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Abstract

Can non-human primates (NHPs) represent other minds? Answering this ques-
tion has been historically difficult because primates can fail experimental tasks
due to a lack of motivation, or succeed through simpler mechanisms. Here we in-
troduce a computational approach for comparative cognition that enables us to
quantitatively test the explanatory power of competing accounts. We formalized
a collection of theories of NHP social cognition with varying representational
complexity and compared them against data from classical NHP studies, fo-
cusing on the ability to determine what others know based on what they see.
Our results uncovered that, while the most human-like models of NHP social
cognition make perfect qualitative predictions, they predict effect sizes that are
too strong to be plausible. Instead, theories of intermediate representational
complexity best explained the data. At the same time, we show that it is pos-
sible for human-like models to capture non-human primate behavior (NHP), as
long as we assume that NHPs rely on these representations only about one third
of the time. These results show that, in visual perspective taking tasks, NHPs
likely draw upon simpler social representations than humans, either in terms of
representational complexity, or in terms of use.

Key words: Comparative Cognition, Computational Modeling, Social
Cognition, Theory of Mind

1. Introduction

Like humans, non-human primates have rich social lives: they live in com-
plex social groups, they can act altruistically, they work together to complete
everyday tasks, they learn from each other, and they develop lifelong social
relations—from dominance hierarchies to close friendships (1–6). At the same5
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time, their social lives are undeniably simpler relative to that of humans (7, 8):
Other primates do not deceive, or persuade each other. They do not invest their
time to the transfer knowledge to others. And they do not develop cultures and
societies of human-level complexity. What cognitive differences might explain
this gap?10

Cognitive scientists have long hypothesized that part of the answer lies in
our Theory of Mind—the ability to represent others’ unobservable mental states
like their beliefs and desires. Theory of Mind has been implicated in a broad
range of human capacities, from language use to moral reasoning (9–11). Its
foundational components are at work from early in infancy (12, 13), and many15

important mental-state inferences are automatic in adults (14, 15). Because
of this, questions about the evolutionary origins of Theory of Mind have been
studied extensively in non-human primates (see 16–18, for review), but there
is surprisingly little consensus about what exactly non-human primates under-
stand about other minds.20

Characterizing non-human primate (NHP) Theory of Mind has been histor-
ically challenging for many reasons. However, one fundamental challenge has
been differentiating between alternative accounts that explain the qualitative
data equally well. For instance, consider two competing accounts, one arguing
that non-human primates have complex representations of other minds, and a25

second one suggesting that their behavior can be explained by a simple set of
behavioral rules. Suppose further that these two accounts—despite proposing
radically different representational contents—converge in predicting that non-
human primates should succeed on a given task. If 70% of the tested primates
indeed succeed, this is often interpreted as consistent with both accounts (as-30

suming this effect is significantly above chance). Therefore, a task like this one
would fail at differentiating between accounts, and this is usually the state of
comparative research on Theory of Mind—for every study, there exists a men-
talistic and a non-mentalistic account that both qualitatively explain the data
(19–22).35

This analysis, however, makes two implicit assumptions. The first assump-
tion is that a 70% success rate is equally consistent with the two different
accounts. As we show in this paper, this is not always the case: different
accounts can predict different effect sizes. This is because, under some repre-
sentational contents, non-human primates would have a clear representation of40

others’ knowledge and have high confidence about how to react. Under other
representational contents, non-human primates might have weak expectations
about others’ minds, leading to weaker effect sizes in how they react.

The second assumption is that non-human primates were not always relying
on the posited representations, given the 30% failure rate. Intuitively, however,45

this failure rate should also inform how much we choose to accept different
proposals. For instance, we may be more willing to accept a high failure rate
when a theory proposes that solving the task requires complex social inferences,
but the same failure rate might raise concerns for a theory that posits a trivial
mechanisms that guarantee success.50

The challenge of distinguishing between competing accounts on the basis
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of qualitative predictions is not unique to comparative cognition. In recent
decades, computational cognitive modelling has emerged as a powerful tool to
help solve this issue. By formalizing different theories in exact computational
terms, it is possible to derive exact effect sizes that can be compared against55

experimental data. This general approach has proved successful in multiple
related fields such as human Theory of Mind (e.g., comparing the explanatory
power of mentalistic models versus simple cue-based alternatives; 23), and causal
reasoning (evaluating the role of counter-factual reasoning; 24).

Our goal in this paper is to advance a computational methodology for un-60

derstanding non-human primate social cognition. Because Theory of Mind is
a complex cognitive system with many sub-components (including mechanisms
for inference, prediction, explanation, and even planning over other minds; Ho
et al. 25), here we focused on just one component of ToM that’s been well-
researched in comparative cognition: the ability to determine what others see65

and know based on their visual perspective (see 26, for review). The capacity
to represent others’ perceptual and knowledge states are among the most basic
components of ToM, emerging early in human infancy (27), and the question of
whether these capacities are shared with our NHP relatives has been the subject
of much debate (16, 18, 28–30).70

To illustrate this capacity, consider Fig. 1a, which shows a subordinate
chimpanzee (the subject; black) and a dominant conspecific (the competitor;
gray) on opposite sides of a room with two apples. One apple is at the center of
the room and visible to both chimpanzees, while the second apple is behind an
opaque barrier and visible only to the subject. If the subject understands that75

the competitor only knows about the apple in the center of the room, it can use
this understanding to strategically decide which apple to go for. Tasks like these
were used in now-classical work to show that chimpanzees (Pan troglodytes)
will preferentially reach for food rewards that are hidden from the conspecific,
providing some of the first evidence for visual perspective taking in non-human80

primates (NHPs), which has since been extended to show more complex forms
of perspective taking, including evidence that NHPs know what others can hear
(31, 32).

To explore what types of representations underlie this capacity, we developed
seven computational models of varying cognitive complexity (Shown in Fig. 1b-85

h). Each of these models is instantiated as a simple system that is able to
complete basic primate experiments implemented in simple two-dimensional grid
world. We can therefore use these models to derive exactly how easy or difficult
a task should be for non-human primates, according to different models. In
addition, this enables us to explicitly manipulate how often non-human primates90

actually rely on each model’s posited representations (hereafter referred to as
reliance).

We evaluate our models using three approaches. First we examined each
model’s qualitative pattern of performance. Each model completed a suite of
seminal visual perspective-taking tasks, and we compared each model’s qual-95

itative pattern of successes and failures to those documented in comparative
studies (Section 3.1). This revealed an ordinal relationship: the more complex
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Figure 1: a) Hypothetical competitive event to illustrate the logic of our seven computational
models. Here, the subject (small chimpanzee, black) is in front of a dominant conspecific (big
chimpanzee, gray) in a room with two apples and two opaque barriers (in black), such that
both chimpanzees can see the apple between them, but only the subject sees the apple in
front of the barrier. c-h) Posited representations for each our seven computational models,
ordered by complexity. Outlined rectangles in black indicate the groupings of models into
similar families.

the model, the more it matched the pattern of qualitative results from the em-
pirical studies (i.e., the number of directional success/failure predictors that
qualitatively match the empirical studies).100

Next, we evaluated each model’s capacity to quantitatively replicate the
exact effect sizes found in non-human primate (NHP) experiments (Section 3.2).
This revealed that comparing theories to black-or-white success/failure behavior
omits important information: although the more complex models match the
qualitative results, they predict effect sizes that are too strong when compared105

to empirical data (i.e., they predict that primates should be much better at
the task than they actually are). This suggests that models of intermediate
complexity better represent non-human primate Theory of Mind.

When a model predicts an effect size that is too strong, this discrepancy
can be accommodated by lowering the reliance parameter in our model (i.e.,110

the less that non-human primates rely on the representation, the weaker the
effect sizes become). We therefore take this approach to infer how often non-
human primates rely on the posited representations, for each model to maximize
its explanatory power. Through this approach, we can reveal what implicit
commitments people must make about reliance when they advance a particular115

representational theory. In particular, we show that the most human-like models
of Theory of Mind can only explain primate behavior by assuming that non-
human primates can only access these representations about one third of the
time. Therefore, positing that non-human primates (NHPs) have human-like
ToM in their representations comes with the implication that the frequency120

with which NHPs rely on those representations is lower than human’s reliance
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on mentalistic reprsentations.

2. Experimental paradigms and computational modeling

2.1. Experimental paradigms

Our work focuses on a set of eleven experiments and controls designed to125

assess non-human primates’ (NHPs) understanding of how another agent’s vi-
sual perspective affects their knowledge (Table 1). These eleven experiments fall
into five general paradigms (shown in Fig. 2) which follow a similar structure:
A subject and a dominant competitor face one another on opposite sides of an
enclosure with two food rewards that they ultimately compete for. Because130

dominant individuals in NHP species tend to monopolize food and respond an-
tagonistically to challenges from lower-ranking individuals (33), these paradigms
create a pressure for the subordinate subject to exploit any privileged knowledge
of food locations to ensure they obtain a reward.

In the Center-Wall paradigm, the subject and the dominant conspecific135

face each other with a visible food reward directly between them, but the subject
can see a second food reward that is hidden from the competitor’s view by a
barrier. The Open-Hidden paradigm is similar, with the difference that the
two rewards are equidistant from the subject. In both of these paradigms, NHPs
are significantly more likely to take the hidden reward. In the Transparent-140

Hidden Routes paradigm, the subject can reach for a food reward through a
left or a right path, but one of the paths is hidden from the competitor’s sight
for longer than the other. Here, NHPs are more likely to reach through the
hidden route than through the transparent one.

The final two paradigms are control conditions. In the Hidden-Hidden145

paradigm both food rewards are visible to the subject but hidden from the
competitor’s perspective. In the Open-Transparent paradigm, the situation
is identical to the Open-Hidden paradigm with the difference being that the
barrier is transparent (and both the subject and competitor therefore see both
food rewards). In both of these paradigms, NHPs show no systematic preference150

for either food reward.

2.2. Computational models

To understand the relationship between a theory’s complexity and its ex-
planatory power, we implemented seven computational models that vary in rep-
resentational richness. These models are not meant to be accurate and faithful155

representations of existing theories. Only the proposers of these theories can
specify what exact computational implementation would capture their nuanced
positions. Instead, the range of theories that we present are a representative
sample from the space of possible theories, varying across levels of complexity.
These theories fall broadly in four families: Egocentric, Behavioral, Mentalistic,160

and Full Theory of Mind. For clarity, we explain each model in the context of
the hypothetical event shown in Fig. 1a (a more technical description of the
models is available in Methods and Materials). We begin by explaining each
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Paradigm Paper Exp
Center-Wall Hare et al. (34) E1
Open-Hidden Bräuer et al. (35) E2

Canteloup et al. (36) E1
Hare et al. (34) E2-E4

Transparent-Hidden Routes Hare et al. (37) E2
Melis et al. (32) E1

Hidden-Hidden Hare et al. (34) E3-E4
Open-Transparent Hare et al. (34) E5

Table 1: Papers and experiments used to evaluate our computational models. Note that
Hare et al. (34) Exp 3 and 4 had multiple conditions that use more than one paradigm
and are therefore repeated. All experiments tested chimpanzees (Pan troglodytes) except for
Canteloup et al. (36), which tested Tonkean macaques (Macaca tonkeana).

model’s posited mental representation, and we then explain how we integrate
the notion of reliance into the models (i.e., the ability to modulate how often165

non-human primates actually use the posited representations).
The Egocentric family is the simplest one, consisting of theories where NHPs

entirely ignore the competitor. We implemented only one model in this family:
The Physical planner model, where NHPs simply attempt to go towards the food
reward reachable by the shortest path (Fig. 1b). Next, the Behavioral family170

consists of proposals where NHPs form non-mentalistic expectations about com-
petitor behavior, and react accordingly. In the Food-directed behavior model,
the NHP expects the competitor to pursue one of the food rewards (possibly
learned from experience seeing conspecifics regularly go towards food), but lacks
a mechanism for predicting which one, therefore placing an equal probability175

over each of the food rewards (Fig. 1c). The Location-directed behavior model
extends the behavioral expectations to an expectation that competitors might
also check locations they cannot see (which could also be learned from experi-
ence observing conspecifics without necessarily representing epistemic states).
This model therefore places an equal probability distribution over all the food180

rewards and places where a food reward could be (even if none is there; Fig.
1d).

The Mentalistic family consists of models that represent the competitor’s
mind, but lack full human-like mental state representations. These models are
loosely inspired by proposals that NHPs do represent others’ mental states, but185

in a markedly limited way (e.g., Martin and Santos 38). The True belief model
captures the idea that NHPs attribute their own knowledge to others and expect
competitors to act based on this knowledge (Fig. 1e). Although the subject and
competitor share the same representation of the world, they may still pursue
different food rewards (e.g., each individual might go for its closest food reward,190

which could be different for the subject and the competitor). In the Partial
representation model, the NHP can compute what parts of the environment
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Figure 2: Depictions of the experimental set-up for each of the five paradigms. The top
row shows paradigms with directional predictions: if non-human primates represent others’
knowledge, they should preferentially go towards the reward (or take the route) that is hidden
from the competitor. The bottom row shows paradigms with chance predictions: when the
two rewards are simultaneously known or hidden from the competitor, the subject should
show no reliable preference for which one to pursue.

are in the shared visual field, and only represents those in a conspecific’s mind.
This model therefore has no representation of the competitor’s awareness (or
lack thereof) about objects or locations hidden from the competitor’s view (Fig.195

1f). That is, any objects outside of the conspecific’s visual field are simply not
represented.

Finally, in the Uncertain representations model, the NHP assumes shared
knowledge for objects that are in visual common ground, but is uncertain
whether the competitor is or is not aware of objects outside the competitor’s200

field of view. This model differs from the partial representation model in that
the subject is thinking about the possibility that the conspecific might know
about the hidden reward (but is at the same time, unsure about whether they
know about it or not). This model therefore builds predictions by integrating
the two epistemic hypotheses about the competitor (knows or does not know205

about the hidden object, using a uniform prior; Fig. 1g).
Finally, the Full ToM family consists of theories of human-like Theory of

Mind. Although different researchers have proposed different theories of what
full human-like ToM consists of (e.g., Hutto 39, Gordon 40, Jara-Ettinger 41),
these theories only make different predictions in complex cases that go beyond210

those captured in the paradigms considered here. For this family we therefore
include only an Ignorance representation model, where NHPs have an accurate
representation of their competitor’s visual perspective which both represents
their ignorance of hidden object and their knowledge of visible objects (Fig.
1h).215
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2.2.1. Modeling reliance

Each computational model can generate expectations about how non-human
primates should behave, if they were always relying on the posited representa-
tions (note that this doesn’t imply full success; if the model is uncertain about
what the conspecific knows, their behavior will reflect this). We then extended220

each model to include a reliance parameter, which represents how often an
NHP uses the model’s representations to determine how to act. This reliance
parameter therefore captures the possibility that NHPs might fail to use their
social representations for a variety of reasons such as a lack of motivation, the
cognitive cost of using their ToM, a lack of trust in their predictions, distrac-225

tion, not caring about the competitor, a failure to inhibit default behavior, or
general noise in their choice behavior. Formally, if a model indicates that the
subject should pursue reward A with probability pmodel(A), then the subject’s
final probability of pursuing food A (psubject(A)) is given by

psubject(A) = rpmodel(A) + (1− r)pegocentric(A) (1)

where pegocentric(A) is the probability that the NHP would pursue reward A230

when they fail to to consider the competitor (i.e., fail to use the model’s repre-
sentations). This term is determined by what the NHP would do if the competi-
tor wasn’t there (therefore fully ignoring them). When reliance r = 1, NHPs
always use the posited representations. Conversely, when r = 0, NHPs are en-
tirely unable or unwilling to use the social representation. Intermediate reliance235

values indicate that NHPs inconsistently rely on the model when deciding what
to do.

3. Results

3.1. Qualitative model performance

We first evaluated each model’s capacity to replicate the qualitative pattern240

of successes and failures documented in the NHP literature. For this test we
estimated the reliance directly from the NHP experimental data, obtaining a
reliance of r = 0.6 that we fixed for this analysis (i.e., assuming that these tasks
elicit their social representations 60% of the time; see Sec. 5.4.1). Because each
computational model predicts a continuous effect size (rather than an absolute245

success or failure), we coded model behavior as predicting chance performance
when its preference for both food rewards was below t = 0.6 (see Section 5.3.1
for details), and as making a directional prediction otherwise. Altogether, this
first qualitative analysis used reliance r = 0.6 and threshold t = 0.6.

Figure 3a shows the percentage of paradigms that each model replicates, re-250

vealing an ordinal relationship where the models with the most complex social
representations best replicated the qualitative experimental record. Figure 3b
shows each model’s exact performance on each paradigm (which can also be
interpreted as the model’s predicted success rate). A detailed walk-through of
each model’s qualitative behavior is available in Supplemental Materials Sec-255

tion 1.1. A robustness analysis revealed that these results are representative of
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Figure 3: Results from the qualitative analysis. a) Percentage of paradigms where each
model matches the qualitative pattern found in NHP literature (with threshold t = 0.6).
Models (y-axis) are ordered by complexity with most complex representations at the top.
This figure reveals an ordinal relation where the most complex models better replicate the
full qualitative pattern of NHP behavior. b) Detailed results showing each model’s predicted
effect sizes (i.e., probability of success, from 0 to 1) for each paradigm. Each row represents a
computational model and each column one of the five paradigms. The first three paradigms
have shown preferential choices in NHPs while the last two paradigms have documented chance
performance. Background color indicates whether the model prediction is consistent with NHP
behavior or not, at the t = 0.6 threshold (such that panel a is showing the percentage of green
cells in this figure).

general model performance under different threshold values t (see Figs. S1-S2
in Supplemental Materials).

3.2. Quantitative model performance

Our qualitative analyses suggest an ordinal relationship between model com-260

plexity and consistency with NHP behavior. However, each model makes exact
predictions about expected effect sizes. As a consequence, even if a model
makes the correct directional prediction, it may lack explanatory power if it ei-
ther over- or under-predicts an effect size relative to observed NHP behavior. To
test this, we calculated the exact probability of each model generating the em-265

pirical pattern of NHP choices (P (Data|Model)), using the seven experiments
that reported enough quantitative information (Exact values available in Fig.
S3 in Supplemental; see Section 5.4 for details).

To interpret these results, we performed pair-wise model comparisons, test-
ing each model’s relative ability to explain the data using Bayes factors with270

a uniform prior (i.e., assuming all models were all a prior equally likely; see
Section 5.2.2). Fig. 4 shows the results from this analysis. In contrast to the
qualitative analyses, the Uncertain representation model now outperformed all
other models: the data from every single paradigm supported this model over
100 times more than any other model (i.e., BF > 100 for all cases). Interest-275

ingly, the other two Mentalistic models (Partial representation and True belief )
also outperformed the most complex model (Ignorance representation). This
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Figure 4: a) Number of competing models that each model outperforms (as determined by
Bayes Factors). The y-axis shows our seven computational models ordered by cognitive com-
plexity (most complex at the top), and the x-axis shows number of competing models that
it outperforms. The three Mentalistic models were the highest ranked, with the Uncertain
representation model beating all other models. The most complex model —Ignorance repre-
sentation — performed worse than the Mentalistic models, and the Behavioral and Egocentric
models performed the worst. b) Model comparison matrix with Bayes Factors. Each cell rep-
resents how many times more probable the model on the y axis is than the model on the x axis
(with y axis using the same order as the first panel). Green indicates Bayes Factors higher
than 1 (i.e., row model outperforms column model; panel a therefore shows the sum of green
cells in the row), and red indicates Bayes Factors below 1 (i.e., column model outperforms
row model).

is because Ignorance representation predicted effects that were much stronger
than the observed ones. Finally, models in the Egocentric and Behavioral fam-
ilies the poorest, because they predictions were outright incorrect (as already280

revealed in the qualitative analysis).
These results suggest that, under a quantitative analysis, the curvature be-

tween model complexity and explanatory power has an inverted U-shape: simple
models predict effects that are too weak, while the most complex model predicts
effects that are too strong. Models of intermediate complexity best explained285

the effect sizes observed in the NHP experiments.

3.3. Estimating model-posited reliance

So far, our model evaluation assumed that NHPs rely on their social rep-
resentations 60% of the time—an estimate derived directly from the empirical
data (Section 5.4.1). However, our computational models allow us to take a dif-290

ferent approach: searching for what reliance parameter maximizes each model’s
potential to explain NHP data.

Figure 5 shows each model’s explanatory power as a function of reliance.
The Physical planner model is insensitive to the reliance parameter because, by
design, it does not have any representation of the competitor’s behavior. The295

Behavioral models (Food-directed behavior and Location-directed behavior) and
the True belief model showed a similar structure: the stronger the assumption
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Figure 5: Model explanatory power as a function of the hypothesized reliance r. The x-axis
shows reliance. When r = 0, the subjects never rely on the posited social representations and
when r = 1, the subjects always rely on the model’s posited social representations. The y-axis
shows the probability (in log-space) of the model replicating the experimental data under that
reliance value. The dashed vertical line represents the reliance of r = 0.6 estimated from data.
All models produce the same likelihood (LL=−77.7) at r = 0 because at this value they all
simply express an egocentric planner.

that primates always use these representations (high r), the better these mod-
els can explain the empirical data. The other two models in the Mentalistic
family (Uncertain representation and Partial representation) were best able to300

explain the empirical data under the assumption that subjects rely on their
social representations more than half of the time, but critically, not all of the
time. Finally, the Ignorance representation model’s ability to explain the em-
pirical data rapidly decreased when it was posited that subjects always relied
on their underlying social representations, because the model expected larger305

effect sizes in the empirical data.
This analysis enabled us to calculate what reliance parameter maximizes

each model’s explanatory power (i.e., the r value at which each curve in Fig. 5
peaks). The results are shown in Fig. 6a (with Fig. 6b showing the posterior
probability over reliance, as estimated using the NHP data, and the vertical310

line representing the expected reliance r = 0.5; see Sec. 5.4.1). The Egocen-
tric and Behavioral models (in yellow and green) continued to show the worst
performance. By contrast, the Mentalistic models (Partial representation, True
belief, and Uncertain representation) and the Full model (Ignorace representa-
tion, all achieved high explanatory power (high value on the y-axis), but by315

positing different degrees of reliance. This reveals that, in principle, models in
any of these two families can explain NHP behavior in these perspective-taking
tasks, but each model carries a different commitment to how often NHPs rely on
the posited representation. If NHPs have human-like Ignorance representations,
then they must be relying on them very infrequently; only 37% of time (i.e.,320
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Figure 6: a) Degree of reliance (r) (x-axis) that maximizes each model’s explanatory power (y-
axis). b) Posterior distribution over NHP reliance r inferred from experimental data. Vertical
dashed line shows expected reliance r = 0.6 estimated from the empirical data.

r = 0.37). This is intuitively consistent with the fact that, if an adult human
were placed in this experimental context, one might expect their performance
to be much stronger than those of chimpanzees and macaques.

On the other end, the True belief model best explains the data under the
assumption that NHPs always rely on their ToM in these tasks, with r = 1.0.325

That is, theories that posit that NHPs simply attribute their own knowledge
to others best explain NHP data under the assumption that this attribution
happens all the time in these tasks, such that NHP behavior is never influenced
by task demands, attentional lapses, motivational changes, or other extraneous
noise (an intuitively unlikely proposition).330

Finally, Partial representation and Uncertain representation best explain
NHP behavior under moderate ToM reliance, with r = 0.56 and r = 0.60, re-
spectively. Interestingly, the Uncertain representation model reached the high-
est explanatory power from all models and, surprisingly, did so with a reliance
parameter r = 0.6 that matched our estimate from the empirical data.335

4. Discussion

Here, we sought to evaluate non-human primate (NHP) Theory of Mind
(ToM) through computational modeling, using their performance on classic vi-
sual perspective-taking tasks as a case study. Formalizing theories of NHP so-
cial cognition as computational models revealed three broad conclusions. First,340

when evaluating the qualitative pattern of successes, we found an ordinal re-
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lationship where increasing a model’s representational complexity resulted in
more NHP-like patterns of behavior. This is broadly consistent with standard
interpretations of this work, suggesting that NHPs have a human-like capacity
for visual perspective taking. However, each computational model predicted dif-345

ferent effect sizes. Our second analyses therefore revealed that, when evaluating
the quantitative model fit to NHP behavior, Mentalistic models of intermediate
complexity best explained the data. This is because, although the most human-
like model predicts all of the qualitative effects documented across the NHP
data we considered, it also predicts effect sizes that are too strong compared to350

the experimental record.
Our approach further allowed us to estimate how often NHPs rely on the

posited representations, according to different models—a commonly unacknowl-
edged component of theories. This revealed two types of proposals with com-
parable explanatory power. The first proposal is that NHPs have human-like355

visual-perspective taking capacities, but use them less than 40% of the time in
these paradigms. The second proposal is that NHPs rely on simpler cognitive
representations and use them around 60% of the time.

This tradeoff between model complexity and reliance is of particular rele-
vance to the question of whether NHPs have a human-like ToM. Human ToM360

is characterized not only by its cognitive richness, but also by how often we use
it in a wide range of contexts, and sometimes even automatically (14). For in-
stance, people will sometimes automatically track each other’s knowledge from
visual perspective (42) and make automatic common ground inferences (15).
Our work therefore suggest that, even if NHPs have a ToM of similar complex-365

ity to humans (in the context of visual perspective-taking), then its usage is
surprisingly limited compared to how readily human adults use their ToM in
visual perspective-taking tasks. This is particularly interesting given that the
experimental paradigms considered in this paper were designed with ecological
validity in mind, using competitive situations with known conspecifics. In short,370

if NHPs have human-like social representations, then they are not applying them
with human-like frequency.

Methodologically, our work also provides a general framework for computa-
tional comparative cognition. Our work focused on seven computational models
that vary in degree of cognitive complexity, but they were not intended to cover375

the full space of conceptual theories that people have. Other researchers and
theorists can use our framework to test the performance of their own theories
against the models that we present here. Thus, our work contributes a set of
benchmarks for theory performance and a framework for computationally im-
plementing and testing the ability of verbal theories to explain empirical data.380

One limitation of our work is that our model’s reliance construct is composed
at least two underlying factors. The first factor is the cognitive effort associated
with using the representations. That is, reliance can be low because NHPs
find using their social representations to be effortful, and this cognitive cost
might be exacerbated in increasingly complex paradigms. The second factor385

is NHPs’ motivation to rely on social representation. In other words, reliance
also captures how much an NHP might care about participating in the task.
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While our approach was able to extract how much reliance different theories
implicitly posit, it leaves open the question of what parts of NHP reliance are
due to cognitive demands, motivation, or other factors.390

While our work focused specifically on visual perspective-taking, ToM has
many other components which have been studied in non-human primates, in-
cluding gaze-following (43–47), awareness representations based on an agent’s
past perceptions (31, 48–51), and belief representations (38, 52–56). Our work
offers a general methodological approach that shows how experimental paradigms395

can be standardized and placed in a common representational framework that
allows for the design and evaluation of computational models. Doing so, how-
ever, will require extending this approach to capture paradigm-specific reliance
(i.e., some experimental paradigms might increase NHP’s reliance on their avail-
able social representations; e.g., (53)), and possibly even model switching (i.e.,400

NHPs might use different representations in different tasks). Even within visual
perspective-taking tasks, some variations in the paradigms appear to reduce
visual perspective-taking success (57). These failures have been interpreted as
revealing that NHP social cognition is most visible in more ecologically-relevant
competitive contexts (48), and where food reward are far enough apart that they405

enhance attention to physical costs. We hope that our framework will allow for
the effects of these paradigm-specific differences on NHP behavior to be further
tested computationally.

5. Methods

5.1. Computational framework410

5.1.1. General computational representation

Our general framework builds on Markov Decision Processes (MDPs) (58).
MDPs are a general framework for modeling how agents take sequences of ac-
tions in an environment to obtain rewards. While MDPs are often used to model
first-person behavior, work in human Theory of Mind has shown that they can415

also be used to model expectations about how other agents will act to obtain
rewards, therefore serving as a framework for Theory of Mind (23, 59, 60). Criti-
cally, MDPs model behavior through an assumption that agents move efficiently
towards their goals—an assumption that both human and non-human primates
share (61, 62). However, because classical MDPs always generate only opti-420

mal plans, here we instead use probabilistic MDPs. Probabilistic MDPs create
graded expectations over behavior, allowing for the possibility that agents will
make errors in decision making and planning, particularly when the value of dif-
ferent action plans is similar. An extended presentation of probabilistic MDPs
can be found in (59).425

Computational models were implemented using the Bishop software pack-
age (https://github.com/julianje/Bishop). Each paradigm was modeled as a
gridworld with barriers, food rewards, and an agent. The agent could move in
the four cardinal directions as well as diagonal directions: up, down, left, right,
up-left, up-right, down-left, or down-right. Each movement incurred a small430
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cost of 0.25 and each food reward had a value of 50. The small cost induces an
expectation for efficient action (making shorter action paths less costly), and
the reward was set to be large enough such that it would always be higher than
the costs (i.e., to avoid situations where the food was not rewarding enough to
justify the cost of getting it; as this has never been observed in the experimental435

paradigms we considered). Note that exact reward values have important conse-
quences in environments where different objects have different rewards, but this
was not the case in our paradigms, where all food rewards are always identical.

As the utility of two competing food rewards becomes more similar, it should
be harder for an organism to reliably identify which ones is better (e.g., it is easy440

to tell that it’s better to get a food reward that is one step away from an identical
food reward that is fifty steps away; but it is harder to do this if the difference
were, say, thirty-three vs thirty-four steps in different directions). To account
for this, we used the standard approach of softmaxing the utility functions
(23, 59, 63, 64), using a temperature parameter of τchoice = 1. During action445

planning (i.e., how agents move in space, rather than how they make choices),
we also introduced a small probability of errors by softmaxing action plans with
temperature τaction = 0.01. Note that, while the exact success probabilities that
each model produces are affected by softmax, the model rankings in our analyses
do not change because the same parameter was applied to all models. The details450

on how each paradigm was implemented are available in Supplemental Section
2.

5.1.2. Model implementation

All models were implemented through Markov Decision processes (MDPs).
All MDP environment representations are available in our OSF repository. In455

most paradigms, we use MDPs to model how the subject represents the com-
petitor’s behavior, with two exceptions. The first exception is the physical
planner, where the MDP represents the subject’s own planning module (as they
are acting egocentrically).

The second exception is the Transparent-Hidden routes paradigm. In this460

paradigm, the subject must consider which of two routes is most likely to be
detected by the competitor. Therefore, the MDP represents how the competi-
tor will reason about the subject’s movements (rather than representing how
the competitor moves towards food rewards). To achieve this, each model at-
tributes a mental representation to the competitor, and then uses this attributed465

representation to track how the competitor will reason about the subject’s move-
ments. For each action plan (i.e., route the subject could take), the model then
integrated a probability that the competitor would detect the subject, and the
probability of obtaining a reward was set as the probability of not being de-
tected. For most accounts, we used 0.9 as the probability of detection so as to470

account for the possibility that the competitor might not be able to react on
time, or notice the movement.1

1While different detection probabilities would change model predictions, this would only
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Egocentric models
Physical planner. In the physical planner model, each paradigm map was

initialized as a single MDP with the agent in the subject’s starting position. All475

food rewards and barriers were present on the map. This approach therefore
modeled how the subject would act if it did not represent the competitor at all.
Behavioral models

Food-directed behavior. In the food-directed behavior model, each paradigm
map was initialized as two MDPs, each with the agent in the competitor’s480

starting position. Only one of the food rewards was present in each MDP,
but all barriers were present in both MDPs. Together, these MDPs therefore
generated the expected behavior of the competitor if it were going to each
food reward, and predictions were subsequently averaged across MDPs (with
equal weighting). This approach modeled an expectation that the competitor485

would choose one of the food rewards, but lacked a mechanism for predicting
which option the competitor may favor, therefore placing an equal probability
on each location or route. Because this model specifies a behavioral expectation
that competitors pursue food rewards (but no mechanism for reasoning about
how they detect others), the probability of detection in the Transparent-Hidden490

paradigm was set to 0.
Location-directed behavior. In the location-directed behavior model, each

paradigm map was initialized in a similar way as the Food-directed behavior
model, but with the addition of MDPs including a hypothetical food reward in
each location unobservable to the competitor (e.g., behind the wall that never495

actually hid a food reward from the competitor in the Center-Wall paradigm).
This approach therefore modeled an expectation that the competitor may search
by considering all possible combinations of the locations where the competitor
might see or look for food (including areas behind barriers where no food is
currently present). Because this model expresses the idea of learned behav-500

ioral patterns, in the Transparent-Hidden Routes we apply this principle to
detections, such that the subject has general expectations that their behavior is
sometimes detected and sometimes is not. Therefore, this expectation applied
to the detection probabilities assigned to each route rather than to the food re-
ward locations (i.e., considering all possible combinations of 0.9 and 0 detection505

probabilities for opaque and transparent routes).
Mentalistic.

True belief. In the true belief model, each paradigm map was initialized as
a single MDP with the agent in the competitor’s starting position. All food
rewards and barriers were present on the map. This approach therefore mod-510

eled a true belief default, where the subject attributes their own knowledge to
competitors, and uses this representation to predict their behavior (note that

affect one of the five paradigms, and only some of the models for that paradigm. As Figure S3
in supplemental materials shows, the two models that best quantitatively capture behavior in
the Transparent-Hidden paradigm (True belief and Physical planner) do not depend on this
parameter. So our overall results (favoring Uncertainty representation) do not hinge upon
this parameter setting.
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this representation does not imply that both agents will pursue the same re-
ward; e.g., each agent might go for the food reward closest to them). In the
Transparent-Hidden routes paradigm, detection probabilities for both routes515

were set to 1, in accordance with the idea that the subject always represented
that the competitor shared the subject’s knowledge (including their location).

Partial representation. In the partial representation model, each paradigm
map was initialized as a single MDP with the agent in the competitor’s starting
position. However, this MDP excluded areas from the paradigm map which520

were occluded from the competitor’s view as well as the barriers and food re-
wards on the parts of the paradigm map occluded from the competitor’s view
(essentially cutting out pieces of the map; map files available in OSF repository).
This approach therefore modeled the possibility that the subject was entirely
unable to represent the competitor’s awareness about objects or the content of525

locations hidden from their view using a limited representation that only consid-
ered regions that were visible to both agents. In the Transparent-Hidden routes
paradigm, the transparent route had a detection probability of 0.9, since the
subject expects the competitor to share information in common ground. The
hidden route was not represented in the map and therefore had no associated530

detection probability.
Uncertain representation. In the uncertain representation model, each paradigm

map was initialized as MDP(s) with the agent in the competitor’s starting po-
sition. In each MDP, all food rewards that were visible to both the competitor
and subject were included on the map, as were all barriers. In paradigms that535

included food rewards visible to the subject but not the competitor, we included
one MDP with these food rewards present on the map and another MDP with
them absent from the map, and predictions were subsequently averaged across
MDPs. In the Transparent-Hidden Routes paradigm, this approach applied to
the detection probabilities assigned to each route, such that the detection prob-540

ability applied to hidden routes (0.45) was half of that applied to transparent
routes (0.9). This approach therefore modeled the possibility that the subject
assumed common knowledge for objects and routes that were in plain sight for
the subject and competitor, but had uncertainty about whether the competitor
was aware of any hidden object or route. This model therefore built predictions545

by integrating the two epistemic hypotheses about the competitor (knows or
does not know about the hidden object or route, using a uniform prior).
Full.

Ignorance representation. In the ignorance representation model, each paradigm
map was initialized as a single MDP with the agent in the competitor’s starting550

position. All barriers were present on the map, but only food rewards visible to
the competitor were present. In the Transparent-Hidden Routes paradigm, the
detection probability applied to hidden routes was 0, while the detection prob-
ability applied to transparent routes was 0.9. This approach therefore modeled
human-like ToM in theses tasks, in which the subject has a complete represen-555

tation of the competitor’s knowledge and ignorance based on the competitor’s
visual perspective, and uses it to predict their actions accordingly.
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5.1.3. Integrating social predictions into decision making

So far, the models in the Behavioral, Mentalistic, and Full ToM families de-
scribe different theories of how NHPs might expect their competitor to behave—
expressed as a probability distribution over action plans—but they do not yet
describe the subject’s own behavior. To transform expectations about the com-
petitor’s behavior into first-person decisions about how to act, we formalized
the probability of the subject choosing food reward A as

pmodel(A) = 1− pC(A) (2)

where pC(A) is the probability that the competitor will also pursue food reward
A. This estimate, pmodel(A) was then combined with reliance as described in560

the main text.

5.2. Model evaluation

5.2.1. Model predictions

To generate model predictions, we first estimated the choice probabilities
for each MDP’s probabilities (i.e., the probability of choosing each of the two565

food rewards). We achieved this via Monte Carlo sampling, using 5000 samples
per MDP, such that an MDP’s probability of choosing a food item equals the
proportion of times that this reward was chosen in the simulations. Final model
predictions were then obtained by combining the probabilities of different MDPs
as specified by the model description (e.g., averaging between the MDPs in cases570

where the subject holds multiple hypotheses).

5.2.2. Quantitative model comparison

Our quantitative analysis directly compared model performance through
Bayes factors. For each pair of models M1 and M2 we calculated:

BF =
p(D|M1)p(M1)/p(D)

p(D|M2)p(M2)/p(D)
(3)

We assumed a uniform prior distribution over models, such that the Bayes575

Factor becomes the likelihood ratio.

5.3. Parameter settings

5.3.1. Significance threshold in qualitative analysis

Our first analysis required setting a threshhold value above which to consider
an effect directional, and below which to consider NHPs to show no preference.580

In the relevant literature, effects are considered to be directional when they
significantly differ from chance (0.5). But how much deviation from 0.5 is sig-
nificant depends on the sample size.

In the experiments considered, there was enough power to detect an effect
of around 0.6. Therefore, we set the threshold value t = 0.6. For a sense of585

typical effect sizes found in the behavioral experiments under consideration:
NHPs chose correctly ˜80% of the time in experiments with some of the very
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strongest effects (e.g., Hare et al. 34, E1), but more typically oscillated around
60-70% correct (e.g., Hare et al. 34, E3; Bräuer et al. 35, E2) or even slightly
below (e.g., Hare et al. 34, E4; Melis et al. 32, E1).590

5.4. Behavioral data

To quantitatively evaluate our models, we compared model predictions to
effect sizes calculated from the data reported by the experiments in Table 1.
For (35), (37), and the Hidden-Hidden conditions of (34) E3 and E4, data on
the proportions of choices were incomplete or unavailable, and thus we were595

unable to include these experiments in our quantitative model evaluations. For
most other studies, the proportions of choices were clearly reported. The exper-
iments for which we could most easily recover the choice data from the reported
proportions and number of trials were (34) Experiments 1 (45 choices of the
hidden food out of 54 trials), E2 (20 out of 27), E3 Open-Hidden condition (52600

out of 83), E4 Open-Hidden condition (62 out of 108), and (36) Experiment 1,
Condition 2 (95 out of 125). Choice data for (34) E5 and (32) E1 were also
recoverable, but required making a few reasonable assumptions. In (34) E5,
we assumed a total of 11 subjects with 12 trials per subject based on indirect
details in the paper, enabling the recovery of choice data (73 out of 132). For605

(32) E1, by assuming that trials in which a subject did not make a choice were
excluded and by reading mean choices from Figure 2, we recovered the choice
data (72 out of 126). When two versions of the same experiment were available
that differed only in the timing of the competitor’s release (Canteloup et al. 36,
E1; Hare et al. 34, E5), we used the version with a longer delay, which better610

controls for the possibility that the subject’s choice could be influenced by first
observing the competitor’s direction of movement. A summary of this data is
shown in Table S1.

5.4.1. Estimating reliance from data

Our second analysis required estimating the reliance parameter r. However,615

this value is not directly observable, since the observed NHP choices reflect a
combination of signal from the primate’s unknown ToM (pmodel(A)) and egocen-
tric behavior when subjects do not choose according to their ToM. Conveniently,
egocentric behavior predicts chance performance (pegocentric(A) = 0.5) in most
paradigms, meaning that the reliance parameter r can be thought off as a weight620

that trades off signal (behavior reflecting ToM) and uniform noise (since ego-
centric behavior predicts chance performance). In these cases, predictions about
the NHP’s choice (Eq. 1) become:

psubject(A) = rpmodel(A) + (1− r)(0.5) (4)

To obtain a model-agnostic estimate of r (reliance), we performed joint in-
ference over pmodel(A) (rather than deriving it through our models) and r, con-625

ditioned on psubject(A) (i.e., the subject’s probability of choosing reward A).
The more observed choice data available, the more accurately the latents

pmodel(A) and r could be inferred. We assumed that every experiment from the
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same paradigm should have the same underlying psubject(A) value. We therefore
used the Open-Hidden paradigm, which had the most data available. Thus, the630

data used to estimate this parameter were from (34) Experiments 2 (20 choices
of the hidden food out of 27 trials), E3 (52 out of 83), E4 (62 out of 108), and
(36) Experiment 1, Condition 2 (95 out of 125).

The most direct way to perform this inference would be to use a point esti-
mate for psubject(A), set to the observed proportion of times that the subjects635

chose option A. However, such an approach can overfit the empirical choices.
We therefore instead assumed that the observed data were drawn from a prob-
abilistic data-generating process, and produced a probability distribution over
psubject(A). To do this, we set an uninformative prior over psubject(A), and
treated the past NHP choice data for each experiment as observations gener-640

ated from a binomial distribution (since there were two outcomes in the form
of the two food rewards the subject could chose) with an unknown psubject(A).

Conditioning on psubject(A) (based on the observed choice data reported
in these experiments), we performed Bayesian inference over pmodel(A) and r
(with a uniform prior over both), and marginalized over all possible values of645

pmodel(A) to result in a posterior distribution over r (visualized in Fig. 6b).
There are a couple of approaches to obtain a point estimate of r. One

possibility would be to use the maximum a-posteriori (MAP) estimate for r̂
(i.e., the highest point in Fig. 6b). However, MAP estimates under a uniform
prior are equivalent to a maximum likelihood estimate, which is prone to over-650

fitting a distribution, particularly when little data is available. Here, we instead
opted to take the expected value of the posterior distribution, as this estimator
minimizes the expected error of the point estimate (65)—a preferred approach
in situations like this where data are limited.

5.4.2. Fitting reliance to data655

Our final analysis tested how different reliance parameters affected model
performance. To achieve this, we calculated the probability of the data for each
model, testing reliance values between 0 and 1 by intervals of 0.01. These are
the results shown in Fig. 5. The Egocentric models are insensitive to the re-
liance parameter because, by construction, they do not have any social represen-660

tations. The Behavioral models (Food-directed behavior and Location-directed
behavior) and the True belief model showed a similar structure to one another:
the stronger the assumption that primates always use these representations, the
better these models can explain the empirical data. The other two models in the
Mentalistic family (Uncertain representation and Partial representation) were665

best able to explain the empirical data under the assumption that subjects rely
on their social representations more than half of the time, but critically, not
all of the time. Finally, the Ignorance representation model’s ability to explain
the empirical data rapidly decreased when it was posited that subjects always
relied on their underlying social representations, because the model expected670

the experiments to show a much stronger signal than they did.
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6. Materials Availability Statement

All model and analysis code is available at:
https://osf.io/qjn9m/?view only=a8ede1cffb684452af9b2c54cb5ac15c.
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