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 1 

Figure Legends 2 

 3 

 4 

 5 

Figure 1: FLVCR acts as a heme exporter in R. prolixus. Adult females were 6 

injected with dsRpFLVCR or dsMAL (control group) and fed on blood as 7 

described. (A) Quantification of heme present in the hemolymph of females 8 

injected with dsRpFLVCR and dsMAL. The amount of heme present in 9 

hemolymph was determined by the alkaline pyridine method. The data are 10 

presented as the mean ± SE for 10 individual determinations per experiment of 11 

four independent experiments. Statistical analysis between the two groups was 12 

performed using Student's t test. (B) Quantification of biliverdin present in the 13 

midgut of RpFLVCR-silenced insects. The amount of biliverdin was measured 14 

as described in Section 2 by HPLC. The data are presented as the mean ± SE 15 

for n=5 of three independent experiments. Statistical analysis between the two 16 

groups was performed using Student's t test. ** p< 0.01 17 

 18 

 19 

 20 
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 1 

Figure 2: FLVCR silencing is able to modulate genes from heme and iron 2 

metabolism. Starved adult females were injected with dsRpRFLVCR (A) or 3 

dsRpHO (B). Insects were fed on blood 48 h after injection. Total RNA was 4 

extracted from the foregut and hindgut, and the mRNA levels of genes involved 5 

in iron and heme metabolism were analyzed by quantitative RT‒PCR. The EF-1 6 

gene was used as an endogenous control. The result was normalized to 7 

animals injected with dsMAL (dashed line). The data are presented as the mean 8 

± SE (n= 14-15) of three independent experiments. Statistical analyses were 9 

performed using Student’s t test (experimental versus their respective controls, 10 

dsMal). *p<0.05; ** p<0.01; *** p<0.001; ****p<0.0001. RpFLVCR, feline 11 

leukemia virus C receptor FLVCR; RpHO, heme oxygenase; Fer, ferritin; IRP1, 12 

iron regulatory protein 1; Mfrn, mitoferrin; MVL1, Malvolio 1; MVL2, Malvolio 2 13 
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 2 

 3 

Figure 3. FLVCR silencing increases ROS levels in midgut cells. (A) ROS 4 

levels were evaluated from oxidized DHE fluorescence in cells from blood-fed 5 

females previously injected with dsRpFLVCR, dsRpHO or dsMal (control). 6 

Representative images of insects for each experimental condition are shown, 7 

scale bar 2 μm. Quantitative analysis of DHE fluorescence in 10 individual 8 

intestines from three independent experiments. The data shown are the mean ± 9 

SE, **** p<0.0001 for one-way ANOVA with Tukey's posttest. (B) Lipid 10 

peroxidation of hemolymph was quantified by the TBARS assay as described. 11 

The data shown are the mean ± SE (n= 4) from three independent experiments. 12 

**** p<0.0001 for one-way ANOVA with Tukey's posttest. (C-D). The expression 13 

of selected antioxidant genes was evaluated by quantitative RT‒PCR in insects 14 

with silenced RpFLVCR (C) or RpHO (D). The result was normalized to that of 15 

animals injected with dsMAL (dashed line). Statistical analyses were performed 16 

using Student’s t test (experimental versus their respective controls, dsMal). 17 

The data shown are the mean ± SE, *p<0.05; *** p<0.001 (n=12-14). 18 
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 2 
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Figure 4: Knockdown of FLVCR increases mitochondrial biogenesis in the 4 

midgut. (A) Unfed R. prolixus females were injected with dsMal, dsRpFLVCR or 5 

dsRpHO; 3 days after injection, they were fed on blood. Five days after a blood 6 

meal, the insects were incubated with MitoTracker Green and DAPI as 7 

described in the Experimental section. The scale represents 20 μm. All pictures 8 

were taken with an exposure time of 260 ms. The images are representative of 9 

a total of 18 intestines analyzed. (B) Quantification of MitoGreen fluorescence 10 

using Olympus quantification software. **P≤ 0.01; *** P≤ 0.001 one-way ANOVA 11 

with Tukey´s posttest. (C) The mitochondrial content of the midgut was also 12 

determined by measuring the activity of citrate synthase in silenced females as 13 

described in the methods section. The data shown are the mean ± SE. 14 

****P<0.0001. One-way ANOVA with Tukey’s posttest (n=7). (D) The activity of 15 

cytochrome c oxidase was measured using a Shimadzu spectrophotometer 16 

UV‒visible 2450. The data shown are the mean ± SE. ** P≤ 0.01; ****P≤ 17 

0.0001, one-way ANOVA with Tukey’s posttest (n=8). (E) dsRpFLVCR- and (F) 18 
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dsRpHO-injected females had their midgut dissected 5 days after feeding. The 1 

transcript levels of genes that control mitochondrial mass were measured by 2 

quantitative RT‒PCR. The result was normalized to that of animals injected with 3 

dsMAL (dashed line). Statistical analyses were performed using Student’s t test 4 

(experimental versus their respective controls, dsMal). The data shown are the 5 

mean ± SE. *** P≤ 0,001; ****P≤ 0.0001. (n= 8-11) TFAM; mitochondrial 6 

transcription factor A; DELG; CG6338/Drosophila Ets-like gene. 7 
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 1 

 2 

Figure 5: Knockdown of FLVCR promotes an imbalance in the 3 

mitochondrial redox state. (A) Anterior midguts (AMs) from FLVCR and HO-4 

silenced females were incubated with a 50 µM solution of oxidant-sensitive 5 

fluorophore DHE or the tissues were preincubated with 50 µM MitoTEMPO, a 6 

selective mitochondrial antioxidant, prior to DHE incubation. dsMal-injected 7 

females were used as controls. DHE oxidation in the AMs was analyzed by 8 

fluorescence microscopy (Zeiss Axio Observer Microscope) using a 20× lens 9 

with an 80 ms exposure time for all conditions. The images are representative 10 

of a total of 10 midguts analyzed. Scale bar 2 µm. (B) Graph represents the 11 

quantification of fluorescence using Zeiss Axio Observer Quantification 12 

software. The data shown are the mean ± SE. ****P ≤ 0.0001 (one-way ANOVA 13 

followed by Tukey’s test). 14 
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