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ABSTRACT

Fluctuations in physical arousal occur constantly along the day and become particularly pronounced at ex-1

treme states such as deep sleep or intense physical exertion. While changes in arousal are thought to affect2

cognitive control, it has been suggested that cognitive control is resilient during the drowsy state as a result of3

neural compensatory mechanisms. Here, we investigate the higher end of the arousal spectrum by looking at4

the modulatory effect of high arousal on behavioural and neural markers of cognitive control. We predicted that5

preserved behavioural measures of cognitive control under high arousal would be accompanied by changes6

in its typical neural correlates. We conducted an electroencephalography study in which 39 expert cyclists (377

males, 2 females) were presented with an auditory stimulus-response conflict task while cycling on a station-8

ary bike. Participants performed two experimental sessions on different days: one at low intensity and one9

at high intensity pedalling. Consistent with our predictions, we found no behavioural difference in cognitive10

conflict measures between the two exercise conditions. However, the typical midfrontal-theta power signature11

of cognitive control was no longer reliable at high-intensity exercise. Similarly, time-frequency multivariate de-12

coding failed to decode stimulus conflict. On the other hand, we found no difference between intensity levels in13

whole-brain connectivity measures. Therefore, we suggest that the human cognitive control system is resilient14

even at high arousal states and propose that the dissociation between behavioural and neural measures could15

indicate the activation of neural compensatory mechanisms as a response to physiological pressure.16

SIGNIFICANCE STATEMENT17

Effects of spontaneous physiological changes on brain and cognition have traditionally been studied in states of de-18

creased arousal. However, virtually no research has been conducted on the higher end of the arousal spectrum. In this19

study, participants performed an auditory conflict task while cycling at low and high intensity. Behavioural performance20

was robust in both conditions. However, changes in the typical univariate and multivariate signatures of cognitive control21

induced by arousal suggest a reconfiguration of the neural processes supervising cognitive control during heightened22

states of strain.23
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INTRODUCTION24

Fluctuations in physical arousal occur naturally throughout the day. These spontaneous fluctuations unfold in a nonlinear25

manner (Bernaola-Galván et al., 2017, Ogilvie and Wilkinson, 1984) and become severe at extreme states such as deep26

sleep (Goupil and Bekinschtein, 2012) or intense physical exertion (Schmit and Brisswalter, 2020), modulating cognitive27

processing (Ciria et al., 2021, McMorris et al., 2011, Noreika et al., 2020, Wickens et al., 2015). In particular, it has been28

shown that cognitive control (i.e., the ability to adaptively adjust cognitive processes to inhibit distracting information29

while maintaining task relevant information) is markedly impacted as the level of arousal decreases (Cain et al., 2011,30

Canales-Johnson et al., 2020, Goupil and Bekinschtein, 2012, Tucker et al., 2010). However, the majority of research31

on cognitive control has focused on low arousal fluctuations, with limited investigation into its effects under high arousal32

conditions. In the current study, we aim at investigating the modulatory effect of high arousal on behavioural and neural33

markers of cognitive control. To do so, we implemented an auditory conflict task combined with electroencephalography34

(EEG) recording in healthy human participants under a natural state of high arousal (i.e. physical stress via exertion).35

The interaction between heightened arousal states (physical exercise) and cognitive performance in complex tasks does36

not appear to follow a linear relationship (Ciria et al., 2021) and varies according to several variables such as the intensity37

of the exercise and the characteristics of the task. Some studies have reported better performance at medium intensity38

and worst at high intensity exercise (Chang et al., 2012, González-Fernández et al., 2017, Lambourne and Tomporowski,39

2010, Verburgh et al., 2014). However, in the specifics of cognitive control tasks, physical arousal induced by exercise40

does not appear to hinder performance during acute exercise even if at high intensity (Chang et al., 2012, Ciria et al.,41

2018, Davranche et al., 2015, Moreau and Chou, 2019). This is consistent with observations in the low end of the42

spectrum (drowsiness and sleep), which has received much more attention in the study of the interaction between43

arousal and cognitive control. In fact, the ability to resolve cognitive conflict is not hampered by sleep deprivation44

and circadian rhythm (Bratzke et al., 2012, Cain et al., 2011, Canales-Johnson et al., 2020, Sagaspe et al., 2006),45

similarly to what observed during acute exercise. Interestingly, in the case of reduced arousal, even if behavioural46

performance in conflict tasks appears to remain intact, univariate midfrontal (MF) theta and multivariate (congruency47

decoding) measures of cognitive conflict are no longer noticeable (Canales-Johnson et al., 2020). Such discrepancy48

between behavioural and neural measures suggests that networks associated with the resolution of cognitive conflict49

may undergo reconfiguration when transitioning towards strained states.50

Does the neural reconfiguration observed during the resolution of cognitive conflict under decrease alertness occur51

at the opposite end of the arousal spectrum (i.e., high arousal)? In this pre-registered study (Avancini et al., 2022),52

participants performed an auditory Simon task (Simon and Rudell, 1967) during two bouts of aerobic exercise (cycling)53

at low and high intensity. We hypothesized that high-arousal would not affect cognitive control at the behavioural level54

but it would disrupt univariate MF theta and multivariate spectral measures of cognitive conflict, similar to the case of55

drowsiness. In other words, we expected to gather evidence that under high intensity strained states the networks56

associated with conflict processing undergo reconfiguration.57
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MATERIALS AND METHODS58

Participants59

Thirty-nine healthy subjects (2 females; age-range= 18-50 years; mean age = 30.55 years; SD age = 10.65) were60

included for analyses . Initially, fourty participants were recruited, however one participant was excluded because of61

an excessively low heart rate at high-arousal. Participants were recruited by word of mouth and written advertisement62

amongst cycling and triathlon sport clubs, and received monetary compensation for their participation. Only expert63

cyclists were included in the study. They were required to have a minimum of three years experience and to train at64

least three times a week. All participants had normal or corrected-to-normal vision, normal hearing, no history of head65

injury or physical and mental illness. This study was approved by the ethical committee of the University of Granada66

(978/CEIH/2019). Written informed consent was obtained from all participants during the first experimental session,67

after explanation of the experimental protocol.68

Study design69

To test the effect of arousal on the resolution of cognitive conflict, we adopted a 2 × 2 factorial design with arousal70

level (low/high) and the congruency of the current trial (congruent/incongruent) as factors. We also investigated the71

moderating effect of previous trial congruency (conflict adaptation). We adopted a 2× 2× 2 design with arousal, current72

trial congruency, and previous trial congruency (pre-congruent/pre-incongruent) as factors. Note that for aiding inter-73

pretation, the factor congruency was in fact reduced to a measure of conguency effect by subtracting the signal elicited74

by congruent trials from the signal elicited by incongruent trials. All factors of both study designs were within-subjects.75

Analyses on conflict adaptation were run on behavioural data only as an additional sanity check.76

Experimental task77

Participants performed an auditory version of the Simon task (Simon and Rudell, 1967). Recordings of the spoken78

words ”left” and ”right” (”izquierda” and ”derecha” in Spanish) were played monoaurally through in-ear earphones. In79

congruent trials (50% of the trials), the stimulus was presented at the physical location corresponding to the content80

of the word (i.e. ”left” played to the left eat, ”right” played to the right ear). In incongruent trials, physical location and81

content did not correspond (i.e. ”left” played to the right ear, ”right” played to the left ear). Participants were instructed82

to respond according to the content of the word, while ignoring its physical location. Response was given with the left83

and right thumbs by pressing one of two buttons that were attached to the bike handle (Figure 1A). Speed and accuracy84

were stressed. Interstimulus interval (ITI) between participant’s response and the next stimulus onset was a random85

number between 1500 and 2000 ms. If the participant did not respond, the ITI began 1900 ms after stimulus onset.86

Practice and testing blocks were fixed in time duration, therefore the total number of trials depended on the participant’s87

speed. The practice block lasted 30 s and on average participants responded to 12 trials (SD = 1). The testing block88

lasted 30 min without breaks and on average participants responded to 766 trials (SD = 41). A beep sound was played89

every 10 min to inform the participant of the elapsed time.90

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.07.31.550835doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.31.550835
http://creativecommons.org/licenses/by-nc-nd/4.0/


Procedure91

Testing took place over three sessions: the first was always a maximum effort test, the second and third were EEG92

experimental sessions. Upon arrival for the effort test, participants were informed on the overall experiment including93

that one of the subsequent EEG sessions would have been at high-intensity and one at low-intensity. Then, they gave94

written consent. The order of the EEG sessions was counterbalanced across participants and it was not communicated95

until the first EEG session. Participants were instructed not to perform intense exercise during the 48 hours preceding96

any of the three sessions. The maximum effort test took place about one week before the first EEG session, while the97

EEG sessions were 48 to 72 hours apart to avoid fatigue effects. To accommodate for participants life commitments,98

four participants had more than 72 hours in between EEG sessions, and three only had 24 hours. In the case of the99

three latter, the low-intensity session was done first. Finally, to control for circadian rhythms, participants performed the100

two EEG sessions during the same time of day.101

Figure 1: Task and procedure.
(A) Participants were presented with the words ”left” and ”right” in their left and right ear. The task required to respond to the
content of the word by pressing a button with their right or left thumb while ignoring the stimulus spatial location. Stimulus
content and spatial location could be either congruent or incongruent. (B) The session started with a seated 10 min resting
state. After that, participants mounted on the bike and warmed up for 5 min, during which a 30 s practice block was presented.
Then, the experimental task was presented for 30 min during which participants had to pedal without stopping. In the low arousal
condition, the resistance of the bike was set at 10% of the maximum W that the participant had moved in the effort test. In the
high arousal condition, the resistance was set at 80%. The session ended with a seated 10 min resting state. Note that in this
paper resting state data are not analysed.

Maximum effort test102

The maximum effort test consisted of an incremental cycle-ergometer test (ergoline GmbH, Germany) to confirm par-103

ticipants’ fitness and individually adjust the exercise intensity in the following EEG sessions. Participants were fitted104

with a wireless 12-lead PC ECG (AMEDTEC Medizintechnik Aue GmbH, Germany) to record heart rate (HR) and with105

a gas analyser mask (Geratherm Respiratory GmbH, Germany) to measure oxygen consumption (VO2). Participants106

were informed about the protocol and instructed to keep pedalling at above 60 rpm until they reached full exhaustion107

and could no longer keep going. The protocol started with 5 min warmup at 120 watts (W) immediately followed by the108
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incremental test of 20 W every 3 min.109

For each individual participant, the power output in W corresponding to when they reached their maximum oxygen110

consumption was used as marker to calculate the intensity of the following EEG sessions.111

EEG sessions112

Upon arrival, participants were seated in a comfortable chair in an electrically shielded room, and were fitted with a 64-113

channels EEG cap (EASYCAP GmbH, Germany) and three ECG electrodes (Ambu A/S, Denmark). During electrodes114

placement, participants received task instructions in written form. The session started with 10 min resting state. Note that115

resting state data were collected for a different study and therefore are not included in the manuscript. Then, participants116

mounted on a stationary bike (SRM International SRM GmbH, Germany) and fitted with a heart rate monitor SRM HR117

(SRM International SRM GmbH, Germany) and in-ear earphones (Hyperx, HP Inc., USA). Participants were reminded118

to respond as accurately and fast as possible and to keep a cadence of 60 rpm or above during testing. Participants119

were first given 5 min to warm up on the bike. In the warmup before the low-arousal session, the resistance of the120

bike was set at the minimum load possible while preventing the wheel to spin freely. For the high-arousal session, the121

warmup was incremental, with resistance increases of 20 W every minute with the last step being the 80% of the W at122

VO2max. During the warmup of the first session, the practice block was presented. Then, the experimental test began123

during which participants performed the auditory Simon task while pedalling (Figure 1B). In the low-arousal session,124

the resistance of the bike was set at the minimum load and in the high-arousal session at 80%. Given the importance of125

finishing the session and the heavy physiological demand of the high-arousal session, W were adjusted manually if the126

participants’ cadence dropped below 60rpm or if their HR exceeded the 90% of their HR max as measured during the127

effort test. The resistance of the stationary bike was controlled with Gobat-Software (Magnetic Days O.R.F. s.r.l., Italy).128

W output and HR were recorded with SRM powercontrol 8 (SRM International SRM GmbH, Germany). The session129

ended with 10 min resting state not included in the current manuscript. Stimuli were presented using PsychToolbox130

(Kleiner et al., 2007) software on a Windows computer.131

Behavioural data analysis132

The first trial of each session, incorrect responses, omissions and responses faster than 200 ms were removed. Analy-133

ses were conducted on both reaction times (RT) and accuracy (ACC). To test the conflict effect, we run 2 (arousal level)134

× 2 (congruency) repeated measure ANOVAs. Post-hoc planned comparisons corrected for multiple comparisons were135

conducted comparing congruent vs incongruent in low-arousal and high-arousal. To test the conflict adaptation ef-136

fect, we run 2 (arousal level) × 2 (pre-congruency) repeated measure ANOVAs with the conflict effect (incongruent137

minus congruent) as dependent variable. Post-hoc planned comparisons corrected for multiple comparisons compared138

pre-congruent vs pre-incongruent in low-arousal and high-arousal. In addition to the frequentist approach, we also139

performed the correspective bayesian ANOVAs and planned comparisons.140
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EEG recording and preprocessing141

64-channel EEG data sampled at 1000 Hz and referenced to FCz according to the extended 10-20 system were col-142

lected using the actiCHamp amplifier and Brain Vision software (Brain Products GmbH, Munich, Germany). Electrode143

impedances were kept below 10 kΩ. EEG preprocessing was conducted using custom MATLAB scripts, the EEGLAB144

(Delorme and Makeig, 2004), and FieldTrip (Oostenveld et al., 2011) toolboxes. Continuous data were dowsampled145

to 500Hz, notch-filtered and band-pass filtered 0.5 Hz-90 Hz. Bad channels were detected using joint probability with146

a threshold set at ± 3.5 SD. Independent component analysis was then run on good channels. We used the ICLabel147

EEGLAB plugin to identify IC components that were classified as having above 80% probability to be generated by148

eye-movements, muscle, or heart activity. To avoid the effects that filtering can have on multivriate pattern analysis149

classification (MVPA; van Driel et al., 2021), those IC were then rejected from unfiltered data downsampled at 500Hz.150

The signal was then rereferenced to the average and bad channels were interpolated. The continuous recording was151

epoched between -1500 and +2000 ms relative to stimulus onset. The epochs corresponding to those trials that had152

been removed from behavioural data were rejected. To further clean from eye movements and muscle activity, we153

rejected abnormal spectra epochs whose spectral power deviated from the mean by ±50 dB in the 0–2 Hz frequency154

band and by +25 or −100 dB in the 20–40 Hz frequency band. After trial rejection, an average of 710.2 (SD = 89.199)155

trials per participant were retained in the high-arousal condition and an average of 713.05 (SD = 82.817) per participant156

were retained in the low-arousal condition.157

EEG time-frequency analysis158

Epochs were grouped based on current trial congruency. Time-frequency decomposition was run using FieldTrip (Oost-159

enveld et al., 2011). Morlet wavelets of 3 cycles were adopted to conduct trial by trial time-frequency decomposition.160

The signal was decomposed between 2 and 30 Hz in linear steps of 2 Hz. The wavelet slid from -400 to 1250 ms161

(relative to stimulus onset) in steps of 10 ms. Then, the epochs were transformed into decibels (dB) and normalized to162

a baseline of -400 to -100 ms relative to stimulus onset. For each participant, epochs were averaged according to the163

two trial types. Then, the signal corresponding to the MF region of interest (ROI) was selected and averaged across164

electrodes (C1, Cz, C2, FC1, FCz, FC2, F1, Fz, F2. See Figure 3A). We obtained the time-frequency conflict effect at165

the participant level by subtracting the signal to congruent trials from the signal to incongruent trials. This allowed us to166

use cluster-based permutation testing (Oostenveld et al., 2011) to directly test the interaction between congruency and167

arousal level by comparing the conflict effect between high- and low- arousal. For the cluster-based permutation tests,168

the Monte Carlo method was implemented with 1000 iterations and the alpha threshold at the cluster level was set at169

0.05. The test were run on all frequencies and timepoints between -200 ms and 1200 ms. To evaluate the effect, we170

used dependent samples t-statistic with alpha at 0.05.171

EEG multivatiate spectral decoding172

Multivariate spectral decoding was applied on the time–frequency data. Multivariate analysis increase sensitivity and173

allows to query how stimulus features are processed at different levels of arousal. To do so, we used the ADAM toolbox174
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(Fahrenfort et al., 2018) which has been developed to specifically implement Multivariate Pattern Analysis (MVPA) on175

EEG data. We input the raw data which were first downsampled to 64 Hz and then converted to time-frequency directly176

by the ADAM toolbox using default options. Continuous data were epoched between -1500 ms to 2000 ms and in the177

frequency domain were decomposed between 2 Hz and 30 Hz in steps of 2 Hz. To avoid biased decoding, we balanced178

the number of trials between conditions per state of arousal.179

We performed three separate decoding analyses taking current trial congruency (congruent/incongruent), content (”right”/”left”),180

and physical location (right/left) as classes 1. 10-fold cross-validation was performed applying a backward decoding al-181

gorithm. Linear discriminant analysis (LDA) was used to discriminate between stimulus classes, then classification182

accuracy was computed as the area under the curve (AUC). Finally, AUC scores were tested per time point and fre-183

quency bin with double-sided t-tests against a 50% chance level across participants. To control for multiple comparisons,184

t-tests were conducted with cluster-based permutations with alpha 0.05 and 1000 permutations.185

weighted Symbolic Mutual Information186

We quantified long-range information sharing between electrodes by means of weighted symbolic mutual information187

(wSMI; Imperatori et al., 2019, King et al., 2013, Sitt et al., 2014). The wSMI has the advantage of making a rapid and188

robust estimation of the entropy of the signals, detecting nonlinear coupling while discarding the spurious correlations189

between signals arising from common sources. For each trial, the EEG signal was transformed into a sequence of190

discrete symbols. Such transformation depends on the length of the symbols k and their temporal separation τ . We191

chose a kernel size (k) of 3, τ values of 32 ms to obtain sensitivity to frequencies spanning the theta band (4–9 Hz).192

For each pair of transformed signal, the wSMI was estimated by calculating the joint probability of each pair of symbols.193

The joint probability matrix was multiplied by binary weights to reduce spurious correlations between signals. For pairs194

of identical symbols that could be elicited by a common source, and for pairs of opposite symbols that could reflect the195

two sides of a single electric dipole, the weights were set to zero. wSMI was calculated between each MF ROI electrode196

and every other electrode outside the ROI. We discarded from the analysis the wSMI values within the ROI so that to197

evaluate only information integration between distant electrode pairs. The timewindow where we applied the wSMI was198

chosen based on the significant cluster representing the MF theta frequency interaction.199

Statistics200

Statistical analyses were run with MATLAB 2019b and R version 4.2.1. Bayes factors were calculated with the R package201

BayesFactor 0.9.12.4.4 and are reported as the degree of evidence for the alternative over the null hypothesis (BF10),202

with the null hypothesis being the denominator and the prior scale set to r = 0.5. Hypotheses and analyses plan had203

been preregistered prior to data collection (Avancini et al., 2022) 2.204

All data and analysis scripts are available at the OSF preregistration page https://osf.io/rdnmf.205

1Content and physical location decoding had not been preregistered. However, they follow the methodology of (Canales-Johnson et al., 2020)
2Please note that we expected the behavioural conflict adaptation effect results to follow the same pattern of those of the conflict effect, consistently

with previous literature (Canales-Johnson et al., 2020). The fact that the preregistered hypothesis on the behavioural conflict adaptation effect says
otherwise, is a genuine mistake made at the time of the drafting of the preregistered report.
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RESULTS206

Bike and Physiological measures207

During the effort test, participants reached a mean maximum VO2max of 3.374 l/min (SD = 0.478), a mean maximum208

HR of 180.589 bpm (SD = 13.224), and a mean maximum power output at VO2max of 291.282W (SD = 34.273).209

During the low-arousal session, on average participants maintained 54.322% (SD = 6.422) of their maximum HR and210

moved 24.043% (SD = 6.109) of their maximum power output. During the high-arousal session, on average participants211

maintained 85.710% (SD = 4.225) of their maximum HR and moved 73.82% (SD = 6.18) of their maximum power output.212

Behavioural conflict and conflict adaptation effects213

All participants showed positive conflict effects at both low- and high- arousal (Figure 2A). To test the effect of arousal214

on the conflict effect we run a repeated measure ANOVA with arousal and congruency as factors. RT analyses revealed215

a main effect of congruency (F(1,38) = 191.334, p < 0.001, η2p = 0.834, BF10 = 2730.817) with slower RT for incongruent216

than congruent trials (Figure 2B). Neither the main effect of of arousal (F(1,38) = 0.554, p = 0.461, η2p = 0.014, BF10217

= 0.314) nor the interaction (F(1,38) = 2.304, p = 0.137, η2p = 0.057, BF10 = 0.239) showed reliable differences. In218

ACC, the ANOVA revealed a main effect of congruency (F(1,38) = 12.112, p = 0.001, η2p = 0.242) with higher accuracy to219

congruent than incongruent trials (Figure 2C). However, bayesian statistics suggested anecdotal evidence for the null220

hypothesis (BF10 = 0.375). Neither the main effect of arousal (F(1,38) = 0.115, p = 0.736, η2p = 0.003, BF10 = 0.198) or221

the interaction (F(1,38) = 0.283, p = 0.598, η2p = 0.007, BF10 = 0.236) were significant.222

The conflict adaptation effect was positive for 37 out of 39 participants at both low- and high- arousal (Figure 2D). To223

test the effect of arousal on the adaptation effect we run a repeated measure ANOVA with arousal and pre-congruency224

as factors and the behavioural conflict effect as dependent variable. In RT, there was a significant main effect of pre-225

congruency (F(1,38) = 134.735, p < 0.001, η2p = 0.780, BF10 > 10000) with a smaller conflict effect when preceded by226

incongruent trials (Figure 2E). Neither the main effect of arousal (F(1,38) = 2.11, p = 0.154, η2p = 0.53, BF10 = 0.214) or227

the interaction (F(1,38) = 1.707, p = 0.199, η2p = 0.043, BF10 = 0.287) were significant. In ACC, there was a main effect228

of pre-congruency (F(1,38) = 55.975, p < 0.001 , η2p = 0.596, BF10 > 10000) with a smaller conflict effect when preceded229

by incongruent trials (Figure 2F). Neither the main effect of arousal (F(1,38) = 0.014, p = 0.908, η2p = 0.00036, BF10 =230

0.170) or the interaction (F(1,38) = 0.168, p = 0.684, η2p = 0.0040, BF10 = 0.234) were significant.231

Univariate MF theta232

The analysis on MF theta revealed significant difference between arousal condition. This was shown by a positive cluster233

between 270-720 ms at 4-12Hz (Figure 3A). To explore what drove the effect we performed t-test against zero in low234

and high arousal on the power within the cluster area (Figure 3B) 3. The one-sample t-test against 0 was significant in235

low arousal (t(38) = 7.233, p < 0.001, Cohen’s d = 1.16, BF10 > 10000). On the other hand, a conflict effect was not236

reliably detected in high-arousal as shown by both frequentist and bayesian statistics (t(38) = 1.985, p = 0.054, Cohen’s237

d = 0.318, BF10 = 1.009). The power within the ROI showed positive conflict effect in 34 out of 39 participants at low-238
3This additional analysis had not been preregistered
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Figure 2: Behavioural results.
(A) Individual conflict effect ordered according to increasing magnitude of the effect. (B) Effect of arousal level on the RT of the
responses to congruent (C) and incongruent (I) trials. Vertical bars represent the standard error. (C) Effect of arousal level on
the ACC of the responses to congruent and incongruent trials. Vertical bars represent the standard error. (D) Individual conflict
adaptation effect ordered according to increasing magnitude of the effect. (E) Effect of arousal level on the RT of the responses
to trials preceded by congruent (pre C) and preceded by incongruent (pre I) trials. Vertical bars represent the standard error. (F)
Effect of arousal level on the ACC of the responses to trials preceded by congruent and preceded by incongruent trials. Vertical
bars represent the standard error.

arousal and 26 out of 39 at high-arousal (Figure 3C). Therefore, as predicted, the difference is conflict effect between239

arousal states was significant for the neural signature of MF theta, suggesting that arousal modulates the processing of240

cognitive conflict. Moreover, the effect was driven by a reliable conflict effect during the control condition of low-arousal241

but not during high-arousal, similarly to what found in the drowsy state (Canales-Johnson et al., 2020).242

We conducted exploratory analyses to investigate the relationship between behavioural measures and MF theta power243

changes induced by arousal modulation (Figure 6). We fitted hierarchical linear mixed models with RT as dependent244

variable and arousal state and MF power changes as predictors. Exploratory analyses further support that at high245

arousal MF theta does not bear relationship with behavioural measures of cognitive control as suggested by the lack246

of correlation between RT and MF theta power changes (Figure 6D). Indeed, the intercept was the best fitting model,247

having the lowest AIC (659.19) and BIC (666.26). Furthermore, we explored the possibility that MF power changes are248

predicted by latent automatic (task-irrelevant) processes underlying decision making. We used Drift Diffusion Modelling249
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Figure 3: Univariate spectral analysis of MF theta-band oscillations
(A) Cluster permutation analysis capturing the difference between the conflict effect at high arousal and the conflict effect at low
arousal. The solid black line delineates the significant positive cluster with α = 0.05. Bold dots in the top-right headplot represent
the ROI included in the analysis. (B) Conflict effect computed by subtracting the congruent (C) from the incongruent (I) condition
separately for low and high arousal levels. The topographies represent theta-band power distribution within the timing of the
significant cluster, which is delineated by a solid black line. (C) Individual MF theta conflict effect. For each participant, the
power of the conflict effect was extracted from the area of the significant cluster as delineated in the interaction plot and then
ordered according to increasing values. The lighter shade represent a negative conflict effect.

for conflict tasks on the behavioural data (DMC; Ulrich et al., 2015) to estimate the influence of automatic processes250

on decision time (Alameda et al., 2023) and fitted hierarchical linear mixed with MF theta power as dependent variable251

and state and the automatic estimate as predictors. The DMC estimate of automatic processes held a relationship with252

mean RT suggested that the effect of arousal level on MF theta power depends on task-irrelevant automatic processes.253

In fact, the model with the interaction between the predictors was the best fitting model, having the lowest AIC (23.173)254

and BIC (37.313). Specifically, increase in MF theta power was associated with an increase of interference effects255

from task-irrelevant features when fitting the data in the low arousal condition (F(1,37) = 4.751, p = 0.036), but this256

relationship was lost when fitting the data in the high arousal (F(1,37) = 0.237, p = 0.630) (Figure 6E). Further details257

about the methodology and the results of the exploratory analyses are available on the page of the preregistered report258

(https://osf.io/rdnmf).259

Multivariate spectral decoding260

To overcome the shortcomings of univariate analysis and to capture more distribute networks, we turned to multivari-261

ate spectral decoding. Multivariate analysis allow us to quantify conflict processing without ROI selection, capturing262

conflict-related changes harder to detect using conventional univariate analyses (Fahrenfort et al., 2018). Multivariate263

analysis on time-frequency data was able to decode congruency in the low-arousal state but not in the high-arousal264

state (Figure 4A). The significant cluster (p < 0.05, corrected for multiple comparison) appeared in the 219 - 609 ms265

timewindow between 2 - 6 Hz with peak frequency at 6 Hz. The cluster was consistent with a congruency effect in the266

theta range. To further examine this effect, we run cluster-based permutation tests on the two conditions restricted to267
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Figure 4: Multivariate spectral decoding results.
Plotting of classifier accuracy against chance across the 2-30Hz spectrum and all timepoints separately for low-arousal and
high-arousal. Significant clusters (p < 0.05, corrected for multiple comparisons) are delimited by a solid black line. Dashed lines
represent the minimum and maximum limits of significant clusters. The AUC within those limits in then averaged to depict the
timecourse of classifier accuracy for low-and high-arousal (right column). Thicker lines represent statistical significance at p <
0.05. (A) Classifier accuracies for stimulus congruency. Information about congruency, and therefore the conflict effect, was
only present at low-arousal in the 2-6 Hz band. (B) Timecourse of congruency decoding in the 2-6 Hz band in low and high
arousal. (C) Classifier accuracies for stimulus physical location. Information about location was only present at low-arousal
in the 2-10 Hz band. (D) Timecourse of spatial location decoding in the 2-6 Hz band in low and high arousal. Narrowing the
cluster permutation analysis show that information about stimulus location is still preserved to some extent at high arousal. (E)
Classifier accuracies for stimulus content. Information about location was present in both conditions throughout the frequency
spectrum. (F) Timecourse of content decoding throughout the whole spectrum (2-30 Hz) in low and high arousal.
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the cluster frequency range (2 - 6 Hz). In the low-arousal state only the cluster showed above chance classification268

between 266 - 594 ms (p < 0.05, corrected for multiple comparison), peaking at 359 ms (Figure 4B).269

Similarly, spatial location of the stimuli was decoded in time-frequency data at low-arousal (p < 0.05, corrected for mul-270

tiple comparison). The cluster appeared in the -16 - 531 ms time-window between 2 - 10 Hz (peak frequency at 6 Hz),271

but not at high-arousal (Figure 4C). Cluster-based permutation testing restricted to the cluster frequency range (2 - 10272

Hz) showed above chance classification In the low-arousal state between 0 - 500 ms (p < 0.05, corrected for multiple273

comparison), peaking at 109 ms. Notably, also high-arousal showed above chance classification between 78 - 313 ms274

peaking at 219 ms suggesting that some representation of physical features is conserved at high-arousal (Figure 4D).275

On the other hand, stimulus content was reliably decoded at both arousal conditions (Figure 4E). At low-arousal, con-276

tent decoding was reliable between 2 - 30 Hz in the -94 - 906 ms timewindow with peak frequency at 4 Hz (p < 0.05,277

corrected for multiple comparison). At high-arousal content decoding was reliable in two time-frequency regions. One278

between 2 - 16 Hz in the -63 - 1047 ms timewindow with peak frequency at 4 Hz, the second between 22 - 28 Hz in the279

578 - 922 ms timewindow with peak frequency at 24 Hz. Cluster-based permutation testing averaging across the 2 - 30280

Hz band showed a significant cluster at low-arousal -47 - 922 ms (p < 0.05, corrected for multiple comparison), peaking281

at 438 ms. At high-arousal, a cluster was significant between -94 - 984 ms, peaking at 531 ms (Figure 4F).282

Figure 5: theta-band information sharing
(A) Individual wSMI conflict effects in the low and high arousal conditions. (B) Effect of arousal level on the wSMI in response
to congruent (C) and incongruent (I) trials. Vertical bars represent the standard error. wSMI was calculated between each MF
ROI electrode and every other electrode outside the ROI. We discarded from the analysis wSMI values within the ROI so that to
evaluate only information integration between distant electrode pairs. The timewindow where we applied the wSMI was chosen
based on the significant cluster representing the MF theta frequency interaction.

Theta-band information sharing283

To capture more drastic network reconfiguration during high-arousal, we performed wSMI. The timewindow for wSMI284

analysis was 270-720 ms based on the significant interaction between arousal and congruency in MF theta (Figure 3A).285

We used a τ of 32ms to captures nonlinear information integration in the theta-band domain (4–9Hz). The repeated286

measure ANOVA showed a main effect of congruency (F(1,38) = 7.831, p < 0.008 , η2p = 0.171). However, the BF10 =287

0.180 does not support the evidence for an effect of congruency. Neither the main effect of arousal (F(1,38) = 0.310, p288
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= 0.581, η2p = 0.008, BF10 = 0.274) or the interaction were significant (F(1,38) = 0.011, p = 0.917, η2p = 0.0002, BF10 =289

0.232). Results are represented in Figure 5290

Figure 6: Visualization of individual differences across arousal levels and fitted linear model
Subject-by-subject differences elicited by arousal level manipulation. Blue and red areas are rotated kernel density plots. Box
plots visualize the median (middle horizontal line), and 25th and 75th percentiles (bottom and top horizontal lines). The upper
and lower whiskers indicate the distance of 1.5 times the interquartile range above the 75th percentile and below the 25th
percentile. Jittered dots represent individual participants’ means. Solid gray lines connect two dots from the same participant.
(A) Conflict effect in reaction times. (B) Conflict effect in MF theta power. (C) DCM amplitude estimates as obtained in Alameda
et al. (2023). (D) Linear model describing the effect of MF theta power on RT. Both measures are conflict effect (I-C). (E) Linear
model describing the effect of DCM amplitude estimates on MF theta power. MF theta power represent the conflict effect (I-C).

DISCUSSION291

The present study aimed at investigating behavioural and neural correlates of cognitive control during high arousal292

induced by physical exercise. In line with our preregistered hypotheses, behavioural performance was preserved at293

high arousal. At the individual level, the effects of conflict and conflict adaptation were reliably detected. At the group294

level, the absence of interaction between arousal and conflict effects showed that conflict processing was not hampered295

during high arousal. These results are consistent with previous literature showing that physical arousal does not hinder296

performance in stimulus-response conflict tasks during acute exercise, even if at high intensity (Chang et al., 2012,297

Davranche et al., 2015, Moreau and Chou, 2019). Our results mirror those obtained in drowsy participants perform-298

ing an auditory Simon task, in which the behavioural conflict effect was reliably detected even under reduced alertness299

Canales-Johnson et al. (2020). We did not, however, detect an overall slowing of RTs as a function of increased arousal.300

This confirms previous findings showing that cognitive control is very robust under high arousal induced by exercise301

(Davranche et al., 2015). An alternative explanation is that measures of central tendency may provide only a gross302

representation of cognitive performance during acute exercise (Alameda et al., 2023, Chang et al., 2012). In any case,303
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consistently with the literature on both exercise and drowsiness, we show that even at high arousal individuals’ ability304

to resolve cognitive conflict remains effective.305

As hypothesized, the robust behavioural conflict effect was not accompanied by an equally robust neural correlate.306

Indeed, high arousal was associated with the degradation of neural signatures of conflict processing. The interaction307

between arousal and trial congruency in MF theta power suggests that conflict-induced power changes might be mod-308

ulated by arousal. This effect was driven by the conflict effect being no longer reliable during high arousal. Specifically,309

individual data (3C) showed that the conflict effect in MF theta was not only reduced in power but some participants even310

exhibited a reverse effect. MF theta power is considered one of the main neural indexes of cognitive control and a mea-311

sure for processing demands across various cognitive interference tasks (Adam et al., 2020, Duprez et al., 2020, Nigbur312

et al., 2011). The increase in theta power in response to incongruent stimuli would reflect the additional recruitment of313

resources needed to resolve cognitive conflict (van Driel et al., 2015). This additional recruitment was not detected at314

high-arousal in the present study. Or, at least, is was not detected by changes in theta power at MF locations.315

Exploratory analyses appear to further support that at high arousal MF theta did not bear relationship with behavioural316

measures of cognitive control. In contrast, while at low arousal MF theta power changes did not show a relationship317

with mean RT, it did with the DMC estimate of automatic processes, i.e., increase in MF theta power was associated318

with an increase of interference effects from task-irrelevant features under low arousal condition, but this relationship319

was lost during high arousal. This might suggest that the behavioural robustness of cognitive control is linked to de-320

creased interference effect of task-irrelevant features (Alameda et al., 2023) and that such link captured by theta power321

measured at MF locations is no longer reliable at high arousal. MF areas have been proposed to be the generator of322

conflict-modulated theta and changes in phase synchronization between MF, prefrontal and parietal regions within a323

frontoparietal network have been linked to cognitive control (Cohen and Van Gaal, 2013, Duprez et al., 2020, van Driel324

et al., 2015). MF regions would act as a central node that coordinates other regions and systems to monitor and adapt325

goal-directed behaviour essential for conflict processing (Cavanagh et al., 2012, Cohen and Cavanagh, 2011, Cohen326

and Donner, 2013, Friedman and Robbins, 2022, Menon and D’Esposito, 2022). Focusing on the MF ROI, albeit justi-327

fied by previous work, carries the drawback of unvariate analysis. This approach ignores the relevance of the multiple328

individual electrodes in differentiating between experimental conditions and overlooks the potential benefits of utilizing329

the covariance between electrodes. This oversimplifies complex interactions and undermines the role of neural net-330

works involved in cognitive processes (Anzellotti and Coutanche, 2018, Hebart and Baker, 2018). The disappearance331

of the conflict effect in MF theta at high-arousal in conjunction with a preserved behavioural performance might reflect332

the rise of a more distributed network no longer detectable by a univariate approach. In addition, the unreliability of the333

MF theta conflict effect in high arousal might have also been influenced by noise. This is possible given the method-334

ological challenges of a biking paradigm. Regardless, we did in fact replicated what found in the drowsy state, where335

reduced arousal was accompanied by the disappearence of the MF theta conflict effect (Canales-Johnson et al., 2020).336

Following Canales-Johnson et al. (2020) approach, we then implemented multivariate decoding which is fairly robust337

to noise as classifiers model the noise in the data by assigning low weight to non-informative artefacts (Grootswagers338
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et al., 2017). Importantly, by performing decoding within each arousal state noise level was equal for congruent and339

incongruent trials and for the training and testing phases.340

Congruency decoding was consistent with the univariate MF theta. Here, decoding showed that information about stim-341

ulus congruency was reliably represented in neural data at low arousal but not at high arousal, similarly to what found342

in states of reduced (i.e., drowsiness) arousal (Canales-Johnson et al., 2020). The fact that decoding of congruency343

was preserved during low-intensity but not during high-intensity exercise further substantiate that changes in arousal344

levels are associated with changes in the neural mechanisms supervising the resolution of conflict. However, consistent345

with our hypotheses, even time-frequency multivariate analysis did not capture the neural signatures of conflict when346

the level of arousal increased. We hypothesized that the reconfiguration of these networks may be so pronounced347

to escape the sensitivity of multivariate decoding. We therefore implemented connectivity analysis that would capture348

changes in a wide network of brain regions rather than changes in local power. Specifically, wSMI has been shown to349

reflect true nonlinear brain inter-regional interactions (Imperatori et al., 2019, King et al., 2013) and to identify variations350

in functional integration associated with changes in arousal (Chennu et al., 2016, Lee et al., 2017a,b). We observed a351

recovered conflict effect in wSMI at high arousal which hints at the possibility that at high arousal the brain undergo the352

engagement of wider neuronal networks to resolve cognitive conflict. However, the findings from connectivity measures353

did not fully meet our hypotheses, as the wSMI analysis only showed a statistically significant main effect of congruency,354

suggesting that the effect was present both in the high and low arousal conditions. This leaves open the question of355

why a reliable congruency effect did not emerge in the univariate and multivariate high arousal EEG analyses. The356

analysis of the processing of the most relevant stimulus features in the present study may provide insights into this357

neural differentiation between the high and low arousal conditions.358

At high arousal, stimulus content was decoded above chance levels, showing that such information was retained. On359

the other hand, decoding of stimulus location was highly degraded, although when looking between 2-10Hz it appeared360

that some location information was retained. This finding was unexpected. A possible explanation may be that the361

functional organization of the auditory cortex is tonotopic rather than topographic (Humphries et al., 2010, Saenz and362

Langers, 2014) and that spatial information is coded by distributed and integrated cortical populations (Belin and Za-363

torre, 2000, Recanzone and Cohen, 2010, Zatorre et al., 2002). Hence, we consider the possibility that high arousal364

affected integration even in more perceptual processes such as the processing of spatial location.365

With this study we propose that under heightened strained states reconfiguration of networks supervising cognitive con-366

trol may occur. Whilst the interplay between arousal, cognition and its neural correlates have been traditionally studied367

in states of reduced arousal (Canales-Johnson et al., 2020, Noreika et al., 2020, Wickens et al., 2015), we provide a368

complementary view at the higher end of the arousal spectrum. Importantly, we focused on spontaneous fluctuations369

by inducing transitions towards high arousal in a natural way through exercise. High arousal through aerobic exercise370

is characterized by changes in the somatic and autonomic systems which are obtained by stressing the body with mus-371

cular, cardiovascular and respiratory demand. Similarly, somatic and autonomic changes happen when transitioning372

towards the lower end of the spectrum (Ogilvie and Wilkinson, 1984). Nevertheless, the changes that occur under high373
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physical demand are not necessarily linearly related to what occurs at states of reduced arousal. What our study sug-374

gests is that these states might share some common processes in the way that cognition and behaviour are supervised375

by the brain. Clarifying the nature of the commonalities at the opposite end of the arousal spectrum will be an exciting376

task for future research.377

ACKNOWLEDGMENTS

This study was supported by a research project grant from the Spanish Ministry of Science and Innovation to Daniel
Sanabria (PID2019-105635GB-I00); a postdoctoral fellowship by the Spanish Ministry for Science and Innovation awarded
to Chiara Avancini (FJC2020-046310-I); a postdoctoral fellowship from the Regional Government of Andalusia awarded
to Luis F. Ciria (DOC_00225); a predoctoral fellowship by the Spanish Ministry of Universities awarded to Clara Alameda
(FPU21/00388).

AUTHOR CONTRIBUTIONS

Chiara Avancini: Conceptualization, Methodology, Software, Data curation, Formal Analysis, Visualization, Writing,
Reviewing and Editing. Luis F. Ciria Conceptualization, Methodology, Software and Reviewing. Clara Alameda: Data
curation, Reviewing and Editing. Ana F. Palenciano: Methodology. Andres Canales-Johnson: Conceptualization,
Methodology, Reviewing and Editing. Tristan A. Bekinschtein: Conceptualization, Methodology, Reviewing and Edit-
ing. Daniel Sanabria: Conceptualization, Methodology, Reviewing, Editing, and Funding Acquisition.

AUTHOR COMPETING INTERESTS

The authors declare no competing interests.

REFERENCES

Adam, N., Blaye, A., Gulbinaite, R., Delorme, A., and Farrer, C. (2020). The role of midfrontal theta oscillations across the development of cognitive
control in preschoolers and school-age children. Developmental Science, 23(5):e12936.

Alameda, C., Avancini, C., Sanabria, D., Bekinschtein, T. A., Canales-Johnson, A., and Ciria, L. F. (2023). Staying in control: characterising the
mechanisms underlying cognitive control in high and low arousal states. bioRxiv, pages 2023–04.

Anzellotti, S. and Coutanche, M. N. (2018). Beyond functional connectivity: investigating networks of multivariate representations. Trends in cognitive
sciences, 22(3):258–269.

Avancini, C., Ciria, L. F., Alameda, C., Palenciano, A. F., Bekinschtein, T., Canales-Johnson, A., and Sanabria, D. (2022). Neural markers of cognitive
control in high arousal. Open Science Framework.

Belin, P. and Zatorre, R. J. (2000). ‘what’,‘where’and ‘how’in auditory cortex. Nature neuroscience, 3(10):965–966.
Bernaola-Galván, P. A., Gómez-Extremera, M., Romance, A. R., and Carpena, P. (2017). Correlations in magnitude series to assess nonlinearities:

Application to multifractal models and heartbeat fluctuations. Physical Review E, 96(3):032218.
Bratzke, D., Steinborn, M. B., Rolke, B., and Ulrich, R. (2012). Effects of sleep loss and circadian rhythm on executive inhibitory control in the stroop

and simon tasks. Chronobiology International, 29(1):55–61.
Cain, S. W., Silva, E. J., Chang, A.-M., Ronda, J. M., and Duffy, J. F. (2011). One night of sleep deprivation affects reaction time, but not interference

or facilitation in a stroop task. Brain and cognition, 76(1):37–42.
Canales-Johnson, A., Beerendonk, L., Blain, S., Kitaoka, S., Ezquerro-Nassar, A., Nuiten, S., Fahrenfort, J., van Gaal, S., and Bekinschtein, T. A.

(2020). Decreased alertness reconfigures cognitive control networks. Journal of Neuroscience, 40(37):7142–7154.
Cavanagh, J. F., Zambrano-Vazquez, L., and Allen, J. J. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes.

Psychophysiology, 49(2):220–238.
Chang, Y.-K., Labban, J. D., Gapin, J. I., and Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain

research, 1453:87–101.
Chennu, S., O’Connor, S., Adapa, R., Menon, D. K., and Bekinschtein, T. A. (2016). Brain connectivity dissociates responsiveness from drug exposure

during propofol-induced transitions of consciousness. PLoS computational biology, 12(1):e1004669.
Ciria, L. F., Perakakis, P., Luque-Casado, A., and Sanabria, D. (2018). Physical exercise increases overall brain oscillatory activity but does not

influence inhibitory control in young adults. Neuroimage, 181:203–210.
Ciria, L. F., Suárez-Pinilla, M., Williams, A. G., Jagannathan, S. R., Sanabria, D., and Bekinschtein, T. A. (2021). Different underlying mechanisms

for high and low arousal in probabilistic learning in humans. Cortex, 143:180–194.
Cohen, M. X. and Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in

psychology, 2:30.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.07.31.550835doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.31.550835
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cohen, M. X. and Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of
neurophysiology, 110(12):2752–2763.

Cohen, M. X. and Van Gaal, S. (2013). Dynamic interactions between large-scale brain networks predict behavioral adaptation after perceptual errors.
Cerebral Cortex, 23(5):1061–1072.

Davranche, K., Brisswalter, J., and Radel, R. (2015). Where are the limits of the effects of exercise intensity on cognitive control? Journal of Sport
and Health Science, 4(1):56–63.

Delorme, A. and Makeig, S. (2004). Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component
analysis. Journal of neuroscience methods, 134(1):9–21.

Duprez, J., Gulbinaite, R., and Cohen, M. X. (2020). Midfrontal theta phase coordinates behaviorally relevant brain computations during cognitive
control. Neuroimage, 207:116340.

Fahrenfort, J. J., Van Driel, J., Van Gaal, S., and Olivers, C. N. (2018). From erps to mvpa using the amsterdam decoding and modeling toolbox
(adam). Frontiers in Neuroscience, 12:368.

Friedman, N. P. and Robbins, T. W. (2022). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology,
47(1):72–89.

González-Fernández, F., Etnier, J. L., Zabala, M., Sanabria, D., et al. (2017). Vigilance performance during acute exercise. International Journal of
Sport Psychology, 48(4):435–447.

Goupil, L. and Bekinschtein, T. (2012). Cognitive processing during the transition to sleep. Archives italiennes de biologie, 150(2/3):140–154.
Grootswagers, T., Wardle, S. G., and Carlson, T. A. (2017). Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern

analysis applied to time series neuroimaging data. Journal of cognitive neuroscience, 29(4):677–697.
Hebart, M. N. and Baker, C. I. (2018). Deconstructing multivariate decoding for the study of brain function. Neuroimage, 180:4–18.
Humphries, C., Liebenthal, E., and Binder, J. R. (2010). Tonotopic organization of human auditory cortex. Neuroimage, 50(3):1202–1211.
Imperatori, L. S., Betta, M., Cecchetti, L., Canales-Johnson, A., Ricciardi, E., Siclari, F., Pietrini, P., Chennu, S., and Bernardi, G. (2019). Eeg

functional connectivity metrics wpli and wsmi account for distinct types of brain functional interactions. Scientific Reports, 9(1):8894.
King, J.-R., Sitt, J. D., Faugeras, F., Rohaut, B., El Karoui, I., Cohen, L., Naccache, L., and Dehaene, S. (2013). Information sharing in the brain

indexes consciousness in noncommunicative patients. Current Biology, 23(19):1914–1919.
Kleiner, M., Brainard, D., and Pelli, D. (2007). What’s new in psychtoolbox-3?
Lambourne, K. and Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain

research, 1341:12–24.
Lee, M., Sanders, R. D., Yeom, S.-K., Won, D.-O., Kim, H.-J., Lee, B.-R., Seo, K.-S., Kim, H. J., Tononi, G., and Lee, S.-W. (2017a). Change

in functional networks for transitions between states of consciousness during midazolam-induced sedation. In 2017 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 958–961. IEEE.

Lee, M., Sanders, R. D., Yeom, S.-K., Won, D.-O., Seo, K.-S., Kim, H. J., Tononi, G., and Lee, S.-W. (2017b). Network properties in transitions of
consciousness during propofol-induced sedation. Scientific reports, 7(1):16791.

McMorris, T., Sproule, J., Turner, A., and Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks:
a meta-analytical comparison of effects. Physiology & behavior, 102(3-4):421–428.

Menon, V. and D’Esposito, M. (2022). The role of pfc networks in cognitive control and executive function. Neuropsychopharmacology, 47(1):90–103.
Moreau, D. and Chou, E. (2019). The acute effect of high-intensity exercise on executive function: a meta-analysis. Perspectives on Psychological

Science, 14(5):734–764.
Nigbur, R., Ivanova, G., and Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11):2185–2194.
Noreika, V., Kamke, M. R., Canales-Johnson, A., Chennu, S., Bekinschtein, T. A., and Mattingley, J. B. (2020). Alertness fluctuations when performing

a task modulate cortical evoked responses to transcranial magnetic stimulation. NeuroImage, 223:117305.
Ogilvie, R. D. and Wilkinson, R. T. (1984). The detection of sleep onset: behavioral and physiological convergence. Psychophysiology, 21(5):510–520.
Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). Fieldtrip: open source software for advanced analysis of meg, eeg, and invasive

electrophysiological data. Computational intelligence and neuroscience, 2011:1–9.
Ratcliff, R., Smith, P. L., Brown, S. D., and McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in cognitive sciences,

20(4):260–281.
Recanzone, G. H. and Cohen, Y. E. (2010). Serial and parallel processing in the primate auditory cortex revisited. Behavioural brain research,

206(1):1–7.
Saenz, M. and Langers, D. R. (2014). Tonotopic mapping of human auditory cortex. Hearing research, 307:42–52.
Sagaspe, P., Sanchez-Ortuno, M., Charles, A., Taillard, J., Valtat, C., Bioulac, B., and Philip, P. (2006). Effects of sleep deprivation on color-word,

emotional, and specific stroop interference and on self-reported anxiety. Brain and cognition, 60(1):76–87.
Schmit, C. and Brisswalter, J. (2020). Executive functioning during prolonged exercise: a fatigue-based neurocognitive perspective. International

Review of Sport and Exercise Psychology, 13(1):21–39.
Simon, J. R. and Rudell, A. P. (1967). Auditory sr compatibility: the effect of an irrelevant cue on information processing. Journal of applied psychology,

51(3):300.
Sitt, J. D., King, J.-R., El Karoui, I., Rohaut, B., Faugeras, F., Gramfort, A., Cohen, L., Sigman, M., Dehaene, S., and Naccache, L. (2014). Large

scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain, 137(8):2258–2270.
Tucker, A. M., Whitney, P., Belenky, G., Hinson, J. M., and Van Dongen, H. P. (2010). Effects of sleep deprivation on dissociated components of

executive functioning. Sleep, 33(1):47–57.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.07.31.550835doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.31.550835
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ulrich, R., Schröter, H., Leuthold, H., and Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion
processes and delta functions. Cognitive psychology, 78:148–174.

van Driel, J., Olivers, C. N., and Fahrenfort, J. J. (2021). High-pass filtering artifacts in multivariate classification of neural time series data. Journal
of Neuroscience Methods, 352:109080.

van Driel, J., Swart, J. C., Egner, T., Ridderinkhof, K. R., and Cohen, M. X. (2015). (no) time for control: Frontal theta dynamics reveal the cost of
temporally guided conflict anticipation. Cognitive, Affective, & Behavioral Neuroscience, 15:787–807.

Verburgh, L., Königs, M., Scherder, E. J., and Oosterlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents
and young adults: a meta-analysis. British journal of sports medicine, 48(12):973–979.

Wickens, C. D., Hutchins, S. D., Laux, L., and Sebok, A. (2015). The impact of sleep disruption on complex cognitive tasks: a meta-analysis. Human
factors, 57(6):930–946.

Zatorre, R. J., Bouffard, M., Ahad, P., and Belin, P. (2002). Where is’ where’in the human auditory cortex? Nature neuroscience, 5(9):905–909.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.07.31.550835doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.31.550835
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTARY MATERIAL: RELATIONSHIP BETWEEN MF THETA POWER AND BEHAVIOURAL MEA-
SURES

Methods
We conducted exploratory analyses to investigate the relationship between behavioural measures and MF theta power
changes induced by arousal modulation. To do so, the MF theta power conflict effect was extracted separately for the
high and low arousal condition. We subtracted the time-frequency decomposition from congruent trials from that from
incongruent trials. Then we averaged the power within the significant cluster region that had been observed in the
previous cluster-based permutation testing.
First we investigated whether MF power changes predicted changes in RT by taking into account individual variability.
We hierarchically compared three nested models which all had the RT conflict effect as dependent variable and partic-
ipants as random effect: model A0 was the intercept, model A1 included arousal level as predictor. Model A2 included
arousal level and MF theta power as predictors. Model 3 included an interaction term between arousal level and MF
theta power. The interaction term allow for potential variation in the effect of MF theta power on RT across participants.
Furthermore, we investigated whether MF theta power changes held a relationship with the interference of task-irrelevant
automatic processes. In a study conducted on the same dataset as the one presented in the current paper (Alameda
et al., 2023), behavioural dynamics were modelled with Drift Diffusion Modelling for conflict tasks (DMC; Ulrich et al.,
2015, for details on the methodology, see Alameda et al., 2023). DMC assume that, when an individual faces a two-
alternative choice, the amount of evidence for one answer over the other accumulates gradually over time until it reaches
a decision threshold, which triggers the motor response (Ratcliff et al., 2016). DMC allow to estimate the influence of
both automatic (task-irrelevant) and control (task-relevant) processes on decision time. Alameda et al. (2023) observed
that the estimate representing automatic processes was reduced in high-arousal compared to low-arousal, suggest-
ing that the amount of interference from non-relevant information would be slightly reduced during the high-arousal
state. We therefore explored the possibility that MF power changes are predicted by latent psychological processes
underlying decision making. In particular, that it would be predicted by state-dependent variations in the processing
of task-irrelevant information. To do so, we fitted linear mixed effect models to investigate the effects of arousal lever
and the DMC amplitude estimate on theta power, while accounting for individual variability (random effect). Specifically,
we hierarchically compared three nested models, all with participant as random intercept: model B0 was the intercept,
model B1 included DMC amplitude as predictor. The model B2 included DMC amplitude and arousal level as predictors.
This model assumes that the relationship between power and the DMC amplitude estimate is linear and that the effect
of DMC amplitude on power is constant across all participants. Model B3 included an interaction term between DMC
amplitude and arousal level. The interaction term allow for potential variation in the effect of amplitude on power across
participants.
We compared the fit of the models with likelihood ratio test, Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) to determine which one best explained the data. Note that these analyses had not been preregistered
and were planned upon observation of the current data and the results of Alameda et al. (2023). They are therefore
exploratory and will be interpreted as such.

Results
We conducted linear mixed effect models to assess the relationship between MF theta power and RT (Figure 6D). Model
A0 had the lowest AIC (659.19) and BIC (666.26) and no hierarchically more complex model fitted the data better than
the previous.
We then conducted linear mixed effect models to assess the influence that arousal and DCM amplitude (task-irrelevant
automatic processes) had on MF theta power (Figure 6E). Model B3 had the lowest AIC (23.173) and BIC (37.313) and
significantly fitted the data better than model B2 (χ2(2) = 4.463, p = 0.035, ∆AIC = 2.463, ∆BIC = 0.108). Model B2
fitted the data better than than Model B1 (χ2(2) = 13.809, p = 0.0002, ∆AIC = 11.809, ∆BIC = 9.453). Model B1 fitted
the data better than than Model B0 (χ2(2) = 4.396, p = 0.036, ∆AIC = 2.397, ∆BIC = 0.04). Thus, model B3, which
included an interaction term between arousal level and DMC amplitude on MF theta power, was the best fitting model.
This suggests that the effect of arousal level on MF theta power depends on task-irrelevant automatic processes.
Note that these results were obtained after visual inspection of our data (Figure 6A - 6C) and results from Alameda et al.
(2023). They are therefore to be interpreted as exploratory.
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