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Abstract

Mobile elements, such as retrotransposons, have the ability to express and

re-insert themselves into the genome, with over half the human genome being

made up of mobile element sequence. Somatic mobile element insertions (MEIs)

have been shown to cause disease, including some cancers. Accurate

identification of where novel retrotransposon insertion events occur in the

genome is crucial to understand the functional consequence of an insertion event.

In this paper we describe somrit, a modular toolkit for detecting somatic MEIs

from long reads aligned to a reference genome. We identify the initial

read-to-reference mapping step as a potential source of error when the insertion

is similar to a nearby repeat in the reference genome and develop a

consensus-realignment procedure to resolve this. We show how somrit improves

the sensitivity of detection for rare somatic retrotransposon insertion events

compared to existing tools, and how the local realignment procedure can reduce

false positive translocation calls caused by mis-mapped reads bearing MEIs.

Somrit is openly available at: https://github.com/adcosta17/somrit
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2

Background3

Mobile elements are DNA sequences that can change genomic position and re-insert4

themselves into the genome [1]. A large fraction of the human genome is composed5
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of mobile element sequence with thousands of identified copies [1, 2, 3]. While many6

of these copies are partial fragments reflecting ancient insertion events that can no7

longer actively move [2, 3, 4], some more recent copies retain the ability to be8

expressed and re-insert themselves [5, 6]. Retrotransposons are a class of mobile9

elements that includes LINE-1 (L1), Alu and SVA elements [7, 8, 9]. Full length10

human LINE-1 elements are ∼6kbp in length and encode proteins for retrotrans-11

position, allowing for their re-insertion into the genome via an RNA intermediate12

and reverse transcription [10, 11]. Smaller SVA (∼2000bp) and Alu (∼300bp) ele-13

ments rely on the LINE-1 retrotransposition mechanism for re-integration into the14

genome [12, 13, 14]. LINE-1 insertions usually occur at LINE-1 endonuclease recog-15

nition motifs [15, 16], often include a target-site duplication (TSD) [15, 17] and a16

poly-A tail [18] and may contain genomic flaking sequence from the LINE-1 ele-17

ment of origin [19, 20]. Due to their mobile nature the exact number and location18

of retrotransposons in the genome varies from person to person, with any individ-19

ual having some inherited copies not found in the human reference, and possibly20

somatic copies present in a subset of cells [21].21

While often only a handful of retrotransposon copies in any given individual retain22

the ability to be expressed and re-inserted back into the genome, their expression23

has been linked to disease progression. Prior research has shown somatic insertion24

of LINE-1 elements activates oncogenes and directly drives cancer progression in25

some colorectal cancers [22]. Somatic insertion of LINE-1 elements may alter gene26

expression, including a slowing of DNA translation possibly affecting the expres-27

sion of tumor suppressor genes [10]. Due to the large amount of mobile element28

sequence in the genome, retrotransposon insertions have the potential to gener-29

ate chromosomal rearrangements including deletions, duplications, inversions and30

translocations, as they may mislead homologous recombination repair pathways to31

cause non-allelic homologous recombination events [23, 24]. These larger changes in32
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the genome can contribute to the loss of tumor suppressors, activation of oncogenes33

or the generation of fusion proteins that may drive cancer progression [25].34

Tools for detecting germline and somatic mobile element insertions (MEIs), in-35

cluding retrotransposons, have been developed for short reads including MELT[26],36

TraFiC-mem [27], RetroSeq [28] and xTea [29]. While effective, short reads have37

limited repeat resolution for large insertions, insertions containing varying numbers38

of repeat copies and insertions into existing repetitive sequence being particularly39

problematic and hard to detect [30, 31, 32]. Long read technologies like the Ox-40

ford Nanopore (ONT) and Pacific Biosciences (PacBio) instruments can generate41

sequencing reads exceeding 10kbp. These reads can therefore fully span a retro-42

transposon insertion with flanking sequence allowing the genomic location of the43

insertion to be identified [33] (e.g. a full length ∼6kbp LINE-1 element can be fully44

contained within a 10kbp read with 4kb of flanking sequence available to inform45

the location of the repeat). This has prompted the development of tools to detect46

mobile element insertions from long reads such as tldr [34] and xTea-Long [29].47

These tools have mainly been designed to detect polymorphic repeats that present48

as heterozygous and homozygous variants within an individual genome and hence49

they often require multiple reads to support an insertion call. When looking at50

somatic variation, such as in a tumor, insertions may occur at very low frequen-51

cies and hence be supported by only a single (or very few) reads depending on the52

variant allele frequency within the cellular population. Methods designed to detect53

polymorphic variation may miss these somatic insertion events due to their very54

low read support. Additionally, many large insertion events in long reads may not55

be correctly identified by current state of the art long read aligners.56

While de novo assembly of diploid genomes is becoming the gold-standard method57

for detecting structural variants, including retrotransposon insertions, most meth-58

ods currently rely on mapping reads to a reference genome [35]. Hence, having high59
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quality read-reference alignments is crucial to detecting MEIs. Aligners such as60

minimap2 [36] are designed to tolerate large gaps in the alignment by using affine61

gap-scoring penalties [36, 37, 38, 39]. Despite these scoring schemes, the alignments62

may be truncated just prior to the insertion event, lowering the read support for the63

insertion. Further, we have found that the location of the insertion event introduced64

by the aligner may differ read-to-read when the inserted sequence is similar to a65

repeat copy already existing in the reference, an effect we term repeat alignment66

ambiguity, and also observed by [40]. This problem is analogous to the classical case67

of aligning two sequences with different lengths of homopolymer runs. In that case,68

the exact base that has been inserted/deleted is not known, so the placement of69

the gap is ambiguous with multiple alignments having the same alignment score70

(illustrated in Figure 1B). In our case, the repeat could be placed either before or71

after the existing element and the aligner’s choice may depend solely on the pat-72

tern of matches/mismatches caused by sequencing errors (Figure 1C). Later in the73

Results section, we quantify how often this artifact occurs as a function sequence74

divergence between the repetitive elements.75

To address both repeat alignment ambiguity and alignments truncated due to76

mobile element insertions we developed somrit, the somatic retrotransposon inser-77

tion toolkit, to detect novel somatic retrotransposon insertion events and MEIs78

from long reads mapped to a reference genome. Somrit is a modular toolkit consist-79

ing of subprograms with standard input/output files. Importantly, it has steps not80

found in traditional SV detection workflows aimed to recover insertions that may81

be missed due to alignment truncation, and to resolve repeat alignment ambiguity.82

In this work we first describe somrit, providing an overview of each sub-module and83

then show how somrit can be used to detect novel somatic MEIs and help avoid84

false positive translocations from general purpose SV callers.85
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Figure 1 Alignment ambiguity may occur at different scales. A) A read, S1, and the reference

where the length of the homopolymer run between the two read and the reference varies. B) Read

S1 is aligned to the reference where the length of the homopolymer found in the read differs from

the reference. There are multiple equivalent alignments of the read to the reference (A1 - A5) but

with a varied deletion position. It is not clear which of the bases of the homopolymer run is

deleted from the alignment of the read to the reference. All 5 alignments have the same alignment

score. C) A new repeat copy occurs adjacent to an existing repeat element from the same repeat

family in a sample. As there is very high sequence similarity between the two repeat copies, when

aligning noisy long reads the aligner has to choose between two nearly equivalent alignments. This

introduces ambiguity between the reads that support the repeat insertion as to where the exact

location of the insertion copy is relative to the genome, upstream or downstream of the existing

element.

Methods86

Somrit contains individual sub-modules designed to be run as standalone tools or87

as part of a larger workflow. Figure 2 shows the somrit modules in the order they88

would normally be run to call somatic retrotransposon insertions.89

somrit extract. Somrit’s first step is to extract candidate retrotransposon in-90

sertions from the reads aligned to the reference genome. We consider two cases. In91

the simple case, reads containing long insertions (by default, 50bp) with a minimum92

flanking anchor sequence (500bp) are exported to a tsv file. Second, we attempt to93

recover alignments that were erroneously split due to the presence of a large in-94

sertion within the read, shown in Figure 3B. Let q.d, t.d be the distance between95

the pair of alignments on the query (read) and target (reference), respectively. We96

merge the pair of alignments when q.d ≥ 100 and t.d ≤ 100 by writing the first BAM97
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Figure 2 Somrit consists of sub-modules that can be run individually or in sequence. Somrit takes

as input a BAM of reads aligned to a reference genome from a long read aligner such as

minimap2. somrit extract identifies insertions in the long reads based on the alignments in the

BAM. somrit realign performs local realignment to reduce genomic insert positional ambiguity

and increase read support, outputting a realigned BAM. somrit classify annotates insertions as

being from a retrotransposon repeat family while somrit filter applies a series of filters and

annotations to identify insertions caused by mapping artifacts, those that may polymorphic, and

those that have poly-A tails, target site duplications and LINE-1 endonuclease motifs.

record with a new CIGAR string and deleting the second BAM record (Figure 3C).98

The coordinates of these insertions are also output to the TSV file.99

Figure 3 Merging of Split Alignments. A) A read containing a large insertion, shown in orange.

B) The read is aligned to the reference (blue) with the sequence flanking the orange insertion

aligned as two separate alignment records adjacent on the reference but with a larger gap on the

read containing unaligned insertion sequence. C) After merging there is a single aligned segment

for the read containing an insertion.
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somrit realign. Next, we perform local realignment around candidate insertions100

to reduce alignment ambiguity and increase read support. The explicit goal of somrit101

is to detect novel repetitive insertions that have high sequence similarity to existing102

repeat copies within the reference genome. This can make it difficult for the read103

mapper to identify the correct insertion location when the insert happens to occur104

in a region already containing a copy of the repeat. In this case the output of105

somrit extract may have different representations of the same insertion event106

across multiple reads. As the level of read support is a key parameter for structural107

variant calling this can cause false negatives, or worse, the caller might identify108

multiple separate insertions. somrit realign aims to reconcile the alignments of109

all reads carrying an insertion and recover supporting reads entirely missed by the110

mapping and extract steps. This process is inspired by the predominant approach for111

small variant calling, which generates candidate haplotypes containing combinations112

of variants [41], [42], [43]. Here, we apply the same idea to large insertions found113

from long reads. somrit realign focuses on insertions at least n (default n = 50bp)114

employing a process similar to that of Iris [44], a tool for refining the position of115

structural variants in long reads, and SVJedi-Graph [45].116

The realign module contains two steps: realignment and alignment projection.117

In the realignment step insertions identified by somrit extract (Figure 4A) are118

grouped based on genomic position into 1000bp windows (Figure 4B). Adjacent119

windows that contain insertions are merged together up to a max window size120

(default 25000bp). A set of consensus sequences (default=3, one for each germline121

haplotype for assumed diploid samples, and one for a germline haplotype containing122

the putative somatic insertion) is generated for each window from the insertion-123

supporting reads using abPOA [46]. Each consensus sequence is aligned back to124

the reference sequence for this window to identify a refined insertion position and125

sequence (Figure 4C). For each refined insert identified (minimize size 50bp), the126
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insert is spliced into the reference to generate an alternative haplotype sequence127

that only contains a single insertion. Each read in the window is then aligned to the128

original reference as well as each alternative haplotype for the window. If the read’s129

alignment score against the alternative haplotype is greater than the alignment130

score to the reference we note the read as supporting the insertion and flag it for131

projection (Figure 4D).132

Once all reads have been tagged with the insertions they support, we calculate133

a new read-to-reference alignment in a step we call alignment projection. For each134

read a new haplotype is constructed by splicing in all insertions supported by that135

read. The read is then aligned to this haplotype, and the haplotype is aligned to the136

reference genome. We then iterate over the pair of read-to-haplotype and haplotype-137

to-reference CIGAR strings to determine the read-to-reference alignment. The BAM138

record for the read is then updated based on this projected alignment (Figure 4E).139

If a read is not selected for projection the original BAM record(s) for the read are140

retained. In addition to an updated BAM, somrit realign outputs an updated141

tsv with the coordinates and sequences of insertions after realignment.142

somrit classify. The set of refined insertions are then assigned to a retro-143

transposon repeat family. Each insert’s sequence is aligned to a library of known144

human retrotransposon consensus sequences compiled from Tubio et al [27] ( avail-145

able: https://gitlab.com/mobilegenomesgroup/TraFiC) and DFAM [47] using min-146

imap2’s mappy API. Inserts that have no mapping to a retrotransposon consensus147

sequence with quality higher than 20 are unassigned, otherwise the insert is assigned148

to the repeat family with the highest alignment score.149

somrit filter. The final step applies annotations and filters to the classified150

repeats by appending new columns to the TSV record similar to VCF filter columns.151

These filters include:152
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Figure 4 Somrit’s Realignment Process. A) Insertions supporting a single insertion event

identified in the alignment of reads (grey) to the reference genome (blue) with somrit extract

are shown in orange. These insertions have varying genomic insert positions, shown by the

numbers above the blue reference track. It is not clear from the alignments of the reads where the

exact insertion position is. B) Insertions are grouped together if they fall within w base pairs of

each other on the reference. C) A set of consensus sequences is computed for the window, one for

each haplotype present, with abPOA. These sequences are aligned to the reference and any

insertions in the consensus sequences relative to the reference identified and extracted. D)

Consensus insertions are applied to the reference genome to generate a set of alternative

haplotypes containing insertion sequences. Reads are aligned to the alternative haplotypes to

determine if they support the insertion contained within it. If deemed to support an insertion the

alternative haplotype is used as a guide to project the read to the reference, allowing for more

accurate placement of the insertion relative to the reference E) After projection and realignment

the reads supporting the same insertion event now have a consistent genomic insertion position,

with there being increased read support for the insertion event as well.

• IN CONTROL SAMPLE: If somrit is run with multiple samples and one is153

designated a matched normal control sample (e.g. for tumour/normal pairs),154
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this filter is used to identify which insertions are also found in the designated155

control sample within +/-500bp.156

• IN CENTROMERE and IN TELOMORE: insertions that fall within a cen-157

tromeric or telomeric region respectively based on a bed file provided by the158

user.159

• LOW MAPPING QUALITY: Insertions found in a genomic window (+/-160

500bp of the insertion position) where the average mapping quality over all161

reads aligned in the region is ≤ 20.162

• MIN READS: This filter flags insertions that do not have the user-specified163

number of supporting reads (by default, 1).164

• IN SECONDARY MAPPING: If reads supporting the insertion have multiple165

alignments with a mapping quality ≥ 20 that overlap the insertion position,166

the insertion is flagged.167

• POLYMORPHIC: This filter flags insertions that appear to be polymorphic168

germline variation between the individual and the reference rather than so-169

matic variation, based on the fraction of insertion supporting reads relative to170

all reads aligned in a genomic window. Let f(w) be the fraction of insertion171

supporting reads within a window of w bp. An insertion is flagged as polymor-172

phic if f(500) > 0.8 or f(200) > 0.5 or f(100) > 0.3. The varied window sizes173

and fraction cutoffs were used as some genomic regions varied in coverage. A174

larger window may contain a number of reads that align within the window175

but do not overlap the insertion position, with parts of the window flanking176

the insertion having higher coverage than the area around the insertion itself.177

In addition to these filters, each putative insertion is annotated with features178

expected of real retrotransposon insertions:179
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• Annotate Poly-A Tail: the insertion contains a Poly-A/T tail ≥ 10bp within180

50bp of either the start or end of the insert sequence. If present the Poly-A/T181

sequence is listed in the output column.182

• Annotate TSD: retrotransposon insertions have characteristic sequence du-183

plication generated as part of the re-insertion process. A local dynamic pro-184

gramming alignment is used to identify duplicated sequence at least 5bp in185

length between the start or end of the insertion and the genomic region. If a186

duplication of at least 5bp is found, the TSD sequence is listed in the output187

column.188

• Annotate Motif: the reference sequence 2bp upstream and 4bp downstream of189

the identified insertion position is extracted for comparison to the canonical190

LINE-1 endonuclease recognition motif sequence. The motif sequence is listed191

in the output column.192

Implementation and Pipeline193

The tsv file generated by somrit filter is the final output of the program, with194

the inserts passing all filters considered the final called somatic insertions. Som-195

rit is implemented python (extract, classify and filter modules) and C++196

(realign). The code for all modules, a documentation of parameters, a tutorial,197

and a snakemake file to automate the process of running all 4 module sequentially198

are available at https://github.com/adcosta17/somrit.199

Results200

In this section we first quantify how often repeat alignment ambiguity occurs. Next201

we evaluate somrit’s ability to detect both polymorphic and somatic insertions202

from simulated and real nanopore data, comparing somrit to existing tools for both203

tasks and showing how somrit’s use of local realignment to reduce repeat positional204

ambiguity and increase read support improved its ability to detect MEIs compared205

to other tools. Finally, we finally show how realignment around MEIs can reduce206
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the number of false positive translocation calls from general purpose structural207

variation detection tools.208

0.1 Repeat Alignment Ambiguity209

We first quantified how often repeat alignment ambiguity occurs, specifically when210

a novel mobile element insertion occurs adjacent to an existing copy of the same211

mobile element in the genome. Using the RepeatMasker [48] annotation of GRCh38212

we identified existing Alu elements at least 250bp in length. We then generated an213

insertion by randomly selecting an Alu element present in GRCh38, modifying it to a214

set level of sequence divergence and then inserting it back into the genome beside the215

original copy. This process simulates the insertion of an identical or near identical216

mobile element directly next to an existing mobile element. We then simulated long217

reads using pbsim2 [49], mean read length of 30kb and per-base accuracy of 95%,218

that supported the insertion and aligned the reads back to GRCh38 using minimap2219

[36]. We parsed these read alignments to identify where the aligner had placed the220

insertion and compared it to the expected position where we had made the insertion.221

We generated 100 insertions for sequence divergence from 0-50%, in steps of 1%.222

If a read was mapped > 50bp away from the expected insertion position it was223

considered to be misaligned. We see from the results shown in Figure 5 that at224

low levels of sequence divergence there is a high fraction of reads that misaligned,225

exhibiting repeat alignment ambiguity, as the aligner cannot differentiate between226

the existing copy and the new insertion copy. As sequence divergence increases the227

proportion of reads whose insertion is incorrectly placed decreases as the aligner is228

better able to differentiate between the repeat copies.229

Detection of Polymorphic Insertions230

Polymorphic insertions, defined here as variants between an individual’s inherited231

genome and the reference, make up the vast majority of large insertions (≥ 50bp)232

found by SV callers. To evaluate the performance of somrit in detecting polymorphic233
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Figure 5 A mobile element insertion that occurs adjacent to an existing mobile element with high

sequence similarity may result in a misaligned read. Using simulated reads that spanned insertions

that are similar to an existing mobile element in the genome with a known sequence divergence,

we measured the fraction of reads that contained an Alu insertion adjacent to an existing Alu

element where the detected insertion position was off by > 50bp from the expected insertion

position. We note that at low sequence divergence a higher fraction of reads are misaligned. As

sequence divergence increased the fraction of misaligned reads decreased as the aligner is better

able to differentiate between the repeat copies.

retrotransposon insertions compared to existing tools, xTea-Long and tldr, we used234

publicly available data downloaded from the Human Pan-genome Reference Con-235

sortium (HPRC)[35]. For samples HG00438, HG00621, HG00673, HG00735 and236

HG00741 we downloaded raw Oxford Nanopore (ONT) reads, the accompanying237

diploid hifiasm assembly [50] and matching RepeatMasker [48] annotation of the238

assembled contigs. The ONT reads for each of the five samples were downsampled239

to set coverage levels, with three replicates drawn for each coverage level. These240

read sets were then aligned to GRCh38 and the resulting BAM files passed as input241

to somrit, xTea-Long and tldr.242

Generating ground truth calls243

We used the high quality diploid assemblies for each HPRC sample to derive a set244

of ground truth insertions. For each sample the maternal and paternal contigs were245

aligned to GRCh38 with minimap2 (v2.22-r1101, preset asm5). Insertions at least246
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100bp in length on contig alignments with mapping quality ≥ 20 were identified247

and extracted from the alignment CIGAR strings. These insertions were then an-248

notated with repeat families using the RepeatMasker [48] annotation of the contigs.249

Insertions where at least half the insertion sequence on the contig was annotated250

to a single retrotransposon repeat family by RepeatMasker were assigned to that251

repeat family. These insertions, their repeat family annotation (if any), and their252

reference coordinate are our truth set for the subsequent evaluation.253

Comparing somrit, tldr and xTea-Long254

We ran somrit with default settings except for increasing the minimum insertion255

supporting read threshold to 3 and requiring at least 1000bp of flanking sequence256

on each side of an insertion on the read. Also, we did not use somrit’s polymor-257

phic filtering step. We ran tldr (v1.2.2) and xTea-Long (v0.19) using their default258

parameters, except for also requiring at least 1000bp of flanking sequence for tldr.259

We compared the retrotransposon insertion calls made by each tool to the ground260

truth described in the previous section. A called insertion was considered a true261

positive if it is within 500bp of an insertion call from the same retrotransposon262

repeat family in the truth set. All other called insertions were considered false posi-263

tives. Any insertions in the truth set where we did not find a called insertion within264

500bp annotated to the same retrotransposon repeat family were considered false265

negatives.266

Figure 6 shows the precision and recall for all three tools at different coverage267

levels, with 3 replicates per sample per coverage level. Somrit has higher precision268

at lower coverage and slightly lower precision at higher coverage compared to xTea-269

Long and tldr. At higher levels of coverage false insertions from mapping artifacts270

may have their read support increased beyond the threshold of 3 supporting reads,271

resulting in false positive calls. xTea-Long had higher recall than somrit and tldr at272

the lowest coverage levels, while tldr and somrit had higher recall than xTea-Long273
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Figure 6 Somrit, XTea-Long and Tldr Precision (panel A) and Recall (panel B) for the detection

of polymorphic retrotransposon insertions over 5 HPRC samples at varying coverage levels

at higher coverage levels, with somrit’s recall slightly higher than tldr at the highest274

coverage levels. While tldr considers both reads that fully span an insertion event275

and reads whose alignments are clipped at the insertion event as supporting the276

insertion, somrit only looks at reads with a spanning insertion. This may contribute277

to the observed recall for the somrit being lower than tldr at lower coverage levels.278
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Detection of simulated somatic insertions279

While somrit can be used to detect polymorphic insertions it is designed primarily280

to detect somatic insertions. This is more challenging than detecting polymorphic281

insertions as the read support may be much lower, even down to a single read. While282

tools like tldr have been previously used to detect rare somatic retrotransposon283

insertions[51], they are not designed for detecting insertions from a single read,284

which is one design goal of somrit. To quantify somrit’s ability to detect novel285

somatic retrotransposon insertion events we ran somrit on a set of simulated novel286

somatic retrotransposon insertions. For comparison we ran tldr and xTea-Long with287

the minimum read support lowered to 1. We also ran the general purpose SV caller288

Sniffles2 (v2.0) [52] in its somatic detection mode.289

Generating Simulation Data290

We simulated long reads with pbsim2[49] from the diploid assembly for 4 of the291

5 HPRC samples: HG00438, HG00621, HG00735 and HG00741. We simulated 20x292

coverage from both the maternal and paternal contigs (40x total), to act as a base-293

line read set free from somatic variation (Figure 7A and B). Next, we randomly294

selected 500 positions on the assembly contigs for the location of somatic inser-295

tions. For each selected position we randomly choose a retrotransposon repeat fam-296

ily (LINE-1, Alu or SVA) and insert length. For half of the selected positions a full297

length insertion is selected with the length of the remainder drawn uniformly be-298

tween 100 bp and the full repeat length. Using a consensus sequence for the repeat299

family selected [27][47], we truncated the sequence if needed removing bases from300

the 5’ end, generated a poly-A tail at the 3’ end between 10 and 40 bp and added301

the modified sequence to the contig at the selected position. We also generated a302

target site duplication (TSD) to mimic the real genomic insertion process. We then303

simulated long reads from each contig in a 50kbp flanking region around the inser-304

tion position. We recorded which reads fully spanned the insertion with non-insert305
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flanking sequence. For each position on the contig where we added an insertion we306

noted the insert sequence, repeat family, poly-A tail length, TSD, and the expected307

location of the insertion on GRCh38, and the list of read names deemed to sup-308

port the insertion event (Figure 7C). In order to generate each test read set that309

contained simulated somatic retrotransposon insertion events we started with the310

simulated baseline read set for the sample and randomly selected 125 of the 500311

positions where we had simulated a novel somatic insertion event. For each of these312

125 positions we randomly selected between 1 to 4 supporting reads and added them313

to the base read set to generate a test read set (Figure 7D and E). This process314

is repeated to generate 12 replicates per sample, each with a randomly generated315

set of 125 positions.316

Detecting simulated insertion events317

For each replicate we mapped the reads to GRCh38 with minimap2 and then ran318

tldr, Sniffles2 and somrit as described above to identify somatic insertions in the319

same 4 HPRC samples. We ran tldr and somrit in their default settings but with320

the minimum read flank size set to 1000bp and minimum read support set to 1. We321

compared the calls made by each tool to the truth data for each replicate, noting the322

insertion events that were detected as passing retrotransposon insertions by somrit323

and tldr as well any insertions detected by Sniffles2 (as Sniffles2 does not annotate324

insertions as being from a retrotransposon repeat family). Passing insertion calls325

made within 500bp of an expected simulated insertion position with the same repeat326

family annotation were considered true positives. If no passing insertion with the327

same repeat annotation was found within 500bp of a simulated insertion position,328

the simulated insertion position was considered a false negative. We additionally ran329

xTea-Long in its default settings but as xTea-Long is not designed for the detection330

of somatic insertions it was unable to detect almost all the simulated insertions.331

Thus we do not report the results of xTea-Long in this analysis.332
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Figure 7 Generating Simulated Somatic Insertions. A) The diploid assembly of an HPRC sample

is aligned to the reference to identify where each contig aligns to. B) pbsim2 is used to generate

two 20x base read sets of simulated ONT reads, one for haplotype in the diploid assembly. These

read sets represent normal reads with only germline polymorphic variation. C) Insertions are added

to the contigs at 500 randomly selected positions to mimic novel retrotransposon insertion events.

Insertions are randomly selected to be from either LINE-1, Alu or SVA repeat families and to be

partial or full length with a poly-A tail and target site duplication included. Reads are simulated at

these regions with reads that span the added insertion identified D) 125 positions where insertions

have been made are randomly chosen, and 1 to 4 reads per position that support the insertion

selected. E) These insertions are added to the two base read sets generated in step B to generate

an 40x test read set. Steps D and E are repeated 12 times to generate 12 replicates.

We computed recall for each tool and over all replicates for the 4 HPRC samples333

(Figure 8). Somrit had the highest recall, followed by Sniffles2. As somrit generates334

calls for individual reads so we also calculate a read-level recall (the proportion of335

reads, rather than positions, that have an insertion that were called by somrit;336

Figure 8 inset). Even though somrit outperformed all other tools, its best recall337

for any sample did not exceeded 60%, indicating the difficulty of detecting insertions338

with minimal read support. Due to the repetitive nature of the human genome a339

repeat insertion event in a long read makes it harder for a long read aligner to340

correctly align the read. Thus reads with insertions may either have split alignments341

at the expected insertion position where realignment is unable to increase the read342
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Figure 8 Somrit, Tldr and Sniffles2 Simulated Insertion Recall. The recall of somrit, tldr and

Sniffles2 for detecting simulated somatic retrotransposon insertions over 4 HPRC samples, 12

replicates per sample. Each simulated somatic insertion event is supported by 1 to 4 reads, ranges

in length from 100 to 6000 base pairs and includes LINE-1, Alu or SVA sequence. As somrit

provides a file containing read support for each insertion call we also computed recall at the level

of individual sequencing reads, shown in the top right inset plot.

support, or may not align to the expected region of the reference, or the reference343

at all. All tools evaluated rely on alignment BAM files as input and thus are limited344

by the shortcomings of current long read aligners when aligning reads with repeat345

insertions.346

Identifying novel L1-mCherry retrotransposon insertions in Nanopore reads347

In a recent analysis by Gerdes et al [51] HeLa cells were treated with a plasmid vector348

containing a modified mouse LINE-1 fused with an mCherry reporter. Successful349

integration of this modified vector into the HeLa cells results in a novel insertion350

of the L1-mCherry construct sequence in the cells. This is an ideal experiment to351

test the performance of somatic retrotransposon insertion detection tools as the352

mCherry sequence allows novel insertions to be definitively identified. Using the353

ONT data generated by Gerdes et al for these samples we evaluated somrit’s ability354

to call these previously identified insertions.355
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We downloaded reads from the HeLa/L1-mCherry experiment that Gerdes et al356

deposited in the ENA. The construct generated insertions of up to 10.2kbp once357

integrated into the HeLa genome[51]. Each of the five read sets are WGS nanopore358

sequencing run of a HeLa cell line expanded over 3-5 passages from single L1-359

mCherry insertion harboring colonies, barcoded and pooled in equal amounts be-360

fore being sequenced with a single PromethION flow cell [51]. It is expected that361

individual L1-mCherry insertions will appear as somatic insertion events occurring362

in a small fraction of cells in the sample, with possibly just a single read supporting363

the insertion event.364

We ran somrit and tldr on the 5 samples, with minimum read support set to 1365

and a minimum read flank size of 1000 bp. We ran both tools using the L1-mCherry366

consensus as the only possible repeat family. Both tools were run in multi-sample367

mode, where multiple samples are analysed jointly. This allowed for insertion calls to368

have supporting reads from multiple biological replicate cell line colonies, making it369

easier to identify novel somatic events that only occur in a single sample rather than370

those that represent any possible polymorphic variation seen across all samples. As371

the L1-mCherry sequence contained both a full length LINE-1 sequence and the372

mCherry protein coding gene we explicitly filtered the final detected insertion calls373

to ensure they aligned with at least one base pair to the non LINE-1 sequence of374

the L1-mCherry construct.375

Table 1 L1-mCherry insertions detected by Somrit and Tldr. The total number of L1-mCherry
insertions, the number of insertions unique to each tool, the number of insertions shared between the
tools and the number of insertions shared with Gerdes et al’s call set.

Total Inserts Unique To Tool Shared Between Tools Shared with Gerdes et al

somrit 67 10 57 35/41

tldr 62 5 57 40/41

The results in Table 1 show that somrit is able to identify additional insertions376

containing L1-mCherry sequence beyond what was initially detected by Gerdes et377

al. Each of the insertion calls made by somrit used ≤ 5 reads, with 37 insertions378

being detected with just a single supporting read. Both tools detected insertions379
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that were unique to the tool. The 5 insertions unique to tldr represent the 5 of380

the 6 insertions of the Gerdes et al set that somrit did not identify. Of these 5381

somrit was able to identify 3 as being annotated to the L1-mCherry sequence, but382

these insertions were flagged for not having enough flanking sequence in the read383

alignment. Manual inspection of the 10 insertions unique to somrit showed that 8384

of the 10 were mapped to the 3’ end of the L1-mCherry construct sequence, with385

target site duplications and poly-A tails or mapped to non-LINE1 sequence in the386

L1-mCherry construct, indicating they are likely to be novel insertions of the L1-387

mCherry construct sequence into the cells. The remaining two insertions called only388

by somrit mapped mainly to the LINE1 portion of the L1-mCherry construct, with389

only a small fraction of the insertion sequence aligning to non-LINE-1 sequence in390

the construct, with no mCherry specific sequence identified. Thus these insertions391

are likely false positives.392

Repeat realignment reduces false positive translocation calls393

While somrit is primarily designed to detect mobile element insertions, local re-394

alignment with somrit realign may be useful in reducing false positive calls from395

general purpose SV callers such as Sniffles2 and CuteSV. As the human genome396

contains many copies of mobile repetitive elements such as retrotransposons and397

the exact location of these elements varies between individuals and the reference398

genome, some sequencing reads that partially cover a non-reference mobile repet-399

itive element may appear to have a split mapping when aligned to the reference400

genome. This split mapping occurs as the aligner may map the non-repetitive se-401

quence correctly but maps the portion of the read containing the mobile element402

sequence to an existing repetitive element copy elsewhere in the genome. If a num-403

ber of reads are misaligned in this way a general purpose SV caller may incorrectly404

interpret this as a translocation. We propose that somrit realign may help reduce405

the number of false positive translocation calls induced by this effect (Figure 9).406
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Figure 9 Non-Reference Mobile Elements can cause false positive translocation calls A) A read

originating from a sample that contains a non-reference LINE1 insertion and a read that fully

spans the insertion. B) When this read is aligned to the reference genome we expect an alignment

containing an insertion gap relative to the chromosome 1 reference sequence. C) Alternatively, the

read may be aligned as two distinct segments. In the first segment, the non-repeat sequence

matches chromosome 1 at the expected position. In the second segment, the LINE1 mobile

element insertion sequence aligns to an existing LINE1 copy elsewhere in the genome on a

different chromosome. If enough reads share the same pattern of split mapping a false positive

translocation may be called between these two positions.

To evaluate how somrit realign could be used to reduce false positive transloca-407

tion calls we first ran Sniffles2 and CuteSV on the aligned reads for each HPRC sam-408

ple at various read depths, noting the number of inter-chromosomal translocation409

calls made. As the HPRC samples are generated from lymphoblastoid cell lines clas-410

sified as karyotypically normal, thus free of any known inter-chromosomal translo-411

cation events, we considered any inter-chromosomal translocation calls made by the412

tools as false positives. We then detected candidate insertions (somrit extract)413

for realignment (somrit realign) to generate a new BAM file. We then used the414

realigned bam as input into Sniffles2 and CuteSV, noting the number of called415

inter-chromosomal translocations after realignment.416

Figure 10 shows that in both tools there is a reduction in the number of false417

positive inter-chromosomal translocation calls made after realignment. We observe418

up to 41% and 31% reduction in the number of false positive inter-chromosomal419
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Figure 10 Sniffles and CuteSV False Positive Inter-Chromosomal Translocation calls. The number

of false positive inter-chromosomal translocation calls made by Sniffles and CuteSV before and

after Realignment. Each down-sampled fastq from the 5 normal HPRC samples assumed to be

free of any known translocations relative to GRCh38 was passed to Sniffles and CuteSV before

and after realignment, with the number of called translocations made by each tool shown.

translocation calls made by Sniffles2 and CuteSV, respectively, with the effect most420

noticeable at higher coverage levels.421

Discussion422

In this paper we introduce somrit, a toolkit for the identification of somatic retro-423

transposon insertion events in long reads. We show that somrit is able to detect424

existing polymorphic MEIs with comparable precision and recall to state-of-the-art425

tools. We also show that somrit is able to detect somatic MEIs in both simulated426

and real nanopore data, outperforming other methods at identifying insertions with427

single read support. In addition, we show that realignment around MEIs can reduce428

false positive translocation calls in general purpose SV callers.429

While these results show somrit’s effectiveness, they have limitations. Somrit430

firstly requires a large amount of time and memory to run, more than existing431

tools for retrotransposon insertion detection. The majority of the computational432

burden lies with somrit realign and the generation of consensus sequences with433
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abPOA. While abPOA uses adaptive banded alignment to reduce the time and434

memory usage needed to compute a consensus sequence this process is still time435

and memory intensive. As the time and memory needed to compute the consensus436

sequences scales with both the number and length of input sequences, limiting the437

number of read sequences used to generate the consensus sequences at high input438

coverage can be considered to reduce the time and memory usage.439

Somrit is also limited in its ability to realign insertions that may be missed by the440

initial mapping of reads to the reference. If there is an insertion present in a sample,441

but there is no alignment made by the aligner that introduces an alignment gap for442

the insertion, somrit is unable to recover this insertion. This becomes problematic443

for somatic detection where insertions may have low read support and an aligner444

may clip the alignment of the single read supporting an insertion event, with somrit445

unable to detect or recover the insertion.446

While realignment is able to increase the read support for genuine insertion events,447

in some cases the realignment process may increase the number of reads that support448

a mapping or alignment artifact. The decision to realign a read using an alternative449

haplotype containing an insertion as a guide is based on comparing the alignment450

score between the alternative and reference haplotypes. A higher scoring alignment451

to the alternative haplotype indicates that the read may support the insertion. If452

an false alternative haplotype is generated by a mapping artifact, and the read has453

a marginally higher alignment score to this haplotype, a mapping artifact could be454

introduced into the read, with the read now supporting a false insertion. We believe455

this effect can be seen in the decreased precision somrit has compared to other456

tools at higher levels of coverage for polymorphic insertion detection, as at higher457

coverage levels there is a greater chance a mapping artifact supported by one or two458

reads has its read support increased through realignment to three or more reads.459
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More stringent criteria for selecting alternative haplotypes may help alleviate this460

issue.461
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Supplementary Information591

Time and Memory Analysis592

We evaluated how somrit compared to other SV detection methods for computational performance. We noted the593

total time and memory usage of somrit, xTea-Long, tldr and Sniffles2 runs during the previously mentioned analysis594

of simulated somatic retrotransposon insertion events on the 4 HPRC samples. The analysis of simulated somatic595

retrotransposon insertion events used a number of different machines as part of a larger shared computing596

environment, thus tools were not run on the same machine. While not ideal this approach does allow us to get a597

range of possible time and memory usages for a tool over different machines with equivalently sized input. For each598

HPRC sample each tool was run the 12 40x replicates used for the simulated insertion analysis.599

Figure 11 shows this comparison for memory usage and Figure 12 for time. As somrit consists of multiple individual600

modules, we noted the time of each step and reported two versions of the time analysis. One version, shown in601

Figure 12 as somrit total, represents the total time taken if each step is run sequentially with 10 threads. The602

second version, shown in Figure 12 as somrit ideal, is the total time taken if individual re-alignment jobs for each603

chromosome are run in parallel with 10 threads each. For somrit memory we took the maximum memory over all604

modules for a given input fastq.605

Figure 11 Memory Usage per Tool. The maximum memory usage of somrit, xTea-Long, tldr and

Sniffles2 for each replicate and coverage level over five HPRC samples.

Somrit does have both higher run time overall and higher memory usage than other tools at 40x coverage. If somrit606

realign is run in parallel per chromosome the total time required for somrit is comparable to that of tldr and607
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Figure 12 Elapsed Time per Tool. The elapsed time for somrit, xTea-Long, tldr and Sniffles2 run

on each replicate and coverage level over five HPRC samples.

xTea-Long. The higher memory usage of somrit is attributed to the consensus generation step of realignment, with608

abPOA requiring a high amount of memory to generate consensus sequences.609
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