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 2 

Abstract 27 

The analysis of large data sets within and across preclinical studies has always posed a particular 28 

challenge in terms of data volume and method heterogeneity between studies. Recent developments in 29 

machine learning (ML) and artificial intelligence (AI) allow to address these challenges in complex 30 

macro- and microscopic data sets. Because of their complex data structure, functional magnetic 31 

resonance imaging (fMRI) measurements are perfectly suited to develop such ML/AI frameworks for 32 

data-driven analyses. These approaches have the potential to reveal patterns, including temporal 33 

kinetics, in blood-oxygen-level-dependent (BOLD) time series with a reduced workload. However, the 34 

typically poor signal-to-noise ratio (SNR) and low temporal resolution of fMRI time series have so far 35 

hampered such advances. Therefore, we used line scanning fMRI measurements with high SNR and 36 

high spatio-temporal resolution obtained from three independent studies and two imaging centers with 37 

heterogeneous study protocols. Unbiased time series clustering techniques were applied for the analysis 38 

of somatosensory information processing during electrical paw and optogenetic stimulation. Depending 39 

on the similarity formulation, our workflow revealed multiple patterns in BOLD time series. It produced 40 

consistent outcomes across different studies and study protocols, demonstrating the generalizability of 41 

the data-driven method for cross-study analyzes. Further, we introduce a statistical analysis that is 42 

entirely based on cluster distribution. Using this method, we can reproduce previous findings including 43 

differences in temporal BOLD characteristics between two stimulation modalities. Our data-driven 44 

approach proves high sensitivity, robustness, reproducibility, and generalizability and further quickly 45 

provides highly detailed insight into characteristics of BOLD time series. Therefore, it holds great 46 

potential for further applications in fMRI data including whole-brain task and resting-state fMRI, which 47 

can support fMRI routines. Furthermore, the analytic framework can be used for datasets that have a 48 

time-dependent data structure to integrate study results and create robust and generalizable datasets, 49 

despite different study protocols.   50 
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1. Introduction 51 

Data-driven analytical techniques and decision-support systems are an active research topic in both 52 

medicine and science (Celi et al., 2019). However, for these approaches to be successful, large amounts 53 

of data from e.g., clinical trials or preclinical animal studies are needed. This challenge can only be met 54 

with difficulty by individual studies. Therefore, analytical frameworks are needed that enable the analysis 55 

of data across studies even when they were acquired independently and with different study protocols 56 

and data structures. The advantages of such approaches are valuable for microscopic (e.g., Ca2+ 57 

imaging, *omics data of RNA or proteins) as well as macroscopic (e.g., behavioral analyses, comparison 58 

of health data) approaches that involve complex data structures. Imaging techniques such as functional 59 

magnetic resonance imaging (fMRI) of the brain provides a showcase example of such structures with 60 

the availability of large amounts of data measured over time.  61 

Visualization of the blood oxygen level dependent (BOLD) effect, which includes blood flow, blood 62 

volume, and blood oxygen level, allows fMRI to study cerebral processing (Buxton et al., 2004). The 63 

evaluation of these datasets can be enriched in several ways using data-driven analytical tools (Li et al., 64 

2009). Besides the possibility of real-time analysis, there are benefits from development of new 65 

approaches through an unbiased perspective. The advantages in this regard will only be achievable if 66 

the methodology is qualitatively validated in terms of reproducibility, generalizability, robustness, and 67 

significance capability (Pineau et al., 2021). With these aspects in mind, a sub-discipline of unsupervised 68 

Machine Learning, clustering approaches such as hierarchical agglomerative clustering (HAC), are of 69 

particular interest because they build similarity relationships via a tree-like structure, the dendrogram, 70 

which can be applied to fMRI data to analyze and visualize similar activation patterns between voxels 71 

in detail. However, since similarity relations of such unsupervised analysis pipelines are susceptible to 72 

noise, fMRI data with high signal-to-noise ratio (SNR) and high temporal resolution are needed to 73 

disentangle temporal dynamics of BOLD responses.  74 

Recent advances in small animal functional imaging enabled investigation of inter-cortical and inter-75 

laminar processing via recording of BOLD dynamics with up to 50 ms temporal and 50 µm spatial 76 

resolution using line scanning fMRI and technical modifications thereof. This method recently 77 

demonstrated different temporal kinetics of the BOLD response in cortical laminae following sensory 78 

stimulation  (Silva & Koretsky, 2002), and further, reflecting the canonical, thalamo-cortical signaling, 79 

found the BOLD response in layer IV of the cortex to precede those in laminae II/III and V (Yu et al., 80 

2014). Furthermore, line scanning fMRI unveiled a temporal delay in cortical BOLD responses following 81 
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sensory stimulation when compared to local cortical activation using optogenetic tools (Albers et al., 82 

2018) and inter- and intra-laminar-specific patterns of functional connectivity during resting-state and 83 

electrical fore paw stimulation (Choi et al., 2022, 2023).  84 

While advanced imaging techniques for the investigation of brain function and circuits have experienced 85 

substantial progress, the analytical tools remained similar over the recent years (Conklin et al., 2014). 86 

The typical analysis routine of fMRI time series assumes (apart from standard preprocessing) 87 

anatomical segmentation and spatial averaging of the measured BOLD signals to extract structure-88 

specific stimulus response properties, including temporal kinetics (for e.g., onset, rise, and decay 89 

characteristics) of the BOLD response. Study results often depend on decisions of imaging experts for 90 

anatomical referencing or are derogated by spatial-averaging procedures, which severely limits their 91 

reproducibility and comparability (David et al., 2013). To abate these deficiencies, conventional analysis 92 

can be complemented and enriched by a new data-driven workflow, including different clustering 93 

approaches, that give unbiased insights into characteristics of BOLD time series. 94 

In general, clustering analyses are used to find patterns in the datasets based on similarities (Duda & 95 

Hart, 1974). In the case of BOLD signals, these are used to detect similarities between stimulus 96 

responses within defined time periods. This technique consists of two components: (1) a similarity 97 

function and (2) a clustering algorithm, which can identify clusters and their boundaries based on the 98 

point distance (Aghabozorgi et al., 2015). The similarity function - formally known as the distance metric 99 

- defines the properties used to evaluate similarity from one observation to another. Based on these 100 

calculations, the algorithm forms groups of similar observations, e.g., similar BOLD responses. 101 

Cluster analyses have previously been used for stimulus-induced fMRI time series. They are based on 102 

the principal observation that certain voxels can be grouped according to similarities regarding their 103 

temporal kinetics (Baumgartner et al., 1997; McIntyre & Blashfield, 1980). These similarities can be 104 

investigated focusing on frequency-based (Allegra et al., 2016) or correlation-based metrics (Craddock 105 

et al., 2012) and followed-up by numerous clustering algorithms (e.g. k-means, hierarchical, fuzzy-c 106 

means, spectral) (Cordes et al., 2002; Venkataraman et al., 2009). Problems, frequently encountered in 107 

these datasets, are (1) the large number of voxels that do not respond to the stimulation and (2) the high 108 

level of noise (Goutte et al., 1999). Importantly, these studies successfully identified stimulus-responding 109 

brain structures through unsupervised methods. However, they fell short of resolving the temporal 110 

kinetics of BOLD time series, including the rise and decay characteristics (Goutte et al., 1999). 111 
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In addition to clustering, Independent Component Analysis (ICA) is an important technique in the field 112 

of unsupervised analysis methods on fMRI data to identify patterns and structures in the data. ICA 113 

estimates independent signal sources, thereby decomposing overlapping activation patterns. Building 114 

on these sources, multiple spatial maps are created, with each map representing an independent 115 

component. These maps highlight the region exhibiting maximal activity associated with their 116 

corresponding component. In contrast, cluster analyses group similar data points together. This enables 117 

the identification of patterns in the measured data. Due to the flexibility of the similarity relations to be 118 

defined, hidden structures can be revealed depending on characteristic features such as signal strength 119 

or signal speed (Ergüner Özkoç, 2020; Korczak, 2012). While this method is strong at revealing spatial 120 

patterns of activity, it does not give insights into the temporal evolution of the BOLD time course. 121 

The aim of this work was to assess whether the high spatial and temporal resolution of line scanning 122 

fMRI data combined with a sophisticated distance function design is sufficient 1) to detect different 123 

temporal kinetics of cortical BOLD responses and 2) to allow statistical comparison of data from different 124 

studies. By adopting a voxel-based and purely data-driven approach, we systematically explored 125 

different clustering techniques and analyzed somatosensory cortex fMRI data obtained during fore paw 126 

stimulation in rats, which were measured in different imaging centers. We established and validated an 127 

unsupervised framework that is sensitive to detect neuronal response latencies between different 128 

stimulus modalities, and which produced consistent results across different study protocols. indicating 129 

robustness, reproducibility, and generalizability of this framework.  130 

 131 

  132 
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Material and Methods 133 

Animals 134 

We used three different sets of fMRI line-scanning raw data: 1) n = 4 male Sprague Dawley rats, 2) n = 135 

4 male Sprague Dawley rats, and 3) n = 9 female fisher rats obtained from previous studies performed 136 

at the University of Münster and the Max-Planck Institute of Biological Cybernetics in Tübingen (Albers 137 

et al., 2018; Choi et al., 2022, 2023) (Fig. 1A). All studies were performed in accordance with the German 138 

Animal Welfare Act (TierSchG) and Animal Welfare Laboratory Animal Ordinance (TierSchVersV), in 139 

full compliance with the guidelines of the EU Directive on the protection of animals used for scientific 140 

purposes (2010/63/EU). The studies were reviewed by the ethics commission (§15 TierSchG) and 141 

approved by the state authorities (Regierungspräsidium, Tübingen, Baden-Württemberg, Germany 142 

(study 1 and 2) and Landesamt für Natur, Umwelt und Verbraucherschutz, Nordrhein-Westfalen, 143 

Germany (study 3)), respectively. Rats were housed in groups of 2–3 animals under a regular light/dark 144 

schedule (12/12 h). Food and water were available ad libitum. 145 

 146 

Line-scanning fMRI and stimulation 147 

In table 1, recapitulates most relevant methods and parameters that were employed in the respective 148 

studies to obtain single (study 3 (Albers et al., 2018)) or multi-slice (study 1 (Choi et al., 2023) and study 149 

2, (Choi et al., 2022)) line-scanning fMRI data (Tab. 1). Since these methods are already published, we 150 

compiled more detailed information in the supplemental material. In brief, for line-scanning fMRI, the 151 

field of view (FOV) was placed in the slice of maximal BOLD activation (Fig. 1B, left). Frequency 152 

encoding direction was set perpendicular to the cortical surface and saturation slices were used to set 153 

the width of the line to avoid aliasing artifacts. The phase-encoding gradient was turned off to acquire 154 

line profiles. 155 

 156 

Table 1) Overview of different study designs and protocols. Abbreviations: TR: repetition time 157 

(ms), TE: echo time (ms), FOV: field of view, TA: acquisition time (ms), tSNR: temporal signal-to-158 

noise-ratio 159 

 Study 1 Study 2 Study 3 

species Sprague-dawley rats Sprague-dawley rats Fisher rats 

anesthesia alpha-chloralose alpha-chloralose medetomidine 
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Respiration Intubated/pancuronium Intubated/pancuronium spontaneously 

Scanner Magnex, Oxford Magnex, Oxford Bruker Biospec  

Field strength (T) 14.1 14.1 9.4 

Scanner bore (cm) 26 26 20 

# of slices  1 contralateral 

1 ipsilateral 

3 contralateral 1 contralateral 

TR/TE (ms) 100/12.5 100/9 50/18 

Flip angle 45° 50° 13° 

FOV (cm2) 1.2x6.4 1.2x6.4 2.1x10 

Slice thickness (mm) 1.2 1.2 1.2 

Spatial Resolution 

(µm) 

100 50 78 

Stimulation block (s) 4 ON 16 OFF 4 ON 16 OFF 5 ON 25 OFF 

Block repetitions 32 32 64 

TA (min:sec) 10:40 10:40 32:00 

Voxels per line / cortex 128 / 20 128 / 40 128 / 28 

Cortical tSNR  

over 4 seconds 

(starting at stimulus)  

contralateral:  

2.2% / 0.04%  56.9 

ipsilateral:  

0.005% / 0.05 % = 0.1 

Caudal:  

2.2% / 0.03%  60.9 

Central:  

1.2% / 0.05%  23.7 

Rostral:  

0.5% / 0.1%  4.76 

Optogenetic:  

1% / 0.03%  27.7 

Electric:  

0.47% / 0.03%  10.9 

 160 

 161 

Data preprocessing and alignment 162 

Even though the presented approach was largely automated, the data was preprocessed with few 163 

transformation steps. First, the measurements were averaged across all repetitions, which restricted the 164 

repetitive procedure to a 20- (study 1, 2) or 30-second (study 3) signal response (Fig. 1B, right). At this 165 

point, as in previous studies (Albers et al., 2018), low-pass filtering was performed at 0.4 Hz on the 166 

averaged BOLD response to eliminate noise and to smooth the signals. In a final step, the position of 167 

the corpus callosum (CC) was determined for a later location-dependent comparison across different 168 
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scans. This was done according to the profile of the average intensity over time (see Figure 1). The first 169 

local minimum in ventral direction from the global maximum was considered as the reference point of 170 

the corpus callosum. For ten measurements, no clear identification of the corpus callosum was possible, 171 

which is why these were excluded from further analyzes: Two measurements in study 1, five 172 

measurements in study 2, and three electrical stimulation scans in study 3. In study 2, the CC-detection 173 

was only possible in caudal and central layers, because of its the curvature the corpus callosum showed 174 

poor visibility in the rostral layer. In this slice, the scans were positioned based on the maximum intensity 175 

averaged over time. For all remaining 54 measurements (study 1: 20, study 2: 12, study 3: 22), the 176 

change in BOLD signal was calculated using the average of the resting period, resulting in an 177 

approximately zero-mean characteristic for the resting period. 178 
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   179 

Fig.1. Scheme of data extraction, representation, and analysis. (A) Study designs. (B) BOLD signals 180 

are extracted and preprocessed voxel-wise from each measurement. (C) The resulting time series are 181 
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compared with each other in four different settings: twice unscaled (Euclidean and Correlation) and twice 182 

scaled (Euclidean and Dynamic Time Warping (DTW)). (D) Based on the obtained distances, clusters 183 

were calculated (here only shown for correlation distance). (E) The resulting clustering distributions are 184 

illustrated with the Cluster Portability Profile (CPP), which provides the spatial location (vertical axis) 185 

and the occurrence (horizontal axis) of the individual cluster members. Note that CPP plots are 186 

symmetric along horizontal axis. Abbreviations: d: dorsal; v: ventral; le: left; ri: right; ca: caudal; ro : 187 

rostral; CPP : cluster probability profile. 188 

 189 

Clustering analysis 190 

To partition the scans into meaningful spatial regions via a data-driven method, we followed an 191 

unsupervised machine learning approach, called cluster analysis. This technique uses the combination 192 

of a similarity metric and a clustering algorithm to detect patterns in the underlying data. Obtained 193 

clusters of similarly responding voxels are specific to the respective metric. In our approach, two types 194 

of analyzes were applied: First, similarity was analyzed in unscaled time series using the Euclidean and 195 

correlation distance (Fig. 1C, left). Second, to eliminate the influence of BOLD amplitudes and to focus 196 

on the temporal (onset and decay) characteristics of BOLD responses, the previously detected positive 197 

BOLD signals were maximum-scaled. Rise characteristics were examined with the Euclidean distance 198 

in second 1-3 post stimulus (Fig. 1C, middle), while differences in signal decay were compared with a 199 

temporally non-sensitive distance, called Dynamic Time Warping (Fig. 1C, right). This analysis pipeline 200 

was performed sequentially with line scanning fMRI data from all three studies. 201 

 202 

Clustering methods 203 

All the following cluster analyzes were based on hierarchical agglomerative clustering (HAC), which 204 

operated on predefined subsections of the respective time series (Fig. 1D). We applied this type of 205 

clustering procedure since it is less sensitive to largely differing point densities of clusters, and it can 206 

represent nested clusters (Sander et al., 2003).  Ward's minimum variance method was used for the 207 

optimization process within the cluster formation (Ward, 1963). For the application of HAC, Python was 208 

used with the Scikit-Learn package (Pedregosa et al., 2011). In addition to the different time intervals, 209 

three different metrics were considered as a basis for similarity relationships between two time series 210 

𝑥, y ∈ ℝ𝑛≤600  with length n: 211 

 212 
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1. Euclidean distance 213 

deucl(x, y) ∶= ||x − y||
2

= ( ∑(xi − yi)
2

𝑖

 )

1
2⁄

 215 

 214 

2. Correlation distance 216 

dcorr(x, y) ∶= 1 −
(𝑥 − 𝑥)(𝑦 − 𝑦)

||𝑥 − 𝑥||
2

||𝑦 − 𝑦||
2

 218 

 217 

3. Dynamic Time Warping (DTW) 219 

dDTW(x, y) ∶= min
𝑝 ∈ 𝑃

𝐶𝑝(𝑥, 𝑦) 220 

         where 𝐶𝑝 denotes the costs for a warping path 𝑝 from 𝑥 to 𝑦. 221 

 222 

These metrics were used at different time intervals to highlight different properties of a time series.  223 

 224 

Characterization of unscaled BOLD-signal change  225 

For a first overview of the measurements, the dataset was restricted to the range of the approximate 226 

stimulus response (time of stimulus onset until twice the length of the stimulus; study 1, 2: 8s, study 3: 227 

10s). Thus, the cluster membership was determined for each of the series and their corresponding 228 

voxels. First, Euclidian distance (deucl(x, y)) and correlation distance (dcorr(x, y)) were considered for a 229 

basic comparison of similarities. Subsequently, the computed clusters were characterized by their point-230 

wise mean and standard deviation. In addition, we developed a new type of visualization called the 231 

Cluster Portability Profile (CPP) plot to highlight the spatial distribution of patterns identified in 1D fMRI 232 

measurements. For this purpose, the described line-centering based on the CC was performed (see 233 

above). Based on this centering, the expected size of the cortex was calculated and divided into five 234 

parts according to cortical layers: LI (CC-[210 - 190 µm]), LII/III (CC-[190 - 150 µm]),), LIV (CC-[150 - 235 

120 µm]),), LV (CC-[120 - 70 µm]),) and LVI (CC- [70 - 10 µm]). Boundaries of these layers were marked 236 

with dashed lines in the CPP plot. Statistical tests were performed based on this division. To validate 237 

the alignment of 1D lines for the CPP plot, we compared the automated approach to manually drawn 238 

cortical boundaries in 2D BOLD fMRI data. The stability of the method was assessed using animal-239 

based 5-fold cross-validation (McIntyre & Blashfield, 1980). This involved repeated clustering of a subset 240 

of available animals. For this test, we used data from study 3 since it included the largest number of 241 
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animals. Performance was then quantified using three quality measures: V-measure, sensitivity, and 242 

specificity (Rosenberg & Hirschberg, 2007). The clusters that showed a sizable positive BOLD response 243 

were used to define cortical pixels. These were compared to the manually determined cortical 244 

boundaries.  245 

 246 

Time series clustering based on the rise and decay characteristics of BOLD activation 247 

The next step focused on the kinetics of the stimulus response, including the rise and decay 248 

characteristics of the BOLD signal. For this purpose, we extracted time series from the cluster with the 249 

strongest response as detected by the correlation-based cluster analysis. Next, to avoid noise 250 

amplification, we added a criterion of a 0.5% minimum signal change. All signals, which fulfilled these 251 

two characteristics (highest cluster and ≥ 0.5% BOLD change), were scaled by their maximum. This 252 

subset was then analyzed in two different ways: (1) by Euclidean clustering in the interval 1s-3s post 253 

stimulus onset for the characterization of the BOLD signal rising period and (2) by DTW over the entire 254 

previously considered intervals for the decay kinetics. In the latter case, the temporal onset was 255 

neglected by observing the non-time sensitive DTW. The analysis of the resulting findings followed the 256 

same structure as described above, with characterization based on the time-dependent mean and 257 

standard deviation and a CPP plot by type of stimulus (electrical vs. optogenetic) and study. All three 258 

studies were analyzed with this workflow and produced consistent results, indicating generalizability of 259 

this workflow. Comparably, this rise and decay analysis, as well as the previous assessment of the non-260 

normalized time series, was performed with the dataset of the second study. The consistency of the 261 

study protocols allowed the use of appropriate time intervals.  262 

 263 

Layer-dependent response analysis across multiple studies 264 

In a final step, we examined the signal processing of electrical paw stimulation in terms of intensity, rise, 265 

and decay across all three studies. For this purpose, the cluster-based parameters within each study 266 

were calculated, using only those of the caudal slice in study 2 and omitting optogenetic measurements 267 

in study 3. As an additional adjustment for the intensity analysis, the time series of a measurement were 268 

scaled by the respective measurement-specific maximum signal response. To allow cross-study 269 

analysis, spatial resolution of the 1D lines had to be corrected to the same length. To account for the 270 

different spatial resolutions (see Table 1), and hence to ensure comparability of cortical dimensions 271 

across all studies, we performed a voxel transformation.  For this purpose, all voxels from study 2 and 272 
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3 were aligned to the size of study 1. In study 2, this involved a process of compressing 40 voxels into 273 

a streamlined group of 20 though a pairwise averaging technique. For study 3, we reconfigured the 274 

original 28 cortical voxels to match the 20-voxel structure of study 1. To this end, we multiplied each 275 

voxel 5 times, resulting in a cortical size of 140 voxels. Next, we average groups of 7 voxels each, 276 

thereby effectively reducing the voxel numbers to our target size of 20 voxels per cortex. This guaranteed 277 

a comparable size for the CPP plots. In the procedure, the combination of ordinal-scaled clusters with 278 

each other was possible, even if the study protocols did not fully match. This resulted in CPP plots with 279 

a high number of measurements so that a layer-based significance analysis could be performed. 280 

 281 

Statistical Analysis 282 

We tested different stimuli (electric vs. optogenetic) and regions (cortical layers) for significant 283 

differences with respect to cluster elements. For this purpose, the clusters were first sorted in ordinal 284 

order, so that there was an ascending sequence of cluster groups. Depending on the extraction property, 285 

these time series were ordered by intensity, rise, or decay of activation from low to high or slow to fast, 286 

respectively. Subsequently, the median value of this order was determined for each measurement. 287 

Thus, distributions were obtained across the measurements, which were compared against other 288 

conditions. Differences between electrical and optogenetic are determined using the Mann-Whitney U 289 

rank test, while layer-based comparisons are calculated using Wilcoxon signed-rank test.  290 
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Results 291 

Data-driven detection of cortical boundaries and clustering of BOLD signal properties  292 

First, we analyzed similarities between the contralateral time series of study 1 following electrical fore 293 

paw stimulation (Fig. 1A, left). Using the correlation metric in an interval covering the whole BOLD 294 

response, averaged across 30 repetitions, with a predefined number of three clusters, we found signals 295 

with a positive (red) or negative (blue) characteristic, contrasting a third neutral cluster (white, Fig. 2A, 296 

left). These clusters were spatially segregated into voxels that were dorsal (red) or ventral (blue) to the 297 

corpus callosum (CC) as shown in the CPP plot, thereby providing the possibility to discriminate cortical 298 

from sub-cortical (i.e., striatal) clusters (Fig. 2A, right). On the ipsilateral hemisphere, the BOLD percent 299 

change in time series were significantly smaller (< 0.1% change) and could not be assigned to cortex- 300 

or striatum-specific clusters, indicating the SNR as critical variable for this analysis (Fig. 2B). Given that 301 

averaging improves SNR, we sought to explore how this would impact the performance of clustering on 302 

contralateral time series. To do so, we conducted the clustering process using a reduced number of 303 

repetitions for averaging. Despite the lower number of repetitions (as few as 4-16), we found that this 304 

approach was sufficient to yield stable clustering results in both the cortex and the striatum (Fig. 2C). 305 

This finding suggests that stable results can be achieved with fewer repetitions and lower SNR. Next, 306 

using the Euclidean distance we detected four clusters on the contralateral hemisphere: three of them 307 

in the cortex, which were characterized by amplitude, full width at half maximum (FWHM) and 308 

undershoot (purple < yellow < red), and contrasted with a neutral (white) fourth cluster (Fig. 2D, left). 309 

Because these clusters were characterized by different properties of the BOLD signal, we described 310 

them with the general term intensity level. We observed a gradient in the cluster distribution along the 311 

dorso-ventral axis in the S1FL cortex (Fig. 2D right): voxels of the high-intensity cluster (red, dorsal-312 

most) were followed by those with medium- (orange, dorsal-central), and low-intensity clusters (purple, 313 

ventral-most). On the ipsilateral side, we observed a similar effect as before with no clear region 314 

assignment possible, which is why we excluded these data from further analysis (Fig. 2E).  315 

To acquire information on rise kinetics of BOLD responses with a positive sign in the cortex (see red 316 

cluster Fig. 2A), we performed Euclidian-based clustering on scaled time series during the interval 1–3 317 

s following the stimulation (Fig. 2F, left). Properties that characterized the clustered time series included 318 

rise time (10–90%), τ (time to half-maximum), onset, and undershoot prior to rising phase; hence we 319 

describe these clusters with the general term rise level. Red clusters collected high rise levels, orange 320 

clusters represented medium and blue delayed rise levels. Like before, we detected a gradient in the 321 
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dorso-ventral axis of the cortex with the fastest clusters (red) in the dorsal-most area of the cortex (Fig. 322 

2F, right). Next, we investigated the decay characteristic of BOLD signals using the DTW distance. This 323 

metric was used intentionally since it neglects the previously considered differences in the rise 324 

characteristic. We obtained three clusters that operated independently of the signal start using the same 325 

cortical cluster as for the analysis of rise level. These clusters segregated during the second half (5-10s 326 

post stimulus onset) of the considered time interval (gray shaded area) according to their decay 327 

characteristics (Fig. 2G). 328 

 329 
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 330 

 331 

Fig. 2. Hierarchical clustering combined with different metrics reveal spatial-dependent 332 

properties of BOLD signals at a glance.  333 

To visualize the properties and spatial distribution of different clusters, averaged time series and the 334 

CPP plot of the corresponding clustering metric are shown on the left and right of each subfigure, 335 

respectively. (A) Clustering based on correlation distance for contralateral and (B) ipsilateral line 336 

scanning data. (C) Cluster results of the correlation analysis using single epochs, or averages of 2, 4 or 337 
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16 repetitions. (D) Euclidean-based clustering of contralateral and (E) ipsilateral BOLD signals. (F) 338 

Clustering distribution and properties of the rise level-based examination based on the interval 1s - 3s 339 

post stimulus onset for data from study 1. (G) Clustering result for DTW-based decay characterization. 340 

Time series are represented as mean +/- SD for each cluster, gray-shaded area represent time interval 341 

used for cluster calculation. To visualize the spatial representation of cluster distribution in the cortex, 342 

the CPP plot of the corresponding clustering is shown. Note that CPP plots are symmetric along 343 

horizontal axis. Abbreviations: CPP: Cluster Probability Profile, DTW: Dynamic Time Warping, SD: 344 

Standard Deviation 345 

 346 

  347 

Validation of analysis framework on independent study  348 

To validate our workflow, we analyzed an independent study (study 2, Fig. 1A, middle), which was 349 

performed with different acquisition parameters (see Table 1). While the temporal resolution was the 350 

same, it had a higher spatial resolution. Additionally, 3 lines were acquired simultaneously on the 351 

contralateral side. These lines extended in rostral direction with the caudal-most line starting in the same 352 

anatomical position as in the previous study (Choi et al., 2022). In the caudal line we observed similar 353 

cluster distributions as described before regarding the sign of BOLD signals (correlation-based, Fig. 3A) 354 

and intensity levels (Euclidian-based, Fig. 3B). We also obtained similar clustering results when 355 

investigating rise (Fig. 3C) and decay (Fig. 3D) characteristics, thereby validating our previous results. 356 

Further, this cluster distribution proved to be robustly present also in the central of the three lines: we 357 

found clusters with a positive sign in the cortex, and clusters with high intensity and rise levels were 358 

segregated along a dorso-ventral gradient, while those characterized with slow decay kinetic were 359 

segregated along a ventro-dorsal gradient within the cortex. In rostral lines, we recovered fewer signals 360 

and observed a further cluster (turquoise) with a negative sign with the correlation-based clustering. 361 

This cluster was found in the cortex rostral to S1FP and showed delayed onset characteristics compared 362 

to the negative BOLD responses typically found in the striatum (blue) (Amirmohseni et al., 2016).  363 

     364 

  365 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.01.551587doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.01.551587
http://creativecommons.org/licenses/by/4.0/


 18 

 366 

  Figure 3) Validation of hierarchical clustering-based workflow on independent study.  367 

(A) Correlation-based clustering calculated on the interval between seconds 1–9 following stimulus 368 

onset. (B) Euclidean-based cluster distribution on the same interval in different slices. (C) Rise 369 

characteristic revealed by the Euclidean distance in the time interval 1-3s post stimulus. (D) DTW-based 370 
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clustering to calculate the BOLD decay level following seconds 1 - 9. Time series are represented as 371 

mean +/- SD for each cluster, gray-shaded area represent time interval used for cluster calculation. To 372 

visualize the spatial representation of cluster distribution in the cortex, the CPP plot of the corresponding 373 

clustering is shown. Note that CPP plots are symmetric along horizontal axis. Abbreviations: CPP: 374 

Cluster Probability Profile, DTW: Dynamic Time Warping, SD: Standard Deviation 375 

 376 

Within-study statistical comparison of cluster distributions 377 

Having established a workflow for a qualitative assessment of BOLD characteristics of line-scanning 378 

fMRI data, we explored the possibility to perform statistical analyzes based on cluster distributions. To 379 

this end we compared two stimulus modalities (electrical fore paw stimulation and optogenetic cortical 380 

stimulation, study 3, Tab. 1 and Fig. 1A right) between the cortical layers. Both metrics, Euclidean and 381 

correlation, operated on unscaled BOLD signals, showed similar cluster distribution for sign and intensity 382 

level of the BOLD response as described above (Euclidean: Fig. 4A and correlation: Fig. 4B). Statistical 383 

analysis revealed that intensity levels were significantly higher in layer IV, V upon optogenetic compared 384 

to the electrical stimulation (Mann-Whitney U rank test, p < 0.05, Fig. 4B). Additionally, time series 385 

following optogenetic stimulation showed clusters with faster rise levels (red) compared to electrical 386 

stimulation (Fig. 4C). This effect was significant in layer V (Mann-Whitney U rank test, p < 0.05, Fig. 4C) 387 

but not in layers II-IV (p < 0.1). Finally, when analyzing the decay characteristic, we found the red cluster 388 

with the slowest decay characteristic almost exclusively in data following optogenetic stimulation. The 389 

cluster distribution showed a significant difference in layers V and VI between electrical and optogenetic 390 

stimulation (Mann-Whitney U rank test, p < 0.05, Fig. 4D). Together, our workflow performs a robust 391 

analysis and visualization of different BOLD characteristics producing consistent results across different 392 

study protocols and further allows quantification of cluster distributions in a data-driven way. 393 

 394 

 395 

 396 
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 397 

Figure 4) Statistical comparison of cluster distributions to analyze differences in signal 398 

characteristics between different stimulation modalities.  399 

 (A) Clustering-based on correlation distance combined with statistical comparison between both 400 

modalities. (B) Result of Euclidean-based clustering of BOLD signals following electrical (middle) and 401 
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optogenetic stimulation (right). BOLD signals have significantly higher intensity clusters in layers IV and 402 

V following optogenetic stimulation (Mann-Whitney-U test). (C) Euclidean-based clustering during 1s - 403 

3s post stimulus onset shows more voxels with a higher rise level following optogenetic stimulation in 404 

layer V. (D) DTW-based clustering for differences in signal decay show clusters with slower BOLD decay 405 

kinetic following optogenetic stimulation in layers V and VI. Time series are represented as mean +/- SD 406 

for each cluster, gray-shaded area represent time interval used for cluster calculation. To visualize the 407 

spatial representation of cluster distribution in the cortex, the CPP plot of the corresponding clustering 408 

is shown. Note that CPP plots are symmetric along horizontal axis. Abbreviations: CPP: Cluster 409 

Probability Profile, DTW: Dynamic Time Warping, SD: Standard Deviation 410 

 411 

Stability testing of automated data alignment  412 

In general, clustering algorithms always detect clusters, even in random data(McShane et al., 2002). 413 

Therefore, in addition to the validation of our workflow over different datasets, we were also interested 414 

to investigate the stability of the method itself. To do so, we subsampled animal-wise our input dataset 415 

and examined the behavior of unsupervised data analysis on the output. Using stability testing (5-fold 416 

cross-validation), we explicitly compared the automated alignment of 1D lines and the subsequent 417 

definition of cortical boundaries that is used to generate CPP plots with manually-annotated boundaries 418 

via mapping 1D line onto 2D anatomical images (Tab. 2). The correlation-based clustering showed high 419 

overlap to manually defined regions as revealed by overall highest values for sensitivity (0.842 ± 0.032), 420 

specificity (0.977 ± 0.008), and V-measure (0.626 ± 0.035), which is defined as the harmonic mean 421 

between homogeneity (the cortex contains only points which are member points) and completeness (all 422 

member points are elements of the cortex), and which commonly used to evaluate the correctness of 423 

clusters. When we combined all three positive clusters identified from the Euclidian metric (red, orange, 424 

and purple), a smaller portion of the cortex was tagged, causing a decrease in sensitivity to a value of 425 

0.668. On the other hand, we saw a small increase in specificity, up to 0.988. Considering the standard 426 

deviation of the cortical area for the two metrics, correlation-based clustering results demonstrate 427 

notably increased stability. When comparing both metrics, changing input data the Euclidean-based 428 

approach was more influenced by the input data, while the correlation-based clustering stayed almost 429 

the same, even when with small input changes due to false-positive alignments outside the cortex. 430 

Together, these data show that the data-driven approach to detect cortical boundaries with either metric 431 

correlates well with those that were drawn manually. To conduct a more extensive analysis of the cortex, 432 
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we opted to utilize the annotations garnered from the correlation-based clustering. This choice was 433 

informed by our observation that this particular methodology displayed the most robust alignment with 434 

the cortical structures, as evidenced by our prior examination of relevant performance metrics. 435 

 436 

Table 2) Cross-validated performance metrics for analyzing stability of automated alignment by 437 

comparing clustering results to an expert-drawn cortex annotation. V-Measure: harmonic mean 438 

between homogeneity (the cortex contains only points which are member points) and completeness 439 

(all member points are elements of the cortex), sensitivity (true positives vs. condition positives), 440 

specificity (true negatives vs. condition negatives) 441 

 V-measure Sensitivity Specificity 

Correlation  

positive 

(red) 

62.6% (± 3.5) 84.2% (± 3.2) 97.7% (± 0.8) 

Euclidean 

all positive 

(red + orange + purple) 

51.7% (± 11.5) 66.8% (± 14.6) 98.8% (± 0.4) 

 442 

 443 

Cross-study comparison of BOLD dynamics in between cortical layers 444 

Finally, we combined 43 data sets with electric paw stimulation across three studies and investigated 445 

the processing of sensory information between neighboring cortical layers (LI, LII/III, LIV, LV, and LVI).  446 

To assess the comparability of our results with the previously published analyses of the same data, we 447 

extracted single parameter rise characteristics of the BOLD signal, including time to 10% or 50% of 448 

maximal response amplitude (T10 and T50, respectively), in LII/III-LIV and LV-LVI (Suppl. Fig.1). In all 449 

studies, both parameters were in similar ranges as described before (Albers et al., 2018; Choi et al., 450 

2022, 2023) and show significantly faster BOLD signals in LII-IV compared to LV-VI. Furthermore, we 451 

found no cross-study differences in these characteristics for LII-IV and V-VI, respectively. Next, we found 452 

significantly higher intensity and rise levels when comparing LIV to LV and LV to LVI, respectively (Fig. 453 

5A, 5B, Wilcoxon signed-rank test, p < .05). Differences between LI and LII/III were only significant at 454 

the intensity level. General systematic layer-based differences were not detectable via the decay 455 

characteristics (data not shown, Wilcoxon signed-rank test, p > 0.05) and were hence excluded from the 456 
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next analysis step. Next, we investigated the correlation between rise and intensity level clusters of the 457 

respective layers. For this purpose, we considered means (stars) and covariances in the 2D plane 458 

between intensity and rise level for each layer and displayed the double standard deviation as ellipsoids 459 

(Fig. 5C). A linear dependence between rise and intensity behavior of the BOLD response is visible and 460 

a separation of LVI from LV, while LII/III and LIV showed large overlap. Furthermore, we found large 461 

agreement between clustering results from the different studies indicating successful harmonization of 462 

different study protocols and data structures through inner-study scaling (Fig. 5D). 463 

 464 

  465 

 Figure 5) Layer-wise comparison of intensity and rise level across all three studies.  466 

 (A) CPP plot of intensity levels based on non-scaled BOLD signals across all three studies. (B) Rise 467 

characteristic clustering based on time interval 1s-3s post stimulus. (C) Covariance analysis of 2D plane 468 

dependent on intensity and rise level grouped by layers. A point represents a voxel averaged over all 469 

measurements in a study. This led to 20 voxels x 3 studies = 60 points. The 4 colored stars highlight the 470 

grouped mean. (D) Covariance analysis of 2D plane dependent on intensity and rise level grouped by 471 

studies.  (A) and (B) also indicate the statistical tests for dissimilarity between the neighboring layers 472 

(Wilcoxon signed-rank test). Star indicates cluster mean, ellipsoids indicate double SD. Note that CPP 473 

plots are symmetric along horizontal axis. Abbreviations: CPP: Cluster Probability Profile, SD: standard 474 

deviation.  475 
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 476 
Discussion 477 
 478 
The method of line scanning fMRI has already demonstrated the ability to resolve differences of a few 479 

tens of milliseconds in the BOLD onset due to its high data resolution (Yu et al., 2014). Building on these 480 

advantages of BOLD signals with high spatial and temporal resolution, we established a novel clustering 481 

analysis that can spatially separate and visualize different temporal characteristics of extracted BOLD 482 

time series and allows for mapping those onto cortical boundaries. Based on this clustering we further 483 

introduced a statistical framework that relies on multi-feature analysis of BOLD responses rather than 484 

extraction of single BOLD parameters. Using datasets from three published line scanning studies from 485 

two different imaging centers, we analyzed the influence of multiple clustering approaches to derive 486 

differently responding regions in the somatosensory cortex with high spatiotemporal resolution. Within 487 

our analysis framework, we introduced a novel approach for cross-study statistical analysis of fMRI data, 488 

based on distinct cluster characteristics, providing new insights into cortical stimulus processing in a 489 

visually compelling way. This pipeline allows existing research to be rescaled, compared, and potentially 490 

combined across studies to identify new aspects in a data-driven manner. 491 

Different clustering analyzes robustly detect inter- and intra-laminae-specific BOLD properties 492 

Using the correlation-based HAC centered on the entire stimulus duration we were able to discriminate 493 

cortical boundaries from the striatum and from voxels outside the brain with high accuracy, a pivotal first 494 

step in our data-driven analysis pipeline. Then, applying the Euclidean metric on the same interval, we 495 

showed in each of the three studies a consistent separation of clusters depending on their BOLD signal 496 

intensity level. The time series with the highest intensities occurred in the dorsal-most regions of the 497 

primary somatosensory cortex, which confirms previous reports (Jung et al., 2021; Tian et al., 2010; Yu 498 

et al., 2014) and is characteristic for gradient echo fMRI data, which are more sensitive to blood 499 

oxygenation changes in larger blood vessels that are found on the cortical surface (Báez-Yánez et al., 500 

2017; Uludağ & Blinder, 2018). In study 3, we directly compared cortical optogenetic activation of 501 

CamKII excitatory neurons with electrical fore paw stimulation by analysis of the rise and decay levels 502 

of positive time series using DTW and correlation metrics. We found faster rise characteristics in LIV 503 

and slower decay properties in LIV and LV following optogenetic compared to electrical stimulation. This 504 

is consistent with our recently published analysis (Albers et al., 2018). However, in the previous analysis 505 

this effect was detected using a hemodynamic response-fitting (HRF) procedure combined with 506 

extraction of the onset (T0) of the BOLD response. Yet, these fitting procedures are partially susceptible 507 

to bias (e.g., noise in time series) and do not account for events such as the initial dip that is occasionally 508 
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reported by us and others (Uludağ & Blinder, 2018). In contrast, our rise-level clustering approach does 509 

not require fitting, but instead accounts for the entire rising phase of the BOLD response, thereby 510 

including slope and rise times of the BOLD signal ranging from T0 to Tmax and can therefore be 511 

considered more holistically. 512 

Investigating intra-laminar BOLD effects (study 2), we detected that the probability of high intensity 513 

BOLD signals clearly increased from rostral to caudal direction, which has not been reported in our 514 

previous study (Choi et al., 2022). This clearly puts the center of activation to sensory fore paw 515 

stimulation in most posterior slices, which is consistent with the topography of the area representing the 516 

foot pad of the primary sensory cortex of the fore limb (S1FL) (Chapin & Lin, 1984; Seelke et al., 2012). 517 

Positive BOLD changes in the central slice have lower intensity levels since approx. half of the slice 518 

volume is represented by digit-responsive areas of the S1FL and hence should not be activated by the 519 

stimulation of the foot pad (Chapin & Lin, 1984). Moving rostrally, the positive, yet low-intensity, BOLD 520 

responses likely reflects activation of the secondary motor cortex of the fore paw, which neighbors the 521 

S1FL in anterior direction (Ebbesen et al., 2018; Seelke et al., 2012), thereby showing intra-cortical 522 

stimulus processing and signal integration. Furthermore, consistent with our previous data analyzes, we 523 

also detected two types of negative BOLD responses in different regions: a fast-peaking response that 524 

was mostly located ventral to the corpus callosum in the striatum and which has been associated with 525 

neuronal activation (Amirmohseni et al., 2016; Shih et al., 2012). Further, a delayed-peaking response 526 

that was found in approx. half of the animals in cortical layers LV and LVI in the rostral-most slice 527 

(discussed in (Choi et al., 2022). Together, we have characterized the BOLD response depending on 528 

metric and time interval in more detail through their global properties such as intensity, rise, and decay, 529 

and thereby confirm results from previous studies with an independent and completely data-driven 530 

approach.  531 

 532 

Limits in detection of laminar-specific rise characteristics of BOLD signal 533 

Recent reports segregated onset dynamics of BOLD signals following paw stimulation in the thalamo-534 

cortical input layer (LIV, earliest onset), from those with delayed onsets in the adjacent layers LII/III or 535 

LV  (Silva & Koretsky, 2002; Yu et al., 2014), which reflects canonical signal processing in the cortex. 536 

Therefore, we investigated whether we could resolve these differences as well and combined datasets 537 

with the same stimulation modality from all studies to obtain a global study-independent signal 538 

characterization. To allow comparison of our data with the literature we extracted rise time 539 
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characteristics, including T10 and T50 and observed similar rise characteristics as described in previous 540 

reports (Albers et al., 2018; Silva & Koretsky, 2002; Yu et al., 2014). There were no differences between 541 

the studies in T10 and T50, but across all studies, we observed significantly faster BOLD time series in 542 

LII/III+IV compared to LV-VI. However, we and others (Jung et al., 2021) did not detect a significantly 543 

earlier onset in LIV compared to LII/III. While this seems contradictory to earlier findings from other 544 

studies (Yu et al., 2014), it is important to mention that the conclusions were reached with different 545 

analyzes: in this study we focused on an interval enclosing the entire rise time, whereas in the original 546 

description of the line scanning method the onset (T0) of the BOLD signal was estimated (Yu et al., 547 

2014). Furthermore, the majority of our data (x out of 43, obtained from studies 1 and 2) were acquired 548 

with a temporal resolution of TR=100ms, which is well below the TR≤50ms that was used to detect inter-549 

laminar-specific processing (SILVA, 2002, Yu 2014). Therefore, if smaller latencies in BOLD signal 550 

should be investigated faster acquisition schemes with high temporal resolution (≤ 50 ms) are necessary 551 

to detect early thalamic synaptic input and neuronal activation in layer IV, which is best combined with 552 

immobilization and mechanical ventilation of animals(Yu et al., 2014). Furthermore, the technical 553 

development of even faster fMRI sequences will help to resolve and study these differences. 554 

 555 

Potential of clustering analyses for fMRI time series 556 

Previous studies have demonstrated the added value of cluster-based analyses in fMRI time series. 557 

Here, we go one step beyond distinct simultaneous activation analysis and add voxel-based information 558 

on temporal kinetics of BOLD signals ranging from the onset to the undershoot. We also add the sign 559 

of the time course without extracting any of the individual characteristics. Furthermore, we were able to 560 

use these ordinal scaled clustering results to jointly observe layer-wise differences in the signal 561 

processing across different studies. This is remarkable because due to differences in study protocols, 562 

which include different rat strains, anesthesia regimens, field strengths, temporal and spatial resolutions, 563 

this would hardly be possible with conventional methods. This highlights a further advantage of our 564 

analysis framework for stimulation-induced BOLD fMRI data, parallel to the recently reported protocol 565 

for functional connectivity during resting-state (Grandjean et al., 2023).  566 

Yet, analyses of this type also come with challenges, such as the fact that clustering is not only 567 

dependent on the choice of metric, as we have explored. Decisions regarding the type of procedure or 568 

other parameters like the number of clusters must be preset. In addition, unsupervised machine learning 569 

is quickly unstable to data change (especially those with low signal responses). At least for parts of our 570 
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analysis, we were able to prove the robustness of our preset version of HAC and its dependence on the 571 

SNR. Despite the robustness of this workflow, its transferability to other multi-dimensional datasets 572 

remains to be validated in future studies.  573 

 574 

Conclusion 575 

In summary, we have developed a method to analyze task fMRI data in a completely data-driven 576 

manner. In this process, brain structures are determined by means of similarity relations of the BOLD 577 

response. A new Cluster Probability Profile (CPP) plot was introduced by spatially visualizing these 578 

structures over multiple measurements, illustrating the probability of a given signal character per voxel 579 

at the level of individual datasets or animals. We validated previously published study results using a 580 

different statistical analysis, which is entirely based on cluster distribution. Importantly, each cluster 581 

represents a group of parameters of the BOLD response instead of single parameters, which makes 582 

this procedure more robust. It is sensitive to detect differences in temporal BOLD kinetics of cortical 583 

modality processing and finally, we can effortlessly combine and compare datasets from different studies 584 

and imaging centers to extend statistical testing to larger cohort sizes. In addition, the described analysis 585 

pipeline can be used in the future for complex, time-dependent quantitative data sets, regardless of their 586 

data structure. This holds great potential for the future, as data-driven approaches will be increasingly 587 

used in future analysis routines. 588 

  589 
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Supplement Figure 1) Comparison of T10 and T50 between LII/II+LIV and LV+LVI across all three 715 
studies. 716 
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