
false positives less problematic because the splice-site-like unannotated sequences (i.e., sequences that 
either program labels as splice sites although they are not annotated as such) are not necessarily true 
negatives, since they might be recognized and spliced at low levels 13. In contrast, failing to identify 
legitimate positive splice junctions in MANE or RefSeq (false negatives) is much more likely to be a 
genuine error.  

We further focused on positively-labeled splice junctions which were correctly captured by one tool but 
not the other (Figure 3b). Our findings indicate that Splam consistently captures more splice junctions 
compared to SpliceAI across all thresholds. Furthermore, Splam outperforms SpliceAI in distinguishing 
splice junctions in alternatively spliced isoforms, while both programs demonstrate good accuracy in 
discriminating canonical splice junctions in MANE (refer to Figure 3c-d). Not surprisingly, Splam 
exhibits even more significant improvements when compared to SpliceAI-10k-Ns, as illustrated in Figure 
S3, Figure S4, Figure S5, and Figure S6. 



 

Figure 2: (a) ROC and PR curves on two test sets of splice junctions from human chromosomes 1 and 9. Results are 
shown at the junction level, where the junction score is determined by the minimum of its donor and acceptor scores. 
Plots a1-2 show results when classifying Positive-MANE where the negative examples included both Negative-1 and 
Negative-Random. The test set, Test22K-MANE, consisted of 2,000, 10,000, and 10,000 examples from Positive-
MANE, Negative-1, and Negative-Random respectively, yielding a positive-to-negative ratio of one to ten (see 
Methods). Plots a3-4 show the results of classifying the test set, Test22K-Alt, consisting of 2,000 Positive-Alt 
examples (splice sites in RefSeq but not in MANE) and the same 20,000 negative examples (see Methods). The 
green curve represents Splam, the orange curve represents SpliceAI with a 10Kb flanking sequence (SpliceAI), and 
the blue curve represents SpliceAI where the 10Kb flanking sequence is replaced with Ns (SpliceAI-10k-Ns). AUC-
ROC values for (1) and (3) and AUC-PR values for (2) and (4) are shown next to each tool’s name. (b) 
Discrimination threshold (DT) plots for Splam and SpliceAI on a test set of 2,000 Positive-MANE, 2,000 Positive-
Alt, 10,000 Negative-1, and 10,000 Negative-Random examples, using all positive and negative examples from (a) 
(Test24K, see Methods). Each plot shows the precision (blue curve), recall (orange curve), and F1 score (green 
curve) calculated at different thresholds. The threshold at which the F1 score is maximized is indicated by a red 
dashed line. (c-d) Kernel density plots visualizing the differences between donor and acceptor scores (donor score − 
acceptor score). In (d) the score differences between -0.15 and 0.15 have been removed to provide a closer look at 
the splice junctions where the scores of donor and acceptor were relatively large. The green density plot represents 
Splam, and the orange density plot represents SpliceAI. 
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Figure 3: (a) Scatter plots for Splam (1) and SpliceAI (2) on a test set, Test40K, consisting of 10,000 Positive-
MANE, 10,000 Positive-Alt, 10,000 Negative-1, and 10,000 Negative-Random examples, with each dot representing 
a splice junction. The red dashed lines show the 0.1 cutoff threshold used here to label splice sites as true or not. The 
smaller plots in the second and the third columns show subsets of junctions where one program was correct while 
the other was incorrect (TP and FN, or FP and TN), and the fourth column shows subsets of junctions where both 
programs made the wrong prediction (either FP and FN). (b) Number of splice junctions at all thresholds where 
Splam and SpliceAI disagree with each other. The green curve represents the instances where Splam correctly 
predicts them as true positives but SpliceAI predicts them as false negatives; the orange curve represents the 
instances where SpliceAI correctly predicts them as true positives but Splam predicts them as false negatives. The 
vertical dashed red line represents the 0.1 threshold used in (a). (c) Score density plots for Splam (in green) and 
SpliceAI (in orange) for donor and acceptor scores on sites found in the MANE dataset (Positive-MANE, first row) 
and sites found in RefSeq but not MANE (Positive-Alt, second row).  



2.2 Generalization to other species  

A frequent concern about deep learning methods is whether they simply memorize the training data, or if 
their predictive models will work on data that diverges from what they have seen in training. To evaluate 
the generalization ability of Splam’s model of splicing, we collected data from three successively more 
distant species and applied Splam to each of them, without re-training. For comparison, we also applied 
SpliceAI to the same data.  

For this experiment, we chose genes from three highly-curated reference genomes: chimpanzee (Pan 
troglodytes), mouse (Mus musculus), and the flowering plant Arabidopsis thaliana. For each genome, we 
extracted a random sample of 25,000 introns along with flanking sequences, as defined by the reference 
annotation (see Methods), and applied both Splam and SpliceAI. The results are shown in Figure 4.  

 

Figure 4: Comparison of score distributions for Splam (green) and SpliceAI (orange) when applied to 25,000 
randomly chosen splice sites from chimpanzee (left), mouse (center), and Arabidopsis (right). Results for donor sites 
are shown across the top, and acceptor sites on the bottom. Scores assigned by each program are plotted along the x-
axis, while densities for both donor and acceptor sites are plotted on the y-axis. The darkened vertical line through 
the distribution marks the median value, and the two neighboring dotted lines represent the first and third quartiles. 
The scores for Splam exhibit a narrow distribution that peaks near 1.0, illustrating that the vast majority of annotated 
splice sites are assigned high scores, even in the Arabidopsis genome. Scores for SpliceAI are more spread out for 
the chimpanzee and mouse, and the scores for Arabidopsis splice sites show an M-shaped distribution peaking at 0 
and 1 with a median near 0.5, rather than just peaking near 1. 



For both Splam and SpliceAI, the mammalian datasets (chimpanzee and mouse) show similar score 
distributions to their scores on human splice sites, indicating that both programs achieved some 
generalization. However, in both cases Splam’s scores show a tighter distribution around 1.0, indicating 
that it recognizes the non-human splice sites somewhat more strongly. For the plant genome, though, 
which is far more distant from human, Splam still assigns very high scores to a large majority of splice 
sites, as shown in the figure, while SpliceAI seems to recognize very few annotated splice sites. Thus 
despite (or possibly because of) its much smaller input window, Splam’s performance generalizes quite 
well, even to species as distant as plants. 

In addition, we evaluated Splam and SpliceAI using datasets of negative examples for these species (see 
Methods), and both programs exhibited prominent peaks near 0 (Figure S7). Notably, even in the plant 
genome, Splam consistently demonstrated low false negatives across different thresholds, outperforming 
SpliceAI (see ROC and PR curves in Figure S8). 

Table 2: Accuracy, recall, and precision for donor sites, acceptor sites, and splice junctions at the score 
threshold of 0.8 for Splam and SpliceAI in chimpanzee (Pan troglodytes), mouse (Mus musculus), and the 
flowering plant Arabidopsis thaliana. 

Tool  Accuracy (%) 

(Donor / Acceptor / Junction) 

Recall (%) 

(Donor / Acceptor / Junction) 

Precision (%) 

(Donor / Acceptor / Junction) 

Pa
n  

tro
gl

od
yt

es
 Splam 95.7  /  95.7  /  95.5 91.4  /  91.4  /  91.0 99.9  /  99.9  /  99.9 

SpliceAI 84.6  /  86.0  /  78.7 69.2  /  72.0  /  57.3 99.9  /  99.9  /  99.9 

M
us

 m
us

cu
lu

s Splam 93.6  /  93.7  /  93.3 87.3  /  87.4  /  86.6 99.9  /  99.9  /  99.9 

SpliceAI 80.0  /  82.1  /  73.6 59.7  /  64.2  /  47.3 99.9  /  99.9  /  99.9 

Ar
ab

id
op

si
s  

th
al

ia
na

 Splam 90.7  /  90.4  /  90.0 81.4  /  80.9  /  80.2 99.9  /  99.9  /  99.9 

SpliceAI 68.2  /  67.8  /  60.0 36.3  /  35.7  /  20.0 99.8  /  99.9  /  99.9 

At a score threshold of 0.8, the recall of Splam for splice junctions is 91%, 87%, and 80% for 
chimpanzee, mouse, and Arabidopsis respectively. At the same threshold, SpliceAI had recall rates of 
57%, 47%, and 20% (Table 2). The results when using a score threshold of 0.1 are shown in Table S1.  

Worth noting is that A. thaliana has far shorter introns, with an average length of 168nt compared to 
6200nt for humans and other mammals. No measurable correlation between intron length and score was 
observed for either Splam or SpliceAI (Figure S9). 



2.3 Effect of filtering low-scoring spliced alignments on transcriptome assembly 
One crucial step in many transcriptome analyses involves aligning spliced reads to the genome, using an 
alignment program such as HISAT2 12 or STAR 11. The output from these programs might contain two 
types of erroneous alignments: (1) incorrect alignments due to sequencing errors, repeats, or other 
sequence artifacts (computational noise), and (2) correct alignments of reads that result from noisy 
splicing (biological noise). Either computational or biological noise 32 can lead to systematic 
underestimates of transcript abundance levels and large increases in the number of false positive genes 
and transcripts 13. We reasoned that both types of noisy junctions should get low scores from Splam; thus 
we wanted to evaluate if we could use Splam to improve the quality of transcriptome assemblies by 
removing low-scoring splice junctions. Using the workflow illustrated in Figure 5 and further detailed in 
Methods, we processed 20 randomly selected RNA-seq samples, of which 10 were prepared using a poly-
A capture library preparation, and 10 were prepared using ribosomal RNA depletion.  

First, we compared all the splice junctions in the alignment files before and after filtering with Splam to 
all introns in the RefSeq GRCh38.p14 version 40 annotation file. While some of the splice junctions in 
the alignment files are no doubt real, an accurate filtering procedure should increase the intron precision, 
while minimizing the decline in intron recall as computed with respect to RefSeq (see Methods). Indeed, 
Splam's results do follow this pattern, as illustrated in Figure 5. Figure 5c and Table S2 show the metrics 
for the 10 poly-A RNA-seq samples. The precision scores for each sample showed a substantial absolute 
percentage increase, ranging from 14% to 25%, with only a minimal reduction in recall (less than 1%). 
Figure 5d and Table S3 illustrate the results for the 10 rRNA depletion samples, where precision 
exhibited even higher absolute percentage improvements, ranging from 28% to 37%, with only a slight 
decrease in recall, ranging from 0.7% to 1.0%.  

Second, we evaluated the impact of the Splam removal procedure on downstream transcriptome 
assembly. We ran StringTie 33 on both the original alignment files and the Splam-cleaned alignment files 
and compared how closely the transcript assemblies match the RefSeq gene annotation file. A successful 
removal procedure would improve both the precision and recall of transcriptome assembly. Among the 10 
poly-A capture samples, the number of matching transcripts remained almost unchanged, while the 
precision scores consistently improved by an absolute percentage of 2.1% to 2.7% (Figure 5e and Table 
S4). For the 10 ribosomal RNA depletion samples, both metrics showed even more substantial 
improvements. Following the Splam removal process, we consistently observed an increase of 500 to 600 
matching transcripts being assembled, while precision showed a 5.5% to 6.5% absolute percentage 
improvement (Figure 5f and Table S5). Other transcriptome assembly metrics, such as the number of 
matching intron-chains, assembled hypothetical exons, and missed exons from the annotation, show the 
same picture: by eliminating low-scoring spliced alignments, we achieve more accurate assemblies of 
transcripts from both poly-A capture and ribosomal RNA depletion RNA-Seq samples, with a particularly 
notable impact in the latter samples (see Tables S6-S11).  

 



 



Figure 5: (a) The workflow of a typical RNA-Seq pipeline. (b) The modified workflow using Splam to remove 
spurious alignments. (c)-(f) Effects of using Splam to remove low-scoring splice junctions from RNA-seq 
experiments. (c)-(d) Results of comparing introns in the RefSeq annotation with splice junctions extracted from the 
alignment files of 10 poly-A capture (c) and 10 rRNA depletion (d) RNA-seq samples.  Each dot corresponds to a 
sample, with the original and Splam-cleaned samples connected by an arrow. (e)-(f) Results of comparing RefSeq 
transcripts with assembled transcripts from the same alignment files of poly-A capture (e) and rRNA depletion (f), 
before and after Splam clean-up. As in (c) and (d), each dot corresponds to a sample, and the original and Splam-
cleaned samples are connected by arrows. The x-axis in all plots shows precision, defined here as the percentage of 
predicted introns/transcripts that match RefSeq. The y-axis in a-b shows intron recall, defined as the percentage of 
RefSeq introns that were captured in the files. In (c)-(d), the y-axis shows the number of assembled transcripts that 
matched RefSeq transcripts.  



3. Discussion  

In this study, we presented Splam, a convolutional neural network that recognizes splice junctions in their 
genomic context. An important principle that we used in designing Splam was that the input should be 
constrained to be biologically realistic. The previous state-of-the-art CNN-based system, SpliceAI, relies 
on a window of 10,000 base pairs flanking each splice site plus the entire intronic sequence, which is far 
larger than what the splicing machinery in the cell can possibly recognize. Introns are flanked by a 5’ 
donor site and a 3’ acceptor site, usually beginning and ending with the dinucleotides GT and AG. A 
short window of sequence around each end is recognized by the spliceosome, as well as a branch point 
about 35-40 bases upstream of the acceptor site 34. In addition to these three limited regions, short motifs 
within the introns and exons known as splicing enhancers and repressors might also affect the splicing 
process. In total, then, at most a few hundred nucleotides determine whether or not an intron is recognized 
and spliced out. Notably, all of the crucial sequences involved in splicing and spliceosome assembly are 
localized in close proximity to the donor and acceptor sites. Thus, it should only be necessary to look in 
these regions to predict splice sites. We were concerned that the performance improvements observed in 
SpliceAI when increasing the flanking sequences from 80nt to 10,000nt, as described in 23, may have been 
due to overfitting or memorization of the training set.  

In the biological context, donor and acceptor sites are not independent. Therefore, instead of training 
separately on these two types of splice sites, Splam is specifically designed and trained to recognize pairs 
of donor and acceptor sites, mimicking the behavior of the spliceosome. Our experiments demonstrate 
that the biologically-inspired design of Splam produced a highly accurate method, with an overall 
accuracy of 96% at predicting human splice junctions, exceeding the accuracies of previous methods. 

We also showed that the Splam model generalizes quite well, as illustrated by our evaluations on 
chimpanzee, mouse, and Arabidopsis. Unsurprisingly, its performance on chimpanzee was very similar to 
its performance on human, but perhaps more surprising was its accuracy in predicting splice sites in a 
plant genome, where it obtained 81.4% sensitivity on donors and 80.9% sensitivity on acceptors. We 
would expect that if re-trained on species-specific data, Splam would improve even further on those 
species. 

We also tested Splam's ability to remove spurious splice junctions from the output of a spliced aligner. 
We showed that when used in this manner, Splam can create alignment files that contain many fewer 
noisy splicing events while losing only a small number of true splice sites. When the cleaned files are 
used as input to a transcriptome assembler such as StringTie2, we not only observed higher precision but 
also an increased number of assembled transcripts that matched known transcripts. These improvements 
were particularly notable when the filtering process was applied to RNA-seq data generated using rRNA 
depletion, which generally contains many more incompletely processed transcripts.  

  

  



4. Online Methods 

4.1 Generating high-quality datasets for splice junctions 

We curated two sets of positive examples, “Positive-MANE” and “Positive-Alt”, and two sets of negative 
examples, “Negative-1” and “Negative-Random”, to serve as high-quality datasets for Splam model 
training and testing, as shown in Figure 6a. The MANE data was taken from the Ensembl/GENCODE 
GRCh38 MANE release 1.0 file. Note that Refseq and GENCODE agree 100% on all MANE 
annotations 30. To create the Positive-Alt dataset, we used RefSeq annotation version 110 31, from which 
we collected all splice junctions missing from MANE. The resulting annotation file contains information 
about (1) the location of all annotated splice junctions and (2) the label information of the indices of the 
donor and acceptor site for each splice junction. We used GRCh38 assembly version 40 as the reference 
genome sequence.  

4.1.1 Positive dataset creation  
We first ran TieBrush 35 to consolidate the HISAT2 alignments of 9,795 samples, collected across 31 
histological types by the GTEx consortium project, into a single compressed BAM file. This TieBrush file 
was recently used to build the CHESS (v3) gene catalog 32. Following the consolidation, we extracted all 
splice junctions from the BAM file using the Regtools junctions extract command 36.  

To increase the accuracy of the donors and acceptors extracted from the TieBrush file, we filtered the 
junctions to retain only those that were supported by more than 100 alignments. We used the RefSeq 
annotation to extract the coordinates of all protein-coding genes and intersected these with the reliable 
(100+ alignments) splice sites. The resulting splice sites were categorized as “Positive-MANE” if they 
were in MANE, and “Positive-Alt” if they were only in RefSeq but not in MANE. This gave us a set of 
annotated splice junctions from protein-coding genes that also had strong alignment evidence. Overall, we 
identified 180,195 splice sites in Positive-MANE and 85,908 splice sites in Positive-Alt.  

4.1.2 Negative dataset creation  
We considered several ways to generate negative splice junctions. For instance, we could select random 
unannotated GT-AG pairs from the genome as negative splice sites. GT-AG pairs account for more than 
98% of all splice sites in mammalian genomes in GenBank 37, but the vast majority of random GT-AG 
pairs are not splice junctions. However, the patterns of these artificial junctions might differ greatly from 
true splice sites, making them easy to learn but less useful for rejecting transcriptional noise. Arbitrarily 
labeling unannotated junctions as negatives would also be inappropriate because some of them may 
actually be spliced. This could happen because of incomplete annotation, transcriptional noise, or other 
reasons  13, 38.  

Nonetheless, we needed to generate an accurate set of negative examples for training Splam, and we 
adopted two novel approaches. The first approach involved selecting random GT-AG pairs on the genome 
and requiring them to be on the opposite strand from known protein-coding genes. Overlapping genes are 
very rare in eukaryotes  39, 40, 41, 42, 43, so these will almost certainly be negative examples. We selected 



random GT-AG pairs in this fashion to generate 4,467,910 splice junctions, which we call the Negative-
Random set.  

 
Figure 6: (a) Illustration of the four types of splice sites used for training and testing Splam: Positive-MANE, 
Positive-Alt, Negative-1, and Negative-Random. Positive-MANE sites (blue) are selected from the MANE database 
and supported by at least 100 alignments, while Positive-Alt sites (green) are present in the RefSeq database but 
missing from MANE, and also supported by at least 100 alignments. Negative-1 sites (orange) occur on the opposite 
strand of a known gene and are supported by only 1 alignment, and Negative Random sites (red) are random GT-AG 
pairs on the opposite strand that do not overlap with any known splice sites and have no alignment support. (b) DNA 
logos for each type of splice site show the conservation of residues at each position in the training set created for this 
study. Each panel displays 40 nucleotides, centering on the donor and acceptor sites. The y-axis represents the level 
of conservation, measured in bits, with 0 representing equal probability among “A”, “C”, “G”, and “T”, and 2 
representing a single nucleotide dominating the position. 

Second, we wanted a set of negative examples that resembled true splice junctions, but that were likely to 
be non-functional. To generate this set, we chose splice junctions with only a single alignment supporting 
them in the TieBrush file and further required that they be on the strand opposite from a protein-coding 
gene. Because they have an alignment supporting them, these splice junctions might represent 
transcriptional noise, making them more useful for training. This approach generated a set of 2,486,305 
splice junctions, which we refer to as Negative-1.  
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4.1.3 Evaluating the donor and acceptor sites in positive and negative datasets  
Figure 6b shows DNA logos for each of our positive and negative datasets. The donor and acceptor 
patterns for Positive-MANE and Positive-Alt are almost identical, indicating that splice junctions in MANE 
and alternatively spliced transcripts from RefSeq have the same consensus, as expected for positive 
examples. The two negative datasets show almost no pattern of conservation, although the Negative-1 
group has a very small amount of conservation immediately adjacent to each splice junction. The two 
groups of negatively labeled splice junctions are clearly distinguishable from the annotated true splice 
sites. Table S12 reports the numbers of dinucleotides at the donor and acceptor sites, and Figure S10 
illustrates the ratio of canonical to non-canonical splice sites.   

4.2 Splam input and output data encoding  

For curating input splice sites, we extract a 400nt sequence centered around each end of an intron, 
learning the splicing pattern at the junction level. This approach facilitates local prediction of a splicing 
event, removes any canonical transcript bias, and eliminates the reliance on a larger window size, which 
for SpliceAI includes the whole intron and 10,000nt of flanking sequences.  

For every splice junction coordinate, we used gffread 44 to extract sequences of 400nt around donors and 
acceptor sites, in total 800nt. In cases where the intron length falls between 200 and 400 base pairs, we 
select a 200nt sequence from both the donor and acceptor sides, with overlapping sequences allowed. For 
introns shorter than 200nt, we include the entire intron with Ns inserted to extend the sequence to 200nt 
for both donor and acceptor sites. The input sequences are then one-hot encoded, with [𝐴,𝐶,𝐺,𝑇,𝑁] 
represented as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], and [0, 0, 0, 0].  

In terms of the labeling of splice sites, we one-hot encoded the 200th nucleotide (the donor site) as [0, 0, 

1], and the 600th nucleotide (the acceptor site) as [0, 1, 0] (using a 0-based numbering system). 
Nucleotides at non-donor and acceptor sites were labeled as [0, 0, 0]. For the input sequences, over 95% 

of them had GT as their 200th and 201st nucleotides, and AG as their 598th and 599th nucleotides. We 
also note that 8 donor sites had ‘TT’ and another 8 donor sites had ‘GA’ in the MANE database (Table 
S12).  

4.3 Splam model architecture design  

The model design of Splam mainly follows the architecture of SpliceAI with some optimizations. We 
utilized a deep residual convolutional neural network (CNN) that incorporates grouped dilated 
convolution layers within the residual units (Figure 1a). The input to the model is 800nt of one-hot 
encoded DNA sequence, and the output is the probability for each base if it is a donor site, acceptor site, 
or neither in the dimension of 3 × 800 (Methods 4.2). The three scores are constrained to sum to 1. We 
constructed the Splam model using PyTorch framework version 1.13.0 45.  

The Splam model consists of 20 residual units, each containing two convolutional layers, and each 
convolutional layer follows a batch normalization and a Leaky rectified linear unit (LReLU) 46  with a 



negative slope of 0.1 as shown in Figure 1a. We define the inputs of a residual unit using four 
hyperparameters: 𝐹 for the number of filters, 𝑊  for the window size, 𝐷 for the dilation rate, and 𝐺 for the 
number of groups. These input hyperparameters are represented as (𝐹,𝑊 ,𝐷,𝐺) in Figure 1b. The input to 
a convolutional layer is defined as (𝐹,𝑊 ,𝐷). Two key ideas used in the Splam model architecture are (1) 
residual connection and (2) grouped dilated convolution.  

Residual units were first proposed by He et al. in 2015 47 to solve the training accuracy degradation 
problem 48, 49. The residual mappings (shortcut connections) allow one to train the deeper model by simple 
stochastic gradient descent (SGD) with backpropagation and can result in accuracy gains from the 
increment in the depth of the model. The concept of residual connection is widely used in deep neural 
networks today to prevent the vanishing/exploding gradient problem. In Splam, the input of a residual 
unit is connected to its output through a residual connection. 

In the Splam model, the 1-D convolutional layers in each residual unit have a dilation rate parameter, 
denoted as 𝐷. The dilation rate determines the spacing between the values in the convolutional filter, 
allowing the network to have a larger receptive field without increasing the number of parameters without 
loss of resolution or coverage 50. The dilated convolution operation is defined as follows:  

𝐹𝑜ᵆ𝑡(𝑛) = (𝐹𝑖𝑛 ∗𝐷 𝐾)(𝑛) = ∑ 𝐹𝑖𝑛(𝑠) × 𝐾(𝑡)
𝑠+𝐷𝑡=𝑛

 ( 1 ) 

where 𝐹𝑖𝑛 is the input feature, 𝐹𝑜ᵆ𝑡 is the out feature, 𝐾 is the convolutional kernel, 𝑛 represents the index 
of the output feature, and ∗𝐷 represents the dilated convolution operation (Equation ( 1 )). In Splam, the 
dilated convolutional kernel captures features from a neighboring region spanning 𝐷 ×  (𝑊  −  1) in 𝐹𝑖𝑛, 
encompassing a total of 2𝐷 × (𝑊  −  1) neighboring positions for the input of the respective residual unit.  

The idea of grouped convolution in Splam was inspired by the cardinality concept, which refers to the 
number of parallel paths present in a block, as seen in ResNext 51. The concept of grouped convolution 
dates back to AlextNet 19, and is implemented in widely used open-source machine learning frameworks 
such as Caffe 52, Keras 53, TensorFlow 54, and PyTorch 45. The use of grouped convolution allows for 
substantial memory savings with minimal loss of accuracy, which can further push the model deeper 55. In 
a grouped convolution with 𝐺 groups, 𝐹/𝐺 filters are applied to each 𝐹/𝐺 portion of the input, resulting 
in a 𝐺 × reduction in the number of parameters used. In Splam, each residual unit consists of two 
convolutional layers where 𝐹 is set to 64 and the group parameter is set to 4.  

A group of four residual units (RUs) forms a bigger residual group, and 20 RUs are clustered into five 
residual groups, in the order of blue, green, orange, yellow, and purple in Figure 1. Residual groups are 

stacked such that the output of the 𝑖 th residual group is forward-connected to the 𝑖	 + 	1th residual group 
(forward connections colored in blue).  



Furthermore, the output of each residual group undergoes a convolutional layer, with the parameters 
(64, 1, 1), which is then added to all the other outputs of residual groups (residual connections colored in 
red), which then is passed into the last convolutional layer in (3, 1, 1) and a softmax layer, generating a 3-
dimensional input Tensor with three channels lying in the range [0, 1] and summing to 1. 𝐹 is set to 64 for 
all convolutional layers. For each residual group, 𝑊  is set to 11, 11, 11, 21, and 21, and 𝐷 is set to 1, 5, 
10, 15, and 20, in sequence. 𝐺 is 1 by default for all convolutional layers but set to 4 in the residual units. 
For each nucleotide position, its total neighboring span in the Splam model is 𝑆 =  ∑ 2𝐷𝑖  ×  (𝑊 𝑖  −

20
𝑖=1

 1). In total, there are 651,715 parameters in Splam.  

4.4 Model training and testing  

Splam was trained on a MacBook Pro 2021 Apple M1 Pro chip with 16 GPU cores, 16 Neural Engine 
cores, and 16 GB unified RAM using PyTorch “mps” mode.  

4.4.1 Splitting splice junctions into training and testing datasets  
After collecting and curating the splice junctions to be used for training and testing, we divided them into 
two datasets: one for model training and the other for testing. For model training, we utilized all the splice 
sites on the main chromosomes, except Chromosome 1 and 9. For model testing, we used the splice sites 
on the held-out Chromosomes 1 and 9, after removing splice sites from genes that had paralogs on the 
other chromosomes.  

As discussed in the main text, we curated two sets of positive splice sites: Positive-MANE and Positive-Alt. 
Out of the 180,195 splice sites in Positive-MANE, 154,249 were allocated to the training dataset and 
25,946 to the testing dataset. For Positive-Alt, out of the 85,908 splice sites, 73,789 were allocated to the 
training dataset and 12,119 to the testing dataset. In total, 228,038 positive splice sites were used for 
model training. We also curated two types of negative splice sites, Negative Random and Negative-1. Out 
of the 4,467,910 splice sites in Negative-Random, 3,834,401 were allocated to the training dataset and 
633,509 to the testing dataset. For Negative-1, out of the 2,486,305 splice sites, 2,134,002 were allocated 
to the training dataset and 352,303 to the testing dataset. In total, we randomly selected three times as 
many negative splice sites as positive splice sites, resulting in 684,114 negative splice sites being used for 
model training. The positive to negative weighting in the loss function is three to one.  

4.4.2 Four test datasets for evaluating Splam 
We generated four test datasets, namely Test40K, Test22K-MANE, Test22K-Alt, and Test24K. These 
datasets were derived from sampling the human splice junctions test dataset described in Methods.   

Test40K encompasses 10,000 splice junctions each from Positive-MANE, Positive-Alt, Negative-1, and 
Negative-Random examples, maintaining a positive-to-negative ratio of one-to-one.  

Test22K-MANE, Test22K-Alt, and Test24K share the same 10,000 Negative-1 and 10,000 Negative-
Random examples with Test40K. To simulate the sparsity of true junctions in the genome, we created a 



test set with a positive-to-negative ratio of 1:10, downsampling the initial 10,000 Positive-MANE and 
10,000 Positive-Alt to 2,000 Positive-MANE and 2,000 Positive-Alt, respectively.  

In sum, Test22K-MANE consists of 2,000 Positive-MANE, 10,000 Negative-1, and 10,000 Negative-
Random examples; Test22K-Alt consists of 2,000 Positive-Alt, 10,000 Negative-1, and 10,000 Negative-
Random examples; and Test24K consists of 2,000 Positive-MANE, 2,000 Positive-Alt, 10,000 Negative-1, 
and 10,000 Negative-Random. We used these datasets to evaluate Splam’s ability to recognize splice 
junctions discussed in Results 2.1.  

4.4.3 Splam training hyperparameters  
To train Splam, we used a batch size of 100 and trained it for 15 epochs. We employed the AdamW 56 
optimizer with a default learning rate of 0.03. A 1000-step warmup was utilized 57, with the learning rate 
increasing linearly from 0 to 0.03. The learning rate then decreased following the values of the cosine 
function between 0.03 to 0 58. 

We further improved Splam’s performance by changing the loss function. Instead of the commonly-used 
cross entropy (Equation ( 2 )), we replaced it with focal loss (Equation ( 3 )) 59.  

𝐿𝑜𝑠𝑠𝐶𝐿𝐸 = − ∑ 𝐼𝑐𝑙𝑎𝑠𝑠 × log(𝑃𝑐𝑙𝑎𝑠𝑠)
𝑐𝑙𝑎𝑠𝑠∈{𝑑𝑜𝑛𝑜𝑟,𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟,𝑛𝑒𝑖𝑡ℎ𝑒𝑟}

  ( 2 ) 

 

𝐿𝑜𝑠𝑠𝐹𝐿 = − ∑ 𝐼𝑐𝑙𝑎𝑠𝑠 × (1 −  𝑃𝑐𝑙𝑎𝑠𝑠)𝛾
 
× log(𝑃𝑐𝑙𝑎𝑠𝑠)

𝑐𝑙𝑎𝑠𝑠∈{𝑑𝑜𝑛𝑜𝑟,𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟,𝑛𝑒𝑖𝑡ℎ𝑒𝑟}
 ( 3 ) 

𝐼𝑐𝑙𝑎𝑠𝑠 is the ground-truth label and 𝑃𝑐𝑙𝑎𝑠𝑠 is the Splam output score for each class (donor, acceptor, or 
neither). Comparing the two equations, we can see that Equation ( 3 ) has an additional modulating term, 
(1 −  𝑃𝑐𝑙𝑎𝑠𝑠 )𝛾. This term scales the cross-entropy loss dynamically, with the scaling factor decreasing to 
zero as confidence in the correct class increases. In other words, the focal loss approach puts more 
emphasis on the misclassified challenging data points where Splam is more likely to make incorrect 
predictions and penalizes these data points by an additional (1 −  𝑃𝑐𝑙𝑎𝑠𝑠)𝛾 scale. In Splam, we set 𝛾 =  2. 
In summary, focal loss quantifies the level of inaccuracy in predictions by down-weighting the influence 
of easy examples during training, enabling the model to swiftly prioritize challenging examples. 

4.4.4 Paralogs removal in testing dataset  
We removed the paralogs from the testing dataset as follows: we first split the transcripts on Chromosome 
1 and 9 and the remaining chromosomes and extracted the transcript sequences using gffread 44 into two 
FASTA files. We then used nucmer 60 with default parameters to align the two files and ran show-
coords with the -lcr option to obtain the alignment coordinates. We removed alignments with 



sequence similarity greater than 80% and the alignment coverage percentage for the query greater than 
50%. We found a total of 2,943 paralogous transcripts, and any splice sites in the testing dataset that were 
from these paralogs were removed.  

For Splam model testing, we randomly selected 10,000 splice sites from the paralog-removed testing 
dataset for each of the four test set groups.  

4.4.5 Testing SpliceAI  
In order to achieve optimal results with SpliceAI, the final splice site score was determined by averaging 
the outputs of five models, as recommended by the developers of SpliceAI. Throughout our experiments, 
we employ this ensemble approach for all SpliceAI analyses.  

4.5 Running Splam on closely-related and distant non-human species  

In this experiment, we aimed to evaluate Splam’s ability to generalize to different species by 
benchmarking the performance of Splam against SpliceAI in scoring donor-acceptor site pairs. Thus, we 
took the same approach as described in Results 2.1 and ran both programs at the splice junction level: 
collecting junctions from non-human species and evaluating one junction at a time.  

4.5.1 Extracting splice junctions from GFF files as the positive testing dataset  
We downloaded the target non-human reference annotations in GFF format, along with assembly reports 
and genome sequences in FASTA format, from the NCBI FTP server (specifically, Pan troglodytes and 
Mus musculus) and TAIR database (Arabidopsis thaliana) at https://www.arabidopsis.org/. For each 
genome, we filtered out any incorrectly overlapping exons and extracted introns from all isoforms of each 
gene as splice junctions using gffutils version 0.12.0 53. The final output of this step is a BED file with 
supporting strand, parent ID, and chromosome information. This comprises the positive dataset to be used 
for evaluation.  

4.5.2 Creating the negative testing dataset  
To produce compelling pseudo-splice-junction data for the negative dataset, we compiled the protein- 
coding genes for each species and followed a similar approach as in the creation of the human Negative-
Random dataset (Methods 4.1.2). For each gene, we selected the strand opposite to the given protein-
coding gene locus. Second, we generated a random start position within the boundaries of the locus and 
searched forward until finding a canonical GT donor site if on the + strand, or CT acceptor site if on the 
− strand. If none were found, we ended the current attempt. Next, we selected a random starting intron 
length from the interval [200, 20000], and jumped forward by this amount from the initial site. Starting 
from here, we searched forward to find a canonical AG acceptor site if on the + strand, or AC donor site 
if on the − strand. If none were found, we ended the current attempt. Otherwise, we recorded the donor 
site and acceptor site positions as a splice junction. We repeated this process for a total of 20 attempts per 
gene locus to produce our negative dataset.  
 
 



4.5.3 Processing splice junctions for Splam and SpliceAI  
Using the obtained coordinates from the positive and negative datasets, we pre-processed the splice 
junctions to fit the requirements for each model. For Splam, we extracted a 400nt uppercase sequence for 
both donor and acceptor sites, as described in Method 4.2, resulting in an 800nt input sequence for each 
splice junction. In cases where the donor and acceptor sites were <400nt apart, we allowed the flanking 
sequences to overlap in the intronic region, resulting in duplicated segments near the center of the input 
sequence. If the sites were exactly 200nt apart, the intronic flanking sequences of the two sites would be 
identical. In cases where the sites were <200nt apart, we truncated the flanking sequences to the end of 
the intronic region (i.e. the donor or acceptor site itself) and padded the remainder with Ns. No matter the 
case, the resulting input sequence would always be exactly 800nt long.  

For SpliceAI, we extracted the entire intron sequence with a 10,400nt context (5,200nt flanking each side) 
as described in Method 4.8. If the flanking sequence went out of the chromosome’s range, we truncated to 
the boundary of the chromosome and padded the remainder with Ns. Thus, the length of the SpliceAI 
input sequence was 10.4Kb plus the intron length. 

In order to run the SpliceAI models in a reasonable time, we randomly sampled 25,000 splice junctions 
from both the positive and negative datasets, and ran Splam and SpliceAI on each junction, following the 
protocols outlined in Method 4.8.  

4.6 Applying Splam to remove spurious spliced alignments  

One application of Splam is to remove spliced alignments with low-scoring splice junctions. Users can 
run Splam on alignment files (BAM). We assess the results at the intron level and the transcriptome 
assembly level. 

4.6.1 Sample information of RNA-Seq data  
We randomly selected 20 RNA-seq samples that were collected and sequenced by the Lieber Institute for 
Brain Development. Among these samples, 10 were prepared using poly-A capture and 10 were prepared 
using ribosomal RNA depletion. These samples were obtained by the Lieber Institute from developing 
and mature human dorsolateral prefrontal cortex (DLPFC). All FASTQ files of these samples are publicly 
available via Globus collections jhpce#bsp2-dlpfc at https://app.globus.org/file-
manager?origin_id=0dd03924-6853-11e9-bf44-0e4a062367b8&origin_path=%2F and jhpce#bsp2-hippo 
at https://app.globus.org/file-manager?origin_id=96be20a2-6853-11e9-bf44-
0e4a062367b8&origin_path=%2F. We then aligned these samples to GRCh38 version 40 patch 14 with 
HISAT2. 

4.6.2 Splam removal procedure workflow overview  
Splam removal procedure would occur as a step in RNA-Seq data analysis after spliced alignment and 
before transcriptome assembly (Figure 5a). The Splam removal step is highlighted by the red box, and a 
detailed breakdown of the trimming process is presented in Figure 5b.  



Before running the Splam spliced alignment removal procedure, users need to prepare three files, which 
are (1) a target alignment file in BAM format, (2) a reference genome in FASTA format, and (3) the 
released Splam model in PT format. This workflow can be done in three lines of code:  

1. Extracting splice junctions from the alignment file:  
$ splam extract −P −o tmp_out <INPUT alignment file>  

2. Scoring extracted splice junctions:  
$ splam score −G <INPUT reference genome> −m <INPUT splam model> −o 
tmp_out tmp_out/junction.bed  

In this step, Splam takes the splice junctions in the BED file generated in the previous step, encodes the 
data described in Methods 4.2, and scores them using the trained Splam model (see Methods 4.3 and 4.4). 
Splam automatically detects the environment and runs in “cudo” mode if CUDA is available. If the 
computer is running macOS, Splam will check if mps mode is available. If neither “cuda” nor “mps” are 
available, Splam will run in “cpu” mode.  

3. Cleaning up the alignment file:  
$ splam clean −o tmp_out 

Subsequently, Splam proceeds to iterate through the alignments. Splam can run on alignment files of both 
single-end and paired-end RNA-Seq samples. Any alignment containing any spurious splice junctions is 
removed, and if it is paired, Splam updates the flags to unpair reads for both the aligned read and its mate. 
Moreover, if a read is multi-mapped, Splam updates the NH tag for the alignment itself and all other 
alignments. The outcome of this spliced alignment removal step is a cleaned, sorted alignment file (BAM) 
along with an alignment file comprising the discarded alignments.  

4.6.3 Metrics for intron matching 
Two metrics, intron precision and recall, are used to assess the alignment file at the intron level. Intron 
precision is calculated as the ratio of true positives (TP) to the sum of true positives and false positives 
(TP + FP), where TP represents the number of introns in the alignment file that match the RefSeq 
annotation, while FP represents the number of introns in the alignment file that do not match the 
annotation. Intron recall, on the other hand, is computed as TP/(TP + FN). In this case, TP again 
represents the number of introns in both the alignment and the RefSeq annotation, while FN denotes the 
number of introns present in the annotation file but not in the alignment file.  

4.6.4 Metrics for transcript assembly 
In evaluating the assembled transcripts, we examined two metrics: the total number of assembled 
transcripts that match the RefSeq database and the transcript precision. Transcript precision is calculated 
as the ratio of true positives (TP) to the sum of true positives and false positives (TP + FP). Here, TP 
represents the assembled matching transcripts, while FP represents the hypothetical transcripts. The 
transcript precision reflects the proportion of assembled transcripts that are actually inside the annotation 
file. 
 



4.7 Applying Splam to score introns in annotation files and assembled transcripts  

Users can run Splam on (1) annotation files or (2) assembled transcripts in three lines of code. Splam 
iterates through the GFF file, extracts all introns in transcripts, and writes their coordinates into a BED 
file. The BED file consists of six columns: CHROM, START, END, JUNC NAME, INTRON NUM, and 
STRAND. Splam scores every extracted intron and outputs the scores of each donor and acceptor site.  

$ splam extract −o tmp_out <INPUT annotation file> 

$ splam score −G <INPUT reference genome> −m <INPUT Splam model> −o 
tmp_out tmp_out/junction.bed  

Last, users can generate reports on the number of low-scoring splice junctions in each transcript and filter 
out transcripts with a high ratio of bad splice junctions using a user-defined threshold. 

$ splam clean −o tmp_out 

4.8 SpliceAI benchmarking  

All the experiments of SpliceAI are conducted on a 24-core, 48-thread Intel(R) Xeon(R) Gold 6248R 
Linux computer with 1024 GB memory, running in “cpu” mode and using a single thread of execution. 

4.8.1 Formatting input data  
The SpliceAI model requires a 10,000nt context to run, meaning that the input intron sequence needs to 
be padded with a 5,000nt flanking sequence on either side. We added an additional 200nt to both flanking 
sequences to better compare with Splam and prevent donor and avoid the donor and acceptor sites from 
being the boundary nucleotides. In the “SpliceAI” version, we extracted the full 5.2Kb flanking sequence 
from the genome. In the “SpliceAI-10k-Ns” version, we replaced the outer 5,000nt on each flanking 
sequence with Ns (zero-padding, as outlined in 23), leaving only a 200nt sequence from the genome.  

4.8.2 Testing the SpliceAI model  
Pursuant to the methods described in 23, we ran SpliceAI on large datasets in discrete batches, with a 
batch size of 500 splice junctions. We one-hot encoded the input sequence, loaded the resulting Tensor 
into the SpliceAI model, and extracted the output into donor, acceptor, and non-splice-site channels. Each 
channel was a list containing the corresponding scores for every nucleotide in the input sequence. The 
channels were then written to their respective files, with every line representing a different splice 
junction. We repeated this process for all 5 SpliceAI models, then averaged the donor and acceptor site 
scores.  

4.8.3 Executing and speeding up SpliceAI predictions  
In order to do batch prediction, we created a separate bash script to execute the above model testing 
process in increments of 500 (batch size), up to the size of the input dataset. We employed a wrapper 
script for ease of access and to prevent memory leakage.  



Additionally, to speed up the pipeline across models and for both “noN” and “N” modes, we multi-
threaded the bash execution to run the 10 targets (5 models, 2 modes) concurrently.  

5. Data and code availability  

The Splam project is freely available on github at: github.com/Kuanhao-Chao/splam, and is available on 
PyPi: https://pypi.org/project/splam/. The Splam documentation is available at: ccb.jhu.edu/splam.  

Splam was built and trained using the PyTorch 45 framework. The core of Splam is implemented in C++ 
using hstlib 61 and the samtools merge and sort scripts 62. C++ libraries were compiled and linked to 
Python using Pybind11 63 (https://github.com/pybind/pybind11). The scripts for Splam training and data 
analysis are freely available on GitHub at: github.com/Kuanhao-Chao/splam-analysis-results. 
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