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Abstract

Understanding the circuits that control cell differentiation is a fundamental problem in developmental
biology. Single-cell RNA sequencing has emerged as a powerful tool for investigating this problem. However,
the reconstruction of developmental trajectories is based on the assumption that cell states traverse a tree-
like structure, which may bias our understanding of critical developmental mechanisms. To address this
limitation, we propose a topological approach that enables identifying signatures of functional biological
circuits as persistent homology groups in transcriptome space. In this work, we applied our approach to more
than ten single-cell developmental atlases and found that topological transcriptome spaces are predominantly
path-connected and only sometimes simply connected. We developed a framework, TopGen, that identifies
transiently expressed genes along topological motifs using homology generators. We show that TopGen
can identify genetic drivers of topological structures in simulated datasets. Finally, we applied TopGen to
analyze topological loops representing stem-like, transdifferentiation, and convergent cell circuits, found in
C. elegans, H. vulgaris, and N. vectensis, respectively. Our results show that some essential differentiation
mechanisms use non-trivial topological motifs, and that these motifs can be conserved in a cell-type–specific
manner. Thus, our approach to studying the topological properties of developmental datasets opens new
possibilities for understanding cell development and differentiation.

1 Introduction

A major goal of single-cell genomics is to define properties of gene regulatory circuits from samples of molecular
data such as the transcriptome and epigenome. Single-cell profiling has represented a powerful tool to investigate
developmental processes in order to unravel regulatory control of cell differentiation at the transcriptional level
[ (1), (2), (3), (4), (1), (5), (6), (7), (8), (9), (10) ]. One of the central hypotheses in developmental biology is
that because cell lineages consist of bifurcation events, cell states traverse a tree-like branching structure in gene
expression space [(1), (11), (12)]; we will refer to this notion as the tree hypothesis (Fig ?? A). Mathematically,
a branching tree can be characterized by its topology as a path-connected set of points in gene expression space
that lacks holes or cycles and can, therefore, be contracted continuously to a point. In fact, formal tools from
the field of algebraic topology can be applied to ask whether developmental cell trajectories in gene expression
space, in fact, generate a contractible tree-like structure. The Betti numbers quantify the overall shape of a
topological space. Formally, viewing the transcriptome as a topological space, the Betti numbers under the tree
hypothesis become β0 = 1, indicating that developmental trajectories are path-connected and βi = 0 for all
i > 0, indicating that gene expression trajectories are cycle-free during development.

Until recently, we lacked sufficient data to rigorously test the tree hypothesis (Fig 1 A). New single-cell atlases
of organismal development now allow provide trajectories across developmental time in different organisms.
However, the complexity and high dimensionality of transcriptome spaces have rendered the rigorous testing
of this hypothesis prohibitively hard. In congruence, analyses of developmental data manifolds either assume
this hypothesis using ad hoc methods [(1), (13)] or use non-linear dimensionality reduction to get a global view
of the space [(2), (4)]. However, it has been recently discovered that widely-adopted methods like tSNE and
UMAP can potentially distort the shape of data, for example by increasing the number of clusters (14). The use
of these tools could thus bias and obscure the interpretation of the geometric and topological properties of cell
trajectories in gene expression space and hide critical developmental mechanisms. In summary, it has remained
unclear whether the transcriptome contains complex shapes (e.g. loops or cavities) during development, and if
so, how they are used in different organisms.

Algebraic topology is a branch of mathematics used to describe the properties of topological spaces via
group theory (15). In the context of developmental biology, topological spaces can formally represent cell states
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Figure 1: Discovering cellular differentiation dynamics using TopGen (A) The current view of the
topology of the transcriptome is that cells form a tree during fate commitment, which we refer to as the tree
hypothesis. Cyclic of converging cell fates could break the tree hypothesis. (B) Phylogenetic tree diagram of
survey organisms. We performed a topological survey of developmental datasets during early development using
persistent homology. (C) Persistent homology (PH) is a robust method to identify topological signatures from
noisy samples of a manifold. PH works by recording when topological features appear and decay (Methods).
A 1-homology class is born in the rightmost panel. (D) Intuition of an H1 topological signature using a
genetic oscillator. Dynamical systems view of gene regulatory control (left) has a corresponding topological
interpretation (right) that can be formalized using homology groups and Betti numbers. (E) Workflow of
TopGen to identify genetic drivers in single-cell transcriptome data.

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2023. ; https://doi.org/10.1101/2023.07.28.551057doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.28.551057
http://creativecommons.org/licenses/by-nc-nd/4.0/


undergoing differentiation. Using this framework a direct hypothesis is that if we view cell states as points in a
topological space, there should be a path connecting a progenitor cell (e.g. a stem cell) and a fully differentiated
cell. Furthermore, another topological hypothesis is that an oscillatory circuit would generate a 1-dimensional
topological feature in phase space, i.e. transcriptome space. In Fig 1 D we show the phase space of a classic
dynamical model of a biological oscillator and its corresponding topological interpretation.

In this work, we leveraged classical and modern tools of algebraic topology. In particular we used topological
invariants – the Betti numbers– to identify the function of gene regulatory networks in developmental transcrip-
tome atlases (Fig 1 B). Specifically, we examined (i) if developmental datasets are completely connected and,
(ii) if they are simply connected. Our analysis revealed that (i) is predominantly true under mild considerations,
as expected. Surprisingly (ii) is not always true – we found instances of 1−dimensional topological signatures
corresponding to convergent and cyclic gene expression programs. These results provide strong evidence against
the tree hypothesis during development (Fig 1 C).

To uncover the genetic drivers of these topological patterns, we developed a pipeline, TopGen, which calcu-
lates the generators of homology using algebra over Z2. Using TopGen, we identified genes that are transiently
expressed along developmental cycles. Our approach of using computational homology to study the topological
properties of developmental datasets opens new possibilities for understanding the complex processes of cell
development and differentiation. More broadly, our method can be applied to formally study the topological
properties of transcriptome spaces across disease, perturbations, and aging.

2 Results

2.1 TopGen enables analyzing gene expression signatures of topological structures
in transcriptome spaces

Understanding the topology of a physical system provides valuable qualitative information about its dynamics
(16). For example clusters and loops are signatures of fixed points and oscillations. In this work we conceptualize
the transcriptome as a topological space and will use the term topology to refer to its homotopy type, which
can be quantified using Betti numbers (Methods). The Betti numbers were developed to capture the invariant
properties of manifolds under continuous deformations, and unveil qualitative properties of the vector fields
permitted in the underlying manifold, including bounds on the number of fixed points (see e.g. Poincaré-
Hopf theorem). Conceptually, this becomes significant when considering the notion of a Waddington Lanscape
mathematically, i.e. envisioning development as a flow on a manifold.

Previous limitations in interrogating gene expression dynamics during development were overcome with
the advent of single-cell transcriptomics. However, current computational methods for transcriptomic data
often rely on ad-hoc techniques with strong topological assumptions (the tree hypothesis) or dimensionality
reduction tools. Confirming previous reports (14), we found that tSNE dimensionality reduction tools can alter
the topology (Figure S5, S6) of the input space and provide a mathematical explanation for this behavior (SI).
Furthermore, we expanded upon previous reports by analyzing the effects of another widely used dimensionality
reduction tool, UMAP, and quantified the change in the topology after the transformation. In particular, we
found that dimensionality reduction methods can both increase and decrease Betti numbers, and in particular
destroy higher H1 and H2 homology classes. These results have biological consequences given that oscillators
canonically have H1 homology. Furthermore, we developed a biocircuit based on an oscillator with an H2

signature (Figure S7), revealing that in theory, two-dimensional homology could have important biological
significance. These findings emphasize the necessity of new tools to investigate the topology of biological
systems effectively.

Inferring the topology of a manifold given a finite sample has been a long standing algorithmic challenge,
due to sensitivity to noise and scale. To be more explicit, one can imagine that noise can effectively “fill in”
the hole of a circle. This is best exemplified by the results of Niyogi-Smale-Weinberger [(17), (18)], which state
that given a manifold M , t he inference of its homotopy type is not only dependent on data quality but on the
geometry around the salient topological features. Intuitively, this result can be understood by imagining that
it is easier to “destroy” the void of an ellipse by adding noise along its minor axis can be to destroy than that
of a sphere by assuming the radius of the sphere to be equal to the ellipse’s major axis.

Fortunately, the development of persistent homology has enabled the identification prominent topological
features of a manifold from a data sample [(19), (20)]. In essence, the persistent homology algorithm computes
Betti numbers at different increasing radii and records when features (homology classes) appear and decay
in the persistent diagram. The crucial topological signatures will be the persistent homology classes with a
prolonged lifetime, indicating robustness to noise. To compute persistent homology we leverage the efficient
implementation of Ripser (21) in python (22), which employs important theoretical tools for efficiency, such as
the use of cohomology (23) and discrete Morse theory (24).

To further investigate topological properties in developmental transcriptome spaces we developed a frame-
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work that enables identifying topological signatures in data and gene expression analysis in the corresponding
topological motifs (Fig 1 E). First, our approach utilizes persistent homology to identify the homotopy type
of a dataset via the computation of its persistent Betti numbers. Secondly, we developed TopGen, a method
that uses the representatives of homology groups to analyze gene expression patterns. In essence, the method
involves establishing a common basis for the kernel and image of consecutive boundary maps via the Smith Nor-
mal Form (Methods). By calculating the n−th Betti number, we can determine the homology group generator
from this shared basis.

To identify transiently expressed genes, we analyze the mutual information of gene expression and the
Laplacian eigenvectors of the homology group generator. Genes with high mutual information indicate tran-
sient expression along the topological motif. By hypothesis, cyclic topologies would have oscillatory genes that
are transiently active in different parts of the cycle. Furthermore, the eigenfunctions of the Laplace-Beltrami op-
erator encodes the geometry of a manifold in an orthogonal basis of harmonic functions, which are by definition,
oscillatory (25). The discrete version of these harmonic eigenfunctions also turn out to have oscillatory behav-
ior and are eigenvectors of the discrete Laplacian. Therefore transiently expressed genes had high statistical
dependence with the eigenvectors of the Laplacian of the homology generator.

2.2 Validating TopGen using a ground truth gene regulatory network

To evaluate the efficacy of our approach, we conducted simulations using dyngen, a software package that
utilizes the Gillespie algorithm and real data statistics to simulate the acquisition of single-cell RNAseq data
with a user-specified gene regulatory program. We designed a GRN consisting of 100 transcription factors, 10
target genes and 50 housekeeping genes, and its wiring diagram is visualized in (SI Fig S1 A). We verified that
the dataset had Poisson statistics, characteristic of single cell data (SI Fig S1 B).

To determine whether our pipeline could correctly identify the topology of the dataset, we employed persis-
tent homology, a mathematical tool for identifying prominent topological features of datasets subject to noise
(Methods). The persistence diagram revealed that 0−homology classes could not be well separated indicative
of a large connected component subject to noise. Furthermore, the persistent diagram also showed the presence
of a persistent 1−homology class i.e. a loop (Fig 1 E. orange dots). Together, these results demonstrate that
persistent homology is a robust method to identify the topological signature of a noisy single-cell transcriptome
dataset.

In order to evaluate the statistical robustness of our approach, we developed a permutation test to provide
an uncertainty estimate for our results (Methods). In brief, we asked if the topological feature of a test dataset
could be explained by chance. To answer this question, we set out to test the null hypothesis that the difference
between the lifetime of the maximal H1 feature of a test dataset and a simulated tree was zero, versus the
alternative of the maximal H1 feature being more prominent in the cyclic dataset. Interestingly, we found that
the difference between the simulated cyclic data and the tree dataset was significant(P-value < 10−4). In the
SI we show a systematic evaluation of this approach using both positive and negative controls (S2).

Next, we utilized TopGen to analyze transient gene expression patterns along the identified 1−dimensional
homology class. TopGen enabled us to identify transcription factors and target genes exclusively, while retrieving
no housekeeping genes as a negative control (Fig S1 D). Our analysis revealed that the expression of housekeeping
genes had low mutual information with Laplacian eigenvectors and they were expressed spuriously throughout
the loop(Fig S1 D). Furthermore, as a negative control, we computed the persistence diagram on the HK
genes only shows no 1−homology classes i.e. no loops (Fig S1 C). As a whole, these results suggest that our
analysis pipeline is capable of identifying the correct topological signature of a dataset, elucidating the causes of
topological structures using TopGen, while avoiding the retrieval of spurious genes unrelated to the topological
signature.

2.3 Persistent homology reveals that transcriptome spaces are path-connected
but not necessarily simply-connected during development

Based on these findings, we conducted a survey to investigate the topological signatures of the transcriptome
across early development across a wide range of eukaryotic organisms (1 B, 1) . We curated an extensive
collection of 12 developmental datasets, including model organisms such as Danio rerio, Arabidopsis thaliana,
Xenopus laevis, Caenorhabditis elegans and Mus musculus. We also incorporated organisms including Hydra
vulgaris, Nematostella vectensis, and Schmidtea mediterranea, for their importance in regenerative medicine.
Furthermore, we used the chordate Ciona savignyi because of its close evolutionary relationship to vertebrates.
The selected datasets are considered golden standards within the field characterized by dense sampling of crucial
developmental timepoints. Together, these datasets comprised 864, 640 single-cell gene expression profiles.

To interrogate the validity of the tree hypothesis, we conducted persistent homology analysis on our de-
velopmental atlas compendium. In order to assess whether the transcriptome space represents a topological
tree, we focused on dimensions 0 and 1, as a tree is characterized by Betti numbers β0 = 1, βi = 0 for all
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Organism Number of single-cell transcriptomes β0 β1

A. thaliana (10) 107,840 1 0
C. elegans (2) 89,701 1 0
C. savignyi (9) 767 1 0
D. melanogaster (7) 94,315 1 0
D. rerio (8) 120,444 1 0
H. vulgaris (3) 27,992 2 2
M. musculus (26) (Weiss) 92,649 1 0
N. vectensis (4) 37,712 1 2
S. mediterranea (6) 6,394 1 0
X. laevis (5) 188,020 1 0
X. tropicalis (1) 98,806 1 0

Table 1: Summary statistics of single cell atlases and corresponding Betti numbers

Figure 2: Persistence diagrams for topological single cell atlas survey Persistence diagrams contain
summarize the topological features extracted using persistence homology. Each point in a persistence diagram
corresponds to a persistent homology class, where its coordinates are the radius at which the feature appeared
(x-axis) and when it ceased (y-axis). Highlighted are H1 homology classes found in this study.

i > 0. Specifically, if the transcriptome space has β0 > 1, this would mean that the topological space is not
path-connected and would provide evidence against the tree hypothesis. Furthermore, since trees are defined as
acyclic structures, a value of β1 ≥ 1 would strongly suggest that the underlying topological space is not a tree.

To answer the question of path-connectedness in development, we developed a method that leveraged the
special nature of the 0−th persistent homology. The 0−th persistent homology is special since all persistent
0−homology classes are born at the start of the filtration. Thus, the most parsimonious 0−homology of the
data would thus appear as a gap on the ordered lifetimes, and is equal to a maximum on the graph of the second
differences of the ordered lifetimes (Methods). We benchmarked this approach by simulating clusters in high
dimensional spaces (SI). Using this approach we found that all but the Hydra atlas had more than one connected
component 2. For the hydra dataset the largest components consisted of the main germ layers, endoderm and
ectoderm; this result is unsurprising since the hydra cell atlas was not constructed using a timeseries. Together
these results suggest that single-cell transcriptomes are predominantly path-connected during development.

We continued our topological investigation via the analysis of 1−homology. The alternative to the tree
hypothesis is strongly motivated from the 1−homological signature of oscillators in phase space (Fig 1 D).
In development, oscillators are implemented e.g. in the somitogenesis circuit and y. Previous studies have
conjectured that the lineage history of single cells could display complex topologies such as cycles or loops (27).
Transcriptomic profiling studies have demonstrated that a formation of a gene expression loop in the cell cycle
[(28), (29)] when examining solely cell cycle genes. Other studies have used ad hoc methods (1) that specify a
topology (e.g. a tree) or used dimensionality reduction tools that can strongly distort the data topology. To
the best of our knowledge, the unbiased discovery of cyclic topologies has yet to be formally reported in the
literature.

To formally, test the tree hypothesis, we used our topological permutation test described in the previous
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section (Methods). To our surprise, we were able to identify H1 classes in three datasets 2: the seam cells of the
Worm - representing a stem-like cycle (P-value = 8 × 10−3), in the gland cells of H.vulgaris (P-value = 0.037
) and in the cnidocytes of the cnidarians H.vulgaris (P-value < 10−4) and N.vectensis (P-value < 10−4) which
we explain below.

2.4 A topological feature could support transdifferentiation of zymogen gland
cells to mucous gland cells in Hydra

To begin the exposition of our case studies, in this section we’ll describe evidence for a topological signature
providing support for transdifferentiation in the cnidarian Hydra vulgaris. Hydra is a 1 cm long freshwater
organism than has the remarkable of achieving fully-body regeneration. Classic experiments by Campbell in
the 60s showed that the hydra can replace the entirety of its cell repertoire ≈ every 20 days (30). Another way
to say this is that Hydra has remarkable cellular stemness, provided by a particular cell type called interstitial
stem cells (ISCs) which can replenish virtually all main cell types of the organism: germ cells, neurons, gland
cells and nematocytes.

Homeostatic self-renewal of Hydra enabled Siebert et al. (3) to construct a cell atlas spanning crucial
developmental stages by sampling organisms at different days. In total, they reported more than 27, 000 single-
cell transcriptome profiles and were able to sample the main layers endoderm and ectoderm, as well as low
abundance cells such as neurons and stem cells.

Evidence that head mucous cells arised from interstitial stem cells was present in early molecular studies of the
hydra((31)). ISCs however were reported to be predominantly in the gastric region (low head and foot). Siebert
et al. (31) resolved this conundrum by showing that zymogen gland cells(ZMGCs) present in the body could
transdifferentiate into granular mucous gland cells (GMGCs). Therefore, the topology of the transdifferentiation
mechanism predicts that there would be a corresponding homology class present in transcriptome space (Fig
2b). We applied persistent homology and found persistent homology groups with large lifetime in this dataset
2. We found that the top most persistent homology was statistically significant as compared to a null tree
topology (P-value = 0.038). After thorough analysis, we found that the two persistent homology classes indeed
corresponded to gland cells and nematocytes; we explain the latter in the following section. We applied TopGen
and found important known marker genes involved in gland cell function and some uncharacterized genes.

We developed a visualization (Methods) to display TopGenes corresponding to a H1 homology class. In
brief, we clustered genes and used the first Laplacian eigenfunction as a coordinate for the geometry of the ho-
mology class. Finally we classified genes as early (corresponding to ZMGCs) middle (corresponding to spumous
mucous gland cells), and late for granulous mucous gland cells (GMGCs). Note that this classification does not
correspond to “pseudotime”, but to the geometry of the loop. For instance, TopGen identified multiple digestive
enzymes in early and middle gene sets including peptidases (CBPA2, NAS1, CTRC), glicosidases (HEXC), and
chitinases (CHIA, CHI13). In contrast, we found multiple mucin homologs (MUC2-RAT, MUC5B-CHICK)
contained in “late” gene sets in agreement to the function of GMGCs. Together, these results suggest that
TopGen identifies genes crucial to the function of gland cells, and that the topology of the transdifferentiation
circuit is congruent to the observed data topology in transcriptome space.

2.5 A conserved convergent circuit in cnidocytes

As mentioned in the previous section, we found a persistent 1−homology class in the nematocytes of the
cnidarian Hydra vulgaris. Interestingly, using persistent homology, we found non-trivial persistent homology in
another cnidarian, Nematostella vectensis. The second case study, which we explain in this section, expands on
these discoveries.

Despite their seemingly simple anatomy, cnidarians possess a complex genomic and regulatory repertoire.
Cnidocytes are specialized cell types that possess toxins that enable cnidarians to catch prey and contend
predators, and thus are the characteristic cell type of cnidarians. From an evolutionary perspective, cnidocytes
constitute an essential innovation for the prevalence of this phylum. Furthermore, many cnidarians enjoy
remarkable regenerative properties. Together, these features make cnidarians attractive model organisms for
studying development.

In an effort to uncover the regulatory mechanisms of cell type diversification across development in N.
vectensis, a cell atlas was recently performed (4). This Nematostella cell atlas contains samples of early devel-
opment comprising samples from the gastrula (18, 24 hpf), planula ( 2,3,4 dpf ), and polyp (5,8,16 dpf) stages.
Furthermore, they included data from adult tissues of the pharynx, body wall, mesentery, and tentacles. This
dataset represents the most exhaustive resource to date for N. vectensis single-cell transcriptomic diversity.

We applied our topological analysis approach and found that the N. vectensis dataset contains some promi-
nent H1 persistent features. After some analysis (SI), we found that the cnidocytes have a topological signature
of a wedge sum of two circles. We found no H2 persistent feature discarding the possibility of the topological
equivalence to a 2D topological manifold like a torus. Interestingly, these topological features were reported
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Figure 3: A topological feature could support transdifferentiation of zymogen gland cells to
mucous gland cells in Hydra. (A) Hydra cell atlas colored by cell types. Plot shows cells projected onto
principal components 2 and 13. (B) Inferred homology generator using TopGen. Highlighted are the cells in
the neighborhood of the 0−skeleton of the homology class representative. (C) Convergent cell type model as
specified by (). (D) PCA plot for the main gland cell types and neuron progenitors, colored by the expression of
their corresponding cell markers (neuron progenitors: ELAV2, zymogen gland cells: HyDkk1/2/4 A, granular
mucous gland cells: HyTSR1, spumous mucous gland cells: MUC2 ). (E) TopGenes ordered by their expression
along the homology class (left). Cells in the ε−neighborhood of the homology class representative (right).
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Figure 4: A conserved convergent cycle in cnidarian’s cnidocytes (A) Coarse-grained phylogenetic tree
diagram of the evolutionary relationship of Nematostella vectensis and Hydra vulgaris. Both N. vectensis and H.
vulgaris are part of the cnidarian phylum (light orange square), and members of the Hexacoralia and Hydrozoa
classes respectively. (B) Homology generators for Hydra (top) and Nematostella (bottom) using TopGen. (C)
Cnidocytes of Hydra colored by cell type and developmental markers. PCA plot of cnidocytes colored by
markers of stenotele subtype (t10854aep) and during nematogenesis (nematogalectin B) and the corresponding
classification (top) by the authors (3). Cnidocytes colored by expression of early (JUN transcription factor) and
late (calcineurin/calmodulin genes) developmental markers (bottom). (D) Cnidocytes of Nematostella colored
by calmodulin (top) and minicollagen gene expression (bottom) and their corresponding cell type classification
by (4). (E) TopGen enables finding transiently expressed genes along the topological motif.
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in the original study (4) but UMAP increased the number of H1 features. Consistent with their findings, we
found two regions of cnidocytes, one of which did not contain cnidocytes from the gastrula samples (mature).
Interestingly, the fraction of mature cnidocytes was higher for the second generator (Fig 4 B, D).

To investigate gene expression patterns across the topological motifs we found in Nematostella, we applied
TopGen. Cnidae are the organelles of cnidocytes that contain a tubule ejected upon mechanical input. The
cnidocyst tubules are composed of minicollagens, nematogalectins, and other structural proteins that give
this macrostructures its functional properties for prey capture and defense. We found that the expression of
minicollagen proteins differed across the two topological motifs in cnidocytes, suggesting that this molecular
diversity could represent the vast morphological diversity of cnidocytes (Fig 4 D).

In order to understand the regulation of this diversity we asked if there was differences in the transcription
factors contained in the TopGenes found by TopGen. Interestingly, we found that the TFs CnidoFos, Pou4
and SoxA in the set of top genes of the first generator, while Jun was in the set of the second generator (Fig
S3). This is in agreement with results in bulk measurements where Jun was overexpressed 3-fold while Fos
was overexpressed 16-fold than control in mature cnidocytes (32). Furthermore, Pou4 has been reported as a
regulator of cnidocyte terminal differentiation (33), where Pou4 mutants produce NvCol3 minicollagen (marker
of cnidocytes) but fail to assemble mature cnidocysts. In contrast, Jun knockdowns largely lacked the expression
of NvCol3, suggestive of disruption of early nematogenesis.

2.6 A stem-like fate maintenance circuit drives an H1 homology class and enables
identification of glial fate priming in early development

The development of the worm C. elegans is invariant and has been mapped cell by cell (34), and thus there is
a plethora of knowledge of its developmental cell biology. Seam cells are lateral hypodermal cells and perform
a stem-like fate. Seam cells display proliferative, symmetric cell division to expand the stem-like pool and
asymmetric division to differentiate into hypodermal cells (35). Furthermore, seam cells have an essential
function in development by secreting proteins that help the worm elongate and molt. Finally, some seam cells
develop to neuron programs for e.g. development of the deirid. The transcription factors ELT-1, RNT-1, and
BRO-1 control the ratio of symmetric and asymmetric cell divisions (36). This, tight control of these cell
divisions is crucial for properly developing the hypodermis and parts of the sensory system in C. elegans.

The C. elegans developmental atlas (2) comprises the first 12 hours of development, representing the worm’s
lifetime from the first few cell divisions up until the beginning of the L1 larva stage. Using persistent homology,
we identified a prominent H1 homology class (Fig 2). Furthermore, we identified that the cycle consisted
predominantly by seam cells and hypodermal cells (Fig 5 A,D). There was second persistent homology class
identified by PH corresponding to muscle cells, but it turned out that geometrically it was a ruptured circle.
The seam cell loop was not reported in the original study and could be destroyed using UMAP projection
(Fig S8). Interestingly, this 1-dimensional homology class is not related to cell cycle as it contains from the
early stages of gastrulation (≈ 200 minutes after cleavage) up to the beginning of the L1 stage (12 hours
after cleavage). Furthermore, persistent homology analysis of cell cycle genes did not contain 1-dimensional
topological signatures (Fig S4).

We found that consistent with the regulatory events of seam cell regulation (36), the transcription factor
ELT-1 is expressed early in the cycle from 100-400 minutes after the first cleavage (Fig 5 A). Moreover, we
found that the transcription factors BRO-1 and RNT-1 are expressed in the intermediate part of the cycle
from approximately 300-600 minutes after the first cleavage event. Further, glial cells were present at the end
of the cycle, which is consistent with the possible cell fates of seam cells. Together, these results support the
hypothesis that the H1 homology class is a topological signature of the seam cell stemness cycle.

We applied TopGen to the C. elegans atlas and found fasn-1, cutl-2, and noah-1 to be transiently expressed
early in the cycle. Importantly, noah-1 knockdown embryos fail to elongate and rupture (37). We also found
genes expressed along the intermediate stages of the homology class such as the genes mlt-8, mlt-9, and mlt-
11 which are essential for molting (38). Finally, we also discovered genes expressed in all but the initial and
terminal regions of the cycle, such as sqt-3, which has been reported to be essential for locomotion and viability
(39). As a whole, these results suggest that the homology class is driven by both structural and mechanical
functions of seam cells. These functions are essential for the worm prior to hatching.

3 Disussion

In this work we used viewed scRNAseq landscapes as topological spaces. Furthermore, we discovered and
quantified that cell transcriptome spaces are not always simply connected, i.e. can have 1-dimensional holes.
This fundamentally novel concept challenges our prior understanding of development as a purely branching
process.
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Figure 5: Stemness maintenance is encoded as a cycle in transcriptome space in C.elegans’ seam
cells (A) PCA plot of the C.elegans developmental cell atlas, colored by time after hatching in minutes (left),
and by the transcription factors elt-1, rnt-1 and bro-1 respectively. (B) Detected homology class of the seam
cells. (C) Top genes ordered by their activation around the H1 homology class.
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In the broader context beyond development, previous studies have identified topological loops. However,
these studies relied on subsetting cell cycle genes [(28), (29)] to identify loops, or was dependent on the com-
putational processing of the data. These previous efforts have not yet described tools capable of rigorously
determining or discovering topological loops in cell state manifolds. Therefore our approach represents an un-
biased way to discover topological features from high-dimensional data, which had not yet been achieved by
previous studies. Additionally, it is likely that in the original studies did not find topological motifs as their
analysis pipelines relied on UMAP and tSNE and could have suffered of topological distortion (Fig S8).

However, it should be noted that our results showed that loops are rare occurrences, present in only a
small percentage of our datasets. As our resolution to probe the transcriptome increases, we predict that
more topological signatures will be uncovered across different organisms. This underscores the need for further
research to develop experimental and computational techniques to expand upon these findings.

The potential that a disconnected manifold could become connected noise coud alter the topology, remains a
possibility, however, this scenario is challenging to discern without a parsimonious null hypothesis. For instance,
in the context of development, the parsimonious hypothesis for zero homology is that the transcriptome is path
connected. In contrast, in other contexts, it may be easier to use alternative hypotheses, such as in fully
differentiated systems, timecourses of disease progression, perturbations, and aging.

A concrete example of the possibility of noise phenomena affecting the topology in our analyses is the case
of cnidocytes in Nematostella. This is particularly subtle, since the NSW theorem predicts that the manifold
is conditioned by the minimal distance to its medial axis, which in this case is a principal component of a
small singular value (PC 13). Geometrically this can be seen by noting that the topology of the figure eight
is formed by drawing a path across the minor axis (PC13 ) of an ellipse. However, functionally, we showed
that gene expression patterns are fundamentally different across the two 1-homology generators which strongly
suggests that this topology is prominent. These findings open up new avenues for future research incorporating
the analysis of noise and topology. In particular, using a dynamical model of the system with a topological
correspondence could help ellaborate more complex hypothesis testing regarding the noise in the system.

Finally, our approaches for finding transiently expressed genes could be modified to yield different results.
There are other approaches that could exploit the experimental sampling time or spatial information to discover
gene expression patterns (40). Other class of models could incorporate different methods of gene analysis. For
example, Siebert et al. (3) used TF motif search to retrieve potential regulators for cell fate. This analysis in
the Hydra yielded an enrichment of Pax2a and RFX regulators in gland cells and cnidocytes respectively. In
contrast, we found JUN to be transiently expressed in gland cells and LMX in cnidocytes. Thus our analysis
provides potentially complementary information about complex biological processes as compared with other
analysis methods.

Limitations of our study include the incomplete acquisition of all cell circuits in the analyzed organisms
by the limited resolution of scRNAseq: either noise or low sampling depth could affect the identification of
homology. Another limitation is that we focus limit our scope to the study of 0 and 1 homology, because of
the high computational cost for higher dimensions. For instance, the calculation of 2−homology requires the
computation of the boundary map ∂3 mapping 3−simplices to 2−simplices; for n = 105 datapoints (as is the
case for some of our atlases) the number of possible 3−simplices is on the order of

(
n
4

)
≈ n4 = 1020, at the end of

the filtration. Thus, even with the efficient implementations to date, memory requirements become prohibitively
large for high dimensional homology. It is important to underscore that higher homology could encode important
biological phenomena that still awaits our theoretical understanding. In the SI we show how composition of a
simple oscillatory circuit with variable repressor strength can lead to 2−homology. Our approach generalizes
for higher dimensional homology and we thus envision that future research in computational algebraic topology
will enable the computation of higher dimensional homology for single cell developmental atlases.

In conclusion, this work has shed light on the potential of viewing scRNAseq landscapes as topological
spaces, offering a new way to understand complex biological processes and uncover hidden patterns. Beyond its
immediate impact, our approach holds promise in complementing traditional bioinformatic analyses, opening up
new avenues for exploring complex biological phenomena like aging and disease. For instance, the discovery of
the stemness loop in C. elegans provides a new way to understand the mechanisms of pluripotency maintenance
in stem-like cells. Moreover, the implications of our findings extend to cell therapy, where a deeper understanding
of the topological signatures of stem-like properties may facilitate engineering strategies using synthetic biology.
In the context of cancer, cycling stem cells may be unaffected by approaches targetting fast-growing cells.
Because they may be relatively protected from current treatment strategies, cancer stem cells are thought to be
responsible for resistance to chemotherapy and the recurrence of disease. By harnessing the power of topology
in scRNAseq analysis, we have set a trajectory for advancing our understanding of complex biological systems
and paving the way for innovative therapeutic strategies.

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2023. ; https://doi.org/10.1101/2023.07.28.551057doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.28.551057
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Methods

4.1 Topological model of transcriptome data

Let X = {x1, ..., xm}, xi ∈ Rn be a set of m transcriptome profiles where n is the number of genes. We consider
the set of transcriptomes X to be points sampled from an underlying manifold, M , via a measurement process
that generates data points x drawn probabilistically through a measurement process P (x|y) where x ∈ M and
y ∈ TxM

⊥ (18). Our goal is to infer the underlying topology of this manifold through analysis of the sampled
points. We are interested in the topology of the manifold because topological structure can reveal principles of
gene regulation and cell-state control. Formally, our goal is to estimate the homology groups and corresponding
Betti numbers of the underlying manifold M . The Betti numbers encode, informally, the number of holes of
increasing dimension.

Intuitively, each point in X can be viewed as a representative of a small neighborhood of the transcriptional
manifold M . By forming open sets around representative points, our aim was to cover the manifold by including
nearby transcriptional states. In other words, an open cover of X would represent oversampled but continuous
transitions of cell-states nearby the sampled single-cell transcriptomes. This approach would in principle allow
us to assess the local structure of the manifold M using the sampled data X and infer of its underlying topology.

Fortunately, the topology of M is encoded in the simplicial complex built from the intersection signature of
an open cover of X (SI) (15). We can thus infer the topology of M by associating a simplicial complex structure
to X. In brief, a simplicial complex is the discretization of a manifold. For instance, 2D manifold (a surface)
can be triangulated, effectively resulting in a simplicial complex. The power of simplicial complexes lies in
their computational capabilities, allowing for straightforward computation of homology. The building blocks of
simplicial complexes are simplices, which are generalizations of triangles: 0−simplices are points, 1−simplices
are line segments, 2−simplices are triangles, 3−simplices are tetrahedrons, and in general, p−simplices are
p−dimensional polytopes. In our framework, a transcriptional 2−simplex would be a set of three nearby
transcriptomes that can continuously deformed into each other, and that locally represent a 2D neighborhood
of M .

It turns out that for computational purposes, it suffices to use only the indices of the transcriptomes forming
the simplices, forming what we refer to as abstract simplicial complex (ASC). Formally, an abstract simplicial
complexK is just a collection of sets that is closed under the action of subsetting, i.e. if we let σ = {x0, x1, ..., xp}
be a p−simplex of K and τ ⊆ σ then τ is in K automatically. The most efficient procedure to build an ASC
from data is the Vietoris-Rips (VR) algorithm. This algorithm was first developed to define a homology theory
for arbitrary metric spaces. Thus, to effectively infer the topology of the transcriptional manifold M using the
VR algorithm, we just need our transcriptome data X and a metric d(, ). For all experiments in this work we
used the euclidean metric. The VR complex VR(X, ε) is constructed as follows:

VR(X, ε) = {{x0, x1, ..., xp} ⊂ X : d(xi, xj) ≤ ε for all i, j ≤ p}

i.e. V R(X, ε) is a family of subsets of X, abstract p−simplices, defined if all pairwise distances of p + 1
vertices are less than or equal to ε.

In summary, abstract simplicial complexes enabled the calculation of homology groups via simplicial homol-
ogy theory. The core of the homology calculations lie in the definition of a chain complex which we explain in
the following section.

4.2 Algebraic topology framework to compute homology

A chain complex is an algebraic structure that enables defining and calculating homology groups from simplicial
complexes. Formally, in the context of simplicial homology, a chain complex is a sequence {(Cp, ∂p)}p=0,1,...,n,
where Cp are abelian groups generated by linear integer combinations of p−simplices, and corresponding group
homomorphisms ∂p, the boundary maps, which encode how p−simplices are connected to (p−1)−simplices (SI).
In other words, the chain complex contains all the information to construct the simplicial complex by “gluing”
its building blocks. We denote the chain complex by:

...
∂p+1−−−→ Cp

∂p−→ Cp−1
∂p−1−−−→ Cp−2...

∂1−→ C0
∂0−→ 0 (1)

The most important property of this algebraic structure is that ∂p−1 ◦ ∂p = 0, i.e. the composition of two
consecutive boundary maps is equal to the zero map. This formalizes the geometric concept that taking the
boundary of a manifold (with boundary) yields a submanifold that is boundaryless. This immediately implies
that im∂p+1 ⊂ ker∂p.

Precisely this property allows us to define the n−th homology group Hn and the corresponding n−th Betti
number as:
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Hn = ker(∂n)/im(∂n+1) (2)

Bn = dim(Hn) = dim(ker ∂n)− dim(im ∂n+1) (3)

The geometric intuition of this property is that the boundary of a manifold has no boundary. For example,
the 1−dimensional homology will be equal to the number of cycles not coming from the boundaries of triangles.
To unravel this argument please note that 1−simplices are edges and 1−dimensional cycles are combinations
of edges that return to the node of origin, will be in the kernel of ∂1. Furthermore, edges of triangles present
in the simplicial complex would be in the image of ∂2. Thus subtracting the number of triangles (dim im ∂2)
from the number of cycles (dimker ∂1) will thus give us the number of 1−dimensional holes or loops. This idea
generalizes for high dimensional holes.

4.3 Identifying the topological signature of noisy data using persistent homology

To identify the topological signatures from our transcriptome datasets, we used persistent homology (PH) (20).
Persistence homology is a powerful tool for inferring the topology of a dataset that is robust to small noise
perturbations. In contrast, classical homology groups can be highly sensitive to noise. The idea of PH is to
build a family simplicial complexes by scanning across increasing radii in the VR complex, from which persistent
Betti numbers are computed. The Betti numbers that persist will be the essential topological features from the
data. We construct the filtration:

K0 ↪→ K1 ↪→ ... ↪→ Km (4)

whereKεi is the VR simplicial complex formed from the setX at scale εi, where for notational convenience we
let Ki = Kεi . Applying the homology functor to the above sequence, yields a sequence of homology groups (one
for each dimension n), its persistence module, connected by group homomorphisms which are pushforwards
of inclusion maps:

Hn(K0)
ι0,1∗−−→ Hn(K1)

ι1,2∗−−→ ...
ιn−1,n
∗−−−−→ Hn(Km) (5)

Where the asterisk denotes the function between homology groups. The sequence of homology groups
contains the topological features present at different radii. Note that if [γ] ∈ Hn(Ki) then ιi,j∗ ([γ]) = [ι(γ)] ∈
Hn(Kj), by definition of the induced maps on homology (SI).

The images of the pushforward inclusion maps are the persistent homology groups, that is:

Hi,j
n = im ιi,jn,∗ =

ker ∂i
n

im ∂j
n+1 ∩ ker ∂i

n

(6)

The corresponding n−th persistent Betti numbers are their corresponding ranks:

βi,j
p = dimHi,j

n (7)

In words, persistent homology groups consist of the homology classes of Ki still alive at Kj , and their
lifetime, or persistence is exactly j − i. Intuitively, as we increase the scale of the VR complex, holes can be
lost (for example when isolated points connect to each other β0 decreases) or gained (e.g. as edges connect to
form a loop β1 increases). In this way we can consider the image of the inclusion map to analyze the lifetime
of homological structures and their associated Betti numbers.

The term lifetime comes from the fact that we can characterize homology classes by when they appear and
cease (which is exactly what we’re interested in) : Let [γ] ∈ Hn(Ki), we say that the homology class is born
at Ki if [γ] /∈ imιi−1,i

n,∗ = Hi−1,i
n . Futhermore a homology class dies at Kj if it merges with a previously born

homology class exactly at Kj , i.e. ι
i,j
n,∗([γ]) ∈ im ιi−1,j

n,∗ = Hi−1,j
n and ιi,j−1

n,∗ ([γ]) /∈ imιi−1,j−1
n,∗ = Hi−1,j−1

n .
It turns out that the decomposition of the persistence module in terms if their births and deaths, i.e. its

persistence diagram, is unique up to isomorphism and completely characterizes the topology of the underlying
space. Practically, the persistence diagram can be represented in the plane as pairs (b, d) ∈ R2+, where b, d are
the births and deaths of each homology class. Persistent classes far from the diagonal will correspond to those
with long lifetimes, and are the classes with strong topological signature. We refer the reader to the review (41)
for an in-depth picture on the theory behind persistence homology.

We used the efficient implementation of Ripser in python, pyRipser, to perform our calculations.
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4.3.1 Computational scheme to build the chain complex

We use a bottom-up approach to construct the chain complex (Cp, ∂p) for a Vietoris Rips complex VR(X, ε).
Homology modulo 2, i.e. homology using algebra over Z2 is employed for our calculations. The coefficients for
p− chains represent presence or absence of specific simplices. Our methodology is a modification of the method
described in (42).

To initiate the construction, let a distance matrix D of size n × n, that corresponds to the metric space
(X, d), where n is the number of points in X. To obtain the 1 − skeleton, (i.e. the set o all 1 − simplices we
construct an adjacency matrix using Ã = D < 2ε. The matrix Ã will be an n × n symmetric binary matrix
corresponding to the underlying undirected graph.

To obtain C1 from A, we first remove its redundancy by computing its upper triangle A = triu(A). We
then get the list of 1−simplices by setting A to COO sparse matrix format, concatenating the nonzero rows
and columns. More generally we define the p−simplex matrix as follows: Let the simplex matrix Sp be a
(dimCp, p+ 1) matrix that contains the indices of each p−simplex in each of its rows.

Sp serves a representation of Cp. The boundary matrix ∂p is computed from Sp by computing all p+1 =
(
p+1
p

)
possible (p− 1) simplices one can form for each p−simplex and store each (p− 1)−simplex simplex in a binary
matrix precisely representing ∂p. In other words, for any given dimension p we use Sp to record in each column
of the boundary matrix ∂p the set of (p− 1)−simplices that each p−simplex gives rise to.

For p ≥ 2, to verify the existence of each p−simplex under the VR condition, we need to check that all its
(p− 1)−simplices are connected. To do this we define an auxiliary matrix Fp as follows:

Definition. Face A simplex τ is a face of σ if τ ⊂ σ. We say that σ is a coface of τ .
Definition. Face matrix Fp The p− face matrix Fp is defined as :

(Fp)ij =

{
1 if vi ∈ σp

0 otherwise
(8)

Hence the name face matrix: a vertex is naturally a face of a p−simplex if it is contained in the simplex.
Now for concreteness, consider the case when p = 2 (other cases are an easy extrapolation). Assume a vertex

j contains more than two incoming edges. For such a vertex, there will be more than two nonzero entries in its
corresponding column Aj in A. To know if that vertex j is contained in a 2−simplex it suffices to check if there
is an edge between any pair of incoming vertices. We can now view AT

j as a functional from C0 → Z. Thus,

given a column of F1 as input, AT
j returns the number of incoming vertices into vj contained in the edge. Thus

we can define the map AT ◦ Fp : C1 → Z that has the following property:

(ATFp)ij =

{
p+ 1 if σj is a coface of vertices connected to vertex vi

0 < x ≤ p otherwise
(9)

To reiterate, the value of entry (i, j) of ATFp is equal to p+ 1 if we form a p−simplex of the Rips complex
by concatenating the vertices composing simplex σi to vertex j. Checking where the condition holds gives a
simple algorithm to construct Sp for p ≥ 2. Note that Cp is generated by the simplices stored in Sp. Hence, we
can construct (Cp, ∂p) for any dimension as desired.

4.4 Calculating homology group representatives

To compute homology groups and Betti numbers we use the Smith Normal Form (SNF) decomposition of each
boundary map ∂p over Z2. More precisely, if we let ∂p be an m × n integer matrix, the SNF is a unique
factorization ∂p = UpDpV

−1
p with the following properties:

• Dp is an m× n diagonal matrix with ones in the diagonal.

• U ∈ GL(m,Z), V ∈ GL(n,Z), i.e. U and V are unimodular (with det = ±1 ), invertible, integer matrices.

• The number r of ones will be the dimension of im∂p

• The last n− r columns of V constitute a basis for ker∂p.

The proof of these properties is provided in the appendix. With the above result, we can now easily calculate
the Betti numbers. However, since we’re interested in the representatives of homology groups, we need to get
the chain groups in the same bases.
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Let D be the SNF of a matrix A. Then define D∗ to be the matrix which is the result of permuting the
columns of the matrix D so that the diagonal block is in the upper right corner, i.e. of the form :

D∗ =

0
d1 . . . 0
...

. . .
...

0 . . . dk
0 0

 (10)

In this sense, we’re thinking of D∗
i to be the result of applying a change of basis to the boundary matrix ∂i

to get D∗
i = U−1

i ∂iViPi.
Accordingly, since operations on columns on ∂i, as a change of basis operation, correspond to operations on

rows on ∂i+1, we have the following definition: we say that ∂̃i+1 is the matrix into which ∂i+1 is carried after
applying the operations to diagonalize ∂i using SNF. That is ∂̃i+1 = P−1

i V −1
i ∂i+1. Note that Pi, Vi act on the

rows of ∂i+1.
In a more succint description, let Ṽi = ViPi, then we define:

D∗
i = U−1

i ∂iṼi (11)

∂̃i+1 = Ṽi
−1

∂i+1 (12)

It’s not hard to show that the last ri rows of ∂̃i+1 consist of zeros, since Smith factor matrices and permutation
matrices are isomorphisms we have that D∗

i ◦ ∂̃j+1 = 0 (SI). The importance of this result is that by changing
bases on a boundary matrix i to those specified by the previous matrix following SNF decomposition, we actually
advance the SNF of the (i + 1)−th matrix and work with the same basis, and come closer to computing the
representative of homology.

To do this assume that the SNF of ∂i is available in the form D∗
i = U−1

i ∂iṼi.

Change basis to map ∂i+1 7→ ∂̃i+1, and decompose the matrix using SNF to get D′
i+1 = U−1

i+1
′∂̃i+1V

′
i+1 =

(U−1
i+1

′Ṽi
−1

)∂i+1V
′
i+1.

We then have that Bi = ṼiU
′
i+1 is a common basis for the ker∂i and the im∂i+1. In particular the columns

with index {(dim im∂i+1) + 1, (dim im∂i+1) + 2, ...,dimker∂i} of Bi constitute representatives of the i−th ho-
mology group (43).

We thus have the following algorithm to compute homology groups:

Algorithm 1: Homology group using SNF

input : Ṽj−1, Pj−1, ∂j ,dimker∂j−1,SNF(), rank()
output: Hj

∂̃j = Ṽj−1∂j
D′

j+1, U
′
j+1, V

′
j+1 = SNF(∂̃j)

Bj = Ṽj−1Uj+1

ker∂j = Bj[:, : dimker(∂j)]
dim im∂j+1 = rank(D′

j+1)
βj = dimker∂j − dim im∂j+1

Hj = ker∂j [:,−βj ]

4.5 Using homology generators to investigate gene expression

We exploited the homology generators to identify transiently expressed genes along complex topological features.
Our methodology is based on the property that Laplacian eigenvectors encode geometrical properties of a
manifold (25). Furthermore, eigenvectors can be interpreted as vibration modes, with increasing eigenvalue
corresponding to an increasing spatial frequency. We thus extracted transient genes by asking which genes had
the highest mutual information w.r.t. the first nonzero eigenvectors of the Laplacian.

4.6 Single cell RNAseq data pre-processing

Single-cell RNA seq count matrices were pre-processed using a standard pipeline. First, we filtered out cells
with less than 500 detected genes and 1000 UMIs. To minimize variability in the total number of reads per cell
the expression values were normalized using the equation

gi = ln(
gi × 104∑

(gi)
+ 1) (13)
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in order to get normalized counts roughly equivalent to those expected in a single-cell.
In addition, we identified the highly variable genes using the coefficient of variation method. Finally, we

reduced the dimensionality of the transcriptome by projecting the transcriptome to the first 100 principal
components facilitating efficient computation.

4.7 Second finite difference method to identify persistent 0−homology

A parsimonious way to retrieve the most prominent 0−homology of a dataset is to select the number of homology
features that persist the longest, and that are well separated from the rest of the persistent homology features.
In this sense, we would retrieve connected components that are well separated and that have a much larger
scale than their possible subclusters. The 0−th homology persistence diagram has the special characteristic
that all homology features are born at the start of the filtration. Thus the lifetime equals to the death time
for all persistent 0−homology features. This induces a natural order between the 0−homology features, and
if we order the lifetimes in descending order, we can naturally form a monotonically decreasing sequence. In
other words we would have a sequence {li}i=0,...,n, where li denotes the lifetime of the i−th persistent homology
group, and furthermore li > li+1. If we let di be the difference between consecutive ordered lifetimes, we would
have that di = li − li−1 ≤ 0. We can thus form a sequence of differences {di}i=0,...,n−1, all negative. Therefore,
we can get the desired number of prominent persistent homology features by checking when does the difference
between consecutive di’s, i.e. ddi = di − di−1. We thus define the parsimonious 0−homology as :

0− homology = argmaxi({ddi}) (14)

which is equivalent to answering the question: what is the index of the largest gap between consecutive
lifetimes of 0−homology features.

4.8 Bootstrap permutation test to quantify significance of topological signatures

We used a bootstrap permutation test using a bifurcating tree as a null topology to quantify if the persistent
homology signatures could be explained by random chance. To do this we employed difference of maximal
lifetime between a test dataset and a null hypothesis dataset. Let the lifetime of a persistent homology class be
lHn

i,X = εHn
ideath

− εHn
ibirth

where i is the index of the homology class in the filtration.
Our statistical test is based on the following hypotheses:

1. H0: max{lHn

Xnull
} = max{lHn

Xtest
}

2. H1: max{lHn

Xnull
} < max{lHn

Xtest
}

We thus define our test statistic as follows :

θ̂ = max{lHn

Xtest
} −max{lHn

Xnull
} (15)

To simulate the null hypothesis, we concatenate the null and test datasets, shuffle, partition, and compute
the test statistic θ̂(b) for each bootstrap replicate. We performed B = 104 bootstrap replicates of this test and
report the P-value as the fraction of simulations in which θ̂(b) is more extreme than the test statistic θ̂. In
order for the datasets to be in the same scale, we use the singular values of the test data to scale the principal
components of the null dataset prior to all computations.

Additionally, we employed the same test by replacing the maximum, considering the k-th order statistic.
This enabled generalizing our test for the case when there is more than one persistent feature.

5 Supplementary Notes

5.1 Benchmarks of topological statistic tests using synthetic data

In order to evaluate the effectiveness of our topological analysis, we conducted simulations of scRNAseq datasets
incorporating predetermined data topologies and subjecting them to our topological statistical test. For the
purpose of our simulation, we used dyngen, a method that uses the Gillespie algorithm and real data statistics
(such as capture rates and library sizes) to mimic the acquisition process of scRNAseq data.

To establish a baseline, we a null hypothesis dataset with a simple bifurcation tree topology. To assess
the performance of our method, we performed a positive control experiment with the cyclic gene regulatory
topology, and found a significant difference compared to the max H1 lifetimes of the control bifurcation dataset
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Figure S1: Benchmarking TopGen using a known gene regulatory network. (A) Gene regulatory network used
for benchmark experiments. (B) Dyngen data has Poisson statistics. Observed slope of logµ vs logCV is −0.67
which is close to the predicted −0.5 of Poisson statistics. (C) Persistence diagram using only housekeeping genes.
Note that no salient persistent 1−homology classes are present. (D) Left: Eigenvectors of the 0−Laplacian of
homology generator. Middle: TopGenes with highest mutual information for the Laplacian eigenvectors on the
left. Please note that the gene expression patterns are transient. Right: Examples of housekeeping genes; note
that their expression is spurious or constant.

Figure S2: Benchmarks of topological statistic tests using synthetic data. We performed 3 control experiments
to evaluate the efficacy of our statistical test. For all experiments we used a simple bifurcation tree as a
null hypothesis dataset. For a positive control, we tested a cyclic dataset as a test dataset and found that
the difference between maximal lifetime of H1 classes was significant (P-value < 10−4). In contrast a linear,
another binary tree, and a trifurcation datasets where all deemed to have a non-significant difference between
the maximal H1 classes (P-values = 0.21, 0.54, 0.4 respectively).
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TFS expressed in generator 1

(A) (B)

Figure S3: Orthogonal transcription factor code of cnidocytes in N. vectensis (A) Visualization
of transcription factor expression along the homology generators. (B) Transcription factors are orthogonally
expressed on the homology generators.

(A) (B)

Figure S4: Worm homology generator is not caused by cell cycle alone (A) Gene expression of cell
cycle genes is spurious along homology generator. (B) Persistent diagram using cell cycle genes displays no
persistent H1 homology class.

18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2023. ; https://doi.org/10.1101/2023.07.28.551057doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.28.551057
http://creativecommons.org/licenses/by-nc-nd/4.0/


(A) (B)

(C)

Figure S5: H1 class can be destroyed using dimensionality reduction methods. (A) The input data consists of
a circle after a diffeomorphism (top). Persistence diagram of the morphed circle (bottom). Note the presence
of a persistent H1 homology class (green points). (B) Results using tSNE. The rows represent different choices
for the perplexity parameter (p = 2, 5, 15, 30). Please note that using perplexity= 15 we could preserve the H1

homology class (third row, first column). (C) Results using UMAP. The rows represent different choices for the
number of neighbors parameter (p = 2, 5, 15, 30).
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(C)

Figure S6: H2 class can be destroyed using dimensionality reduction methods. (A) The input data consists of
a sphere after a diffeomorphism (top). Persistence diagram of the streched sphere (bottom). Note the presence
of a persistent H2 homology class (orange points). (B) Results using tSNE. The rows represent different choices
for the perplexity parameter (p = 2, 5, 15, 30). Note that all replicates fail to preserve the topology of the
sphere. (C) Results using UMAP. The rows represent different choices for the number of neighbors parameter
(p = 2, 5, 15, 30). Please note that, similar to tSNE, all replicates fail to preserve the topology of the sphere.

(A) (B) (C)

Figure S7: A simple genetic circuit can generate an H2 class. (A) Phase space of the oscillator proteins in the
dynamical system. (B) Time series of dynamical system. (C) Persistence diagram of samples from the phase
space. Note that a persistent H2 class is present (red points).
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Figure S8: Seam cell loop of C. elegans can be destroyed with UMAP

(P-value < 10−4). We also performed negative control experiments featuring trifurcation, linear trajectory and
binary tree topologies. Our statistical test revealed no significant differences in these datasets: trifurcation
P-value = 0.4, linear trajectory P-value = 0.21, binary tree P-value = 0.54 (Fig S1).

Finally, to verify that the test had low false discovery rate, we asked if the second most prominent H1 feature
of the the dyngen cyclic topology was significant. For this case, we found that a P-value = 0.24, indicating that
the test identifies a single significant topological feature as expected.

For all our experiments, used 104 permutation replicates and 100 principal components for all of our exper-
iments. These parameters were consistently applied across all experiments to ensure consistency and reliability
of our results.

5.2 Why does tSNE and UMAP break topology?

In this section we give an explanation as to why tSNE and UMAP can break topology. For more comprehensive
studies analyzing these algorithms we please refer to [(44), (45)]. Both tSNE and UMAP are algorithms for
solving an optimization problem. It turns out a term in objective function, in both cases, optimizes for breaking
the topology. Let’s begin by using some notation: let X ∈ M(m,n) be an m × n matrix of data, where each
point x ∈ Rn belong to metric space (X, d), and that d is the euclidean distance. In general, dimensionality
reduction methods aim to find a matrix Z ∈ M(m, d) with nice properties (where d << n ). The approach
for both methods is to use a proxy of the measure of points being close in both the high and low dimensional
spaces, and to minimize the distance between the measures. In both cases, up to affine transformations, the
probability that two points in the high-dimensional space are close together will be denoted as pij , and qij for
the low-dimensional space. Both methods use modifications of the classical Gaussian affinity :

α(xi,xj) =
exp− ||xi − xj||2∑
i ̸=j exp− ||xi − xj||2

(16)

And let the affinities in the high and low dimensional spaces respectively be :

pij ≈ α(xi,xj), qij = α(zi, zj) (17)

tSNE aims to minimize the Kullback-Leibler divergence between p and q:
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LtSNE =
∑
ij

pij ln

(
pij
qij

)
(18)

where the optimization can be done using gradient descent using ∂LtSNE

∂zij
. Let’s expand the loss function:

LtSNE =
∑
ij

pij ln
pij
qij

(19)

=
∑
ij

pij ln pij − pij ln qij (20)

≈
∑

−pij ln qij (21)

=
∑
ij

(−pij ln exp(−||zi − zj)) ||+ pij ln
∑
i ̸=j

exp (−||zi − zj||) (22)

=
∑
ij

pij ||zi − zj||) + pij ln
∑
i ̸=j

exp (−||zi − zj||)

 (23)

in the third line the approximation is valid since when computing the gradient the term pij ln pij will be
eliminated since it only depends on the original data X, and not on the low-dimensional representation.

From the last formula we can see that the second will be minimized when ||zi − zj||2 is large, and hence is
called the “repulsive” term in the literature (44). The repulsive term explains the lack of topological preservation
of tSNE. In contrast, the first term, also called the “attractive” term, actually is topology-preserving. To
understand why the attractive term doesn’t modify the inherent topology of the low-dimensional representation,
one has to note that the first term corresponds to the Laplacian embedding: its solution is exactly equal to
the smallest nonzero eigenvectors of the Laplacian. It is well known that the graph Laplacian encodes the
zero-dimensional homology: the dimension of the kernel is equal to the number of components of the graph. It
turns out that the first graph Laplacian eigenvectors also encode the global geometry of the data (? ). For a
theoretical guarantee we have to look at the higher-order combinatorial Laplacians (? ):

Li = ∂T
i ∂i + ∂i+1∂

T
i+1 (24)

Note that in this context the graph Laplacian will be L0. The kernel of the n−th combinatorial Laplacian
will be exactly the n−th homology group (? ).

On the other hand, UMAP has the following objective function :

LUMAP =
∑
ij

pij ln qij + (1− pij) ln (1− qij) (25)

Note that the first term of the above objective function is exactly equal to (22). The second term will also
have attractive and repulsive terms by symmetry. Thus UMAP has the same topological problem as tSNE.
Furthermore, when using the Laplacian embedding as initialization, UMAP will satisfy the attractive terms
exactly and will thus only modify the low-dimensional representation by repulsive forces.

5.3 Experiments of topological distortion of dimensionality reduction methods

After verifying that there is no strong topological-preservation guarantee mathematically, we set out to test
the effect of the dimensionality reduction methods tSNE and UMAP on topology experimentally. Our effort
was to show the worst-case scenario of both algorithms to prevent the misinterpretation of the results of these
algorithms. To do this, we decided to use the 1 and 2 spheres in order to visualize the results. The experiments
were designed to investigate the behaviour of the algorithms as a map between topological spaces f : X → Y .
Specifically, we wanted to verify if the algorithms could preserve the topology. We reasoned that in real datasets
we would not find these platonic manifolds, and thus we decided to apply a homeomorphism prior to applying
the algorithms.

For the circle we applied the following homeomorphism:

u = r + x+
1

5
exp(x) (26)

v = r + y +
1

5

(
x3 − exp(−y)

)
(27)
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and for the sphere:

u = 2 +
1

100
exp(x) (28)

v = y (29)

z = z (30)

(31)

To verify that the above functions are homeomorphisms one can easily check that it is a diffeomorphism by
noting that the Jacobian is nowhere singular.

Based on a previous report (14), we decided to vary the perplexity parameter.
Furthermore, previous studies have shown that the perplexity parameter is the strongest control parameter

in tSNE for its capacity to preserve or modify the topology of data. We decided to vary the perplexity parameter
for tSNE and the number of neighbors for UMAP. Since the perplexity is the effective number of neighbors, this
makes the runs comparable across both algorithms. For both Fig. S5 (B) and Fig. S6 (B) the rows represent
different choices for the parameter (p = 2, 5, 15, 30) (perplexity for tSNE, neighbors for UMAP).

For the case of the circle we found that only perplexity= 15 we could preserve the H1 homology class (third
row, first column). Furthermore, we found that for all choices of perplexity, there were cases were UMAP could
not accurately preserve the topology of the circle. On the other hand, the case of the sphere was more extreme,
as both of these algorithms completely vanished the H2 homology class of the sphere (Fig S6). As a whole there
results provide experimental evidence that both UMAP and tSNE could prohibit the discovery of non-trivial
topologies in biological datasets.

5.4 A set of oscillatory circuits can generate 2−homology

The dynamical system is thus described by the following set of six differential equations:

dx1

dt
=

β

1 + (x2/κ)n
− γx1 (32)

dx2

dt
=

β

1 + (x3/κ)n
− γx2 (33)

dx3

dt
=

β

1 + (x3/κ)n
− γx3 (34)

dy1
dt

= −k1y1 (35)

dκ

dt
= k1y1 − k2κ (36)

dy2
dt

= k2κ (37)

and is thus a modification of the classic repressilator model (46) where the repressor binding strength κ
is variable. More specifically, the repressor binding strenght dynamics varies as a simple chemical reaction
y1 → κ → y2. We performed simulation of this dynamical system and computed its persistent homology. We
found that this system contains a persistent 2−homology class and is thus topologically a horn torus (Fig S7).
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