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Abstract
Purifying selection is the most pervasive type of selection, as it constantly removes
deleterious mutations arising in populations, directly scaling with population size. Highly
expressed genes appear to accumulate fewer deleterious mutations between divergent
species’ lineages, pointing towards gene expression as an additional driver of purifying
selection. However, estimates of the effect of gene expression on segregating deleterious
variants in natural populations are lacking, as well as an understanding of the relative
contribution of population size and gene expression to overall purifying selection pressure.
Here, we analyse genomic and transcriptomic data from two natural populations of closely
related sister species with different demographic histories, the Emperor (Aptenodytes forsteri)
and the King penguins (A. patagonicus), and demonstrate that purifying selection at the
population-level depends on the level of gene expression, with larger effects than population
size. Deleterious segregating variants spread less in the population when they are in genes
with higher expression rate. Leveraging realistic forward simulations, we estimate that the top
10% of the most highly expressed genes in a genome experience a selection pressure
corresponding to an average selection coefficient of -0.1, which decreases to a selection
coefficient of -0.01 for the top 50%. Gene expression appears to be a fundamental driver of
purifying selection in natural populations, also effective at small population size. We suggest
gene expression could be used as a proxy for gene selection coefficients (i.e., distribution of
fitness effects), which are notoriously difficult to derive in non-model species under real-world
conditions.
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Introduction
Protein evolution is constrained by purifying selection, which prevents changes in the
underlying gene sequence with a deleterious effect on organismal fitness from spreading in
natural populations. The intensity of purifying selection on weakly deleterious (e.g., most of
nonsynonymous) mutations is directly correlated with the effective size of a population
(Charlesworth 2009, Akashi et al 2012), which, in turn, is determined by species-specific life
history traits and population-specific demographic trajectories (Figuet et al 2016, Chen et al
2017). However, genes with a globally high expression rate across tissues show a slower rate
of accumulation of weakly deleterious substitutions (Duret and Mouchiroud 2000, Pal et al
2001) and lower genetic divergence between closely related species (Zhang and Yang 2015).
This inverse correlation between the rate of evolution and gene expression (E-R
anticorrelation) could be due to the strong selection acting against the toxic accumulation of
misfolded or mis-interacting proteins in cells (Yang et al 2012, Park et al 2013, Wu et al 2022).

Evidence for E-R anticorrelation was found in interspecific comparisons by estimating
nonsynonymous over synonymous (i.e., nearly neutral) fixation rates (dN/dS) in genes with
different expression levels (Zhang and Yang 2015). However, only weak marks of
anticorrelation between gene expression and genetic polymorphism (i.e., segregating
nonsynonymous over synonymous variants, pN/pS) have recently been found in
population-level genetic variation, but only in model organisms in controlled laboratory
populations (Wu et al 2022, Shibai et al 2022). On the other hand, such effects have never
been estimated in natural populations experiencing real-world selection regimes. More
importantly, the interaction between gene expression and effective population size and their
relative contribution to global purifying selection is unknown. In fact, in small populations,
purifying selection is less effective as the contribution of genetic drift to random allele
frequency change is higher: Is such a lower efficiency of purifying selection the same for any
gene regardless of its levels of expression? Or should we expect a larger accumulation of
weakly deleterious variants in highly expressed genes when population size shrinks?

Here, we use two natural populations of closely related sister species, the Emperor and the
King penguins (Aptenodytes forsteri and A. patagonicus), with different demographic histories
(Trucchi et al 2014, Cristofari et al 2016, 2018), to show that i) the intensity of purifying
selection on population-level nonsynonymous variation clearly scales with gene expression, ii)
the effect of gene expression largely overwhelms that of population size, and iii) for the 50%
most highly expressed genes, the average selection coefficient on any nonsynonymous
variant is stronger than -0.01, while for the top 10% of highly expressed genes, it is stronger
than -0.1. We use high-coverage whole-genome data of 24 individuals per species to estimate
patterns of genetic diversity, and whole transcriptome data of five tissues from three young
individuals per species to estimate global mRNA expression levels. Young age class was
chosen for this analysis as genes broadly expressed in early life stages have been shown to
be the most affected by purifying selection (Cheng and Kirkpatrick 2021).
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Results and Discussion
Both Emperor and King penguins feature single, large and quasi-panmictic populations
(Cristofari et al 2016, 2018), but they show different levels of genetic diversity (Fig. 1A),
corresponding to their different ecological adaptations and past demographic dynamics
(Cristofari et al 2016, 2018, Cole et al 2022). As a consequence of the historically larger
effective population size in the Emperor penguin, this species has a higher proportion of
segregating variants and a lower proportion of fixed derived variants (Fig. 1B), a lower
proportion of segregating nonsynonymous over synonymous variants (pN/pS, Fig. 1B), but
only a minor difference in the proportion of fixed nonsynonymous over synonymous
differences (dN/dS, Fig. 1B) given the relatively short time since its divergence from the King
penguin. Both gene-by-gene estimates of diversity (nucleotide diversity: π) and expression
rate (normalised as transcripts per million, TPM) are highly correlated between the two
species (Fig. 1C,D), thus minimising any confounding effect of sequence and expression
divergence in our downstream analyses.

Figure 1. Patterns of genetic diversity and gene expression in Emperor (E, teal) and King (K, gold) penguins. A.
Distribution of nucleotide diversity (π) and Tajima’s D in 50 kb genomic windows; B. Proportion of derived alleles as
segregating variants (p) or fixed differences (d) at synonymous and nonsynonymous sites (left panel) and estimates
of pN/pS and dN/dS (right panel); C. Per gene comparison of nucleotide diversity between King and Emperor
penguins; D. Per gene comparison of expression rate between King and Emperor penguins, quantified as
transcripts per million (up to TPM = 1100; see Supp. Fig. 5 for the whole expression range).
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Purifying selection more efficiently removes nonsynonymous segregating variants in genes
while expression rate increases. Average pN/pS across genes binned in 5% percentiles of
expression rate shows a declining trend of pN/pS with expression, with the bin average
dropping by ca. 80% across the whole range of gene expression in both species (average
pN/pS: from > 1.1 in the bottom 5%, to < 0.4 in the top 5% of expression rate; Fig. 2A).
Conversely, the difference in pN/pS between the two species (i.e., likely due to the effect of
the population size) spans from 2% to 37% across the whole range of gene expression,
suggesting that effective population size as a less important determinant of pN/pS in these
species. Similar results are obtained if we analyse the expression rate per segregating site
(mRNA sequencing coverage per site normalised as count per million reads - CPM) in order to
take into account heterogeneous expression rate among exons. Again, counts of
nonsynonymous over synonymous variants in bins of 0.05 CPM, from 0 to 5 CPM, are
inversely correlated with expression rate (Supp. Fig. 6). The decline of pN/pS with increasing
gene expression rate is due to the decreasing count of nonsynonymous variants in highly
expressed genes, whereas the count of synonymous variants is stable across the whole gene
expression range in both species (Fig. 2B,C). More importantly, the difference in the counts of
synonymous variants between the two species is also stable and always significant
(Kolmogorov-Smirnov test p-value << 0.005), whereas the difference in the counts of
nonsynonymous variants decrease with increasing gene expression, with this difference
disappearing in the upper 50-60% of gene expression rate (Fig. 2C). This result supports the
hypothesis that gene expression overrides effective population size in driving purifying
selection. Even if gene expression has been suggested to be one of the causes of
non-neutrality in synonymous variants in yeast (Shen et al 2022), or that codon usage bias is
more intense in highly expressed genes (Frumkin et al 2018), gene expression rate does not
appear to perturb synonymous variation in our datasets from two vertebrate species.
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Figure 2. Increasing purifying selection with gene expression in Emperor (teal) and King (gold) penguins.
Distribution of pN/pS (A), and average number of synonymous (B) and nonsynonymous (C) segregating variants
(normalised by coding sequence - CDS - length) in genes binned by 5% percentiles of expression rate (normalised
as TPM). Median (solid white line) and mean (white triangle) is shown in each boxplot. Statistical significance for the
difference in the distribution of synonymous and nonsynonymous variants (Kolmogorov-Smirnov test p-value) per
percentile between the two species is shown.
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Purifying selection more efficiently prevents nonsynonymous segregating variants from
increasing in frequency in genes with higher expression rate. The derived allele frequency
spectrum of nonsynonymous variants with expression rate higher than 0.3 CPM is depleted in
medium-high frequency categories, while there is no difference in the derived allele
frequency spectrum of synonymous variants across the whole expression range (Fig. 3).
Changing the arbitrary threshold to discriminate between low and high expression rate, or
using more than two categories of expression rate (low: < 0.3 CPM, medium: 0.3-2 CPM, high:
> 2 CPM) does not change the observed pattern (Supp. Fig. 7). The pattern holds when all
nonsynonymous and synonymous variants are used in the allele frequency spectrum estimate
(Supp. Fig. 7) as well as when one nonsynonymous and one synonymous variant are randomly
sampled from each gene (Fig. 3), thus excluding the possibility that few genes with many
variants (i.e., pseudoreplication) drive our observation.

Figure 3. Nonsynonymous variants in highly expressed genes segregate at lower frequency in Emperor (teal)
and King (gold) penguins. Site frequency spectra of ten random resampling (95% distribution) of one
nonsynonymous (upper panels) and one synonymous (lower panels) variant per gene with lower (dark shade) or
higher (light shade) than 0.3 CPM mRNA expression. The relative frequency of each count class is log10
transformed. Note that nonsynonymous variants in highly expressed genes show a higher frequency at low
derived allele count classes than nonsynonymous variants in lowly expressed genes.
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Purifying selection in the top 10% of highly expressed genes largely exceeds the effect of
100,000-individuals effective population size. In simulated populations, under either
Wright-Fisher or more realistic non Wright-Fisher models, median pN/pS across genes
declines from 1.8 to 0.9, while population size increases from 1,000 to 100,000 individuals (Fig.
4). Such values of pN/pS are much higher than the mean or median values observed for
genes in the top 10% of expression rate (Fig. 2A). In these models, the effect of population
size on purifying selection was explored by simulating a set of realistic values for mutation
and recombination rate, synonymous to nonsynonymous ratio, selection and dominance
coefficient distributions, coding sequence length and gene numbers. In particular, new
mutations were given a selection and dominance coefficient (h-mix) based on a nearly neutral
prior distribution (Kim et al 2017, Kyriazis et al 2021), meaning that most of the mutations are
weakly deleterious. To reproduce the pN/pS values that we observed in the highly expressed
genes (i.e., mean pN/pS < 0.4 in the top 10%) in both penguin species, we designed a more
extreme selection scenario: all nonsynonymous mutations appearing in a gene were given a
fixed selection coefficient of -0.1, -0.01 or -0.001 (100 replicated genes per selection
coefficient) and a dominance coefficient derived from the hs relationship (Henn et al 2016). In
models with a selection coefficient of -0.01, pN/pS decreases below 0.6 (Fig. 4) while a
selection coefficient of -0.1 results in pN/pS below 0.4, as observed in genes in the top 50%
and 10% of expression rate, respectively. Such strong selection coefficients are expected to
be effective even when the population size is small (i.e., s >> 1/N, per N = 1,000), however we
observe more variance in simulations with smaller population sizes (Supp. Fig. 8).

Figure 4. Population size and gene-specific extreme selection coefficient explain low observed pN/pS values in
simulations. Distribution of pN/pS across 1000 genes simulated under nonWrightFisher (nonWF, left, solid border)
and WrightFisher (WF, right, dashed border) models with effective population size from 1,000 to 100,000 (darker
grey background) and across 100 genes with selection coefficient from -0.001 to -0.1 (lighter grey background).
Note that the dominance coefficient is set according to the h-mix or hs models in simulations testing different
population sizes or selection coefficients, respectively. More efficient purifying selection in nonWF models, where
effective population size tends to be lower than in WF models, can be explained by the fact that, in such models,
individuals with high fitness can survive and reproduce for multiple generations (Haller and Messer 2019).
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Gene expression can be used as a proxy of the distribution of gene selection coefficients in
natural populations of non-model species. Variants with highly deleterious effects on
individual fitness are expected to be immediately lost in natural populations. Consistent with
this expectation, the highly deleterious variants (< 1000 HIGH effect SNPs per species)
predicted by SNPeff (Cingolani et al 2012) in each penguin population show a much lower
average expression level than weakly deleterious (MODERATE effect) and nearly-neutral
(LOW effect and synonymous) variants (Tab. 1). This observation means that HIGH effect
variants are mainly present in lowly expressed genes with limited impact on fitness.
Expression level is even lower in the very few fixed differences with HIGH effect (Tab. 1), thus
supporting our hypothesis. As site-specific expression of highly deleterious variants (mainly
start/stop codons loss/gain and splice acceptor/donor variants) could be biassed in mature
mRNA sequencing, we also estimated the expression of highly deleterious variants as the
expression of the gene they belong to. Even applying a rather conservative test, the
expression of genes with predicted highly deleterious variants is on average three times
lower than all genes (Kolmogorov-Smirnov test p-value = 0.00095) in the King penguin and
slightly lower, even if not significant, in the Emperor penguin. As previously suggested for the
distribution of dominance coefficients in a model plant species (Huber et al 2018), gene
expression should be taken into account when using predictions of fitness effects and, more
generally, when using such predictions to calculate the genetic load in populations of
conservation concern (Bertorelle et al 2022). In fact, predicted highly deleterious variants
could be on lowly expressed genes, thus with little contribution to individual or population
fitness.

Table 1. Expression rate by predicted fitness effect. LOWsyn: low effect and synonymous; MDR: moderate effect;
HIGH: high effect.

PREDICTED FITNESS EFFECT LOWsyn LOWsyn MDR MDR HIGH HIGH

Species Emperor King Emperor King Emperor King

Total variants 73501 57088 47183 41352 934 840

→Average (stdev) Z-normalised
CPM 1.5 (5.02) 1.3 (4.56) 0.78 (2.85) 0.78 (2.86) 0.24 (1.97) 0.14 (0.88)

Fixed differences 1846 3500 1166 2229 16 44

→Average (stdev) Z-normalised
CPM 1.41 (4.12) 1.22 (4.14) 1.4 (6.31) 0.93 (3.39) 0.08 (0.54) 0.02 (0.57)

Average count of derived alleles in
segregating variants 6.17 6.25 4.75 4.73 5.14 5.48

Concluding remarks
Overall, our study provides evidence that gene expression is a critical driver of purifying
selection in natural populations, and to a higher extent than population size. About half of the
genes in a genome, which are likely responsible for basic cellular and molecular functions
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(Boyle et al 2017), are under a strong selective constraint preventing deleterious sequence
changes even when population size declines to about 1,000 individuals. Below this order of
magnitude, random effects could prevail in the population evolutionary trajectory. Importantly,
gene expression can be used as a proxy of the gene selection coefficient, which is notoriously
difficult to study in natural populations of non-model species (Huber et al 2017). Gene
expression data are easier to collect than selection coefficients and are usually highly
conserved across closely related species (Fig. 1D), so that they can be used to refine
estimates of genetic load (Bertorelle et al 2022) in natural populations of conservation
concern.

Data availability
Genomic and transcriptomic raw reads are publicly available at ENA database with Project
accession number PRJEB64484 and XXX (genomic raw reads to be submitted).
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Extended methods and supplementary information

1. Genomic data
1.1 Samples collection and storage
Genomic DNA extractions of 24 King penguins (Aptenodytes patagonicus from South
Georgia, Crozet archipelago, and Heard island), and 24 Emperor penguins (Aptenodytes
forsteri from Terre Adélie and Dronning Maud Land, Antarctica), were selected from samples
used in Cristofari et al (2016) and Cristofari et al (2018). In addition, four Gentoo penguin
(Pygoscelis papua from Crozet archipelago) and two Adelie penguins (Pygoscelis adeliae
from Terre Adélie, Antarctica, 2007) were collected during the field campaigns of the French
IPEV programme 137 in 2017 and 2007, respectively (Supp. File 1). Samples were stored in
ETOH (muscle biopsy) or in Queen Lysis buffer (blood samples), frozen at -80°C from the field
to the lab.

1.2 DNA extraction, pooled library preparation and sequencing
DNA extraction was performed using DNeasy Blood and Tissue kit (Qiagen) following
manufacturer’s instructions. Whole genome sequencing libraries were prepared and
sequenced at the Norwegian Sequencing Centre, Oslo, using Illumina pcr-free single or
dual-indexing kits. To minimise batch effects, genomic samples from different species and
different localities were randomised in six libraries and sequenced on 1-3 lanes of Illumina
HiSeq2500 and HiSeq4000 aiming at 20X coverage depth. Raw reads are publicly available
at ENA database (XXX, to be made available).

1.3 Variant calling, filtering and annotation
After Illumina adapters trimming and quality filtering with Trimmomatic (Bolger et al 2014) and
URQT (Modolo and Lerat 2015), respectively, fastq reads were mapped to the Aptenodytes
forsteri reference genome (ASM69914v1; RefSeq assembly accession: GCF_000699145.1)
using bwa mem (v0.7.15; Li 2013), converted to bam files and sorted with samtools (v0.1.19; Li et
al 2009), keeping only reads with phred-scaled mapping quality higher than 10. Duplicated
reads were removed with picard-tools (v1.98) and bam files were assigned to individual
samples by adding ID read groups with picard-tools.

Small variants (SNPs, indel and MNPs) were called with freebayes (Garrison and Marth 2012)
using reference genome scaffolds longer than 100Kb (476 in total), all samples grouped per
species (--populations flag), and a minimum phred-scaled mapping quality of 20. Resulting vcf
files (one per scaffold) were then filtered: i) MNPs were first broken down into SNPs using
vcfallelicprimitives script in vcflib (with -k -g flags; Garrison et al 2022); ii) variants were then
filtered for quality (QUAL > 30), strand bias (SAF > 0 & SAR > 0), read placement bias (RPL > 0
& RPR), and type of variants (TYPE = snp) with vcffilter script in vcflib; iii) SNPs were finally
filtered using vcftools (v0.1.15; Danecek et al 2011) for minimum coverage depth of 3 reads per
individual (--minDP 3; individual genotypes discarded if below threshold), mean maximum
coverage depth of 50 (--max-meanDP 50 which is ca. three times the average individual
coverage depth; whole locus discarded if above threshold), and retained only if biallelic
across all samples. A total of 44 sex-linked scaffolds were identified and removed from the
dataset by running samtools idxstats on all bam files and the SATC (Nursyifa et al 2022)
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Rscript on the resulting data. SNPs were annotated using SNPeff (Cingolani et al 2012) and
the GCF_000699145.1 genome annotation. Annotated vcf files are available upon request.
Mean coverage depth of filtered SNPs per allele was 6.93X, standard deviation 1.07X.

1.4 SNPs polarisation in ancestral and derived alleles
Annotated vcf files were parsed using a custom python script (vcf2missenseFreq.2d.py;
https://github.com/emitruc/ExpressionLoad). For each SNP position we summed up the joint
derived allele counts for King and Emperor penguin samples using Adelie and Gentoo
penguins samples as outgroups. The resulting summary table (daf.joint; Supp. Tab. 1) included
the following information:

- counts of derived alleles and total alleles in Emperor penguin (der1; tot1), King penguin
(der2; tot2), and Adélie and Gentoo penguins (der_out; tot_out) samples;
- average allele coverage (avgCov);
- ancestral (ref) and derived (alt) allele;
- genomic site type (vartype) based on the first annotation by SNPeff as missense if
containing the word ‘missense’, synonymous if containing the word ‘synonymous’,
intergenic if containing the word ‘intergenic’, intronic if containing the word ‘intron’, else
otherwise;
- genomic site predicted effect (effect) based on the the first annotation description as
HIGH, MODERATE, LOW, MODIFIER;
- a flag whether the polymorphic site was originally called as MNP or SNP by freebayes
(fyellow bellied toadlagQual: haplo, snp);
- a flag to track how the derived allele was called (flagPol) on the basis of the options
shown in Supplementary Figure 1.

Supplementary Table 1. Example of SNPs recorded in the summary table daf.joint

scaffold position flagPol flagQual der1 tot1 der2 tot2 der_out tot_out avgCov ref alt vartype effect

NW_008793941.1 85516 InFixAnc snp 0 48 0 44 6 8 7.2 G A intron MODIFIER

NW_008793941.1 85528 unfolded snp 3 48 46 46 0 8 6.6 G A intron LOW

NW_008793941.1 85558 allFix snp 0 48 0 46 8 8 6.4 T C synonymous LOW

NW_008793941.1 85657 unfolded snp 0 48 1 48 0 12 6 C T synonymous LOW

NW_008793941.1 85734 unfolded snp 2 48 0 48 0 12 6.9 C T intron MODIFIER

NW_008793941.1 85746 allFix snp 0 48 0 48 12 12 6.8 G A intron MODIFIER

NW_008793941.1 85762 unfolded snp 5 48 0 48 0 10 6.6 C T intron MODIFIER

NW_008793941.1 85788 InFixAnc snp 0 48 0 46 4 8 7.1 A C intron MODIFIER

NW_008793941.1 85790 unfolded snp 0 48 15 46 0 8 7.1 T C intron MODIFIER

NW_008793941.1 85800 unfolded snp 2 48 0 48 0 8 6.9 C T intron MODIFIER

NW_008793941.1 85804 unfolded snp 1 48 0 48 0 8 6.9 C T intron MODIFIER

NW_008793941.1 85829 unfolded snp 0 48 11 48 0 8 6.7 T C intron MODIFIER

NW_008793941.1 85836 allFix snp 0 48 0 48 8 8 6.6 A G intron MODIFIER

NW_008793941.1 85845 allFix snp 0 48 0 46 8 8 6.8 A G intron MODIFIER

NW_008793941.1 85864 InFixAnc snp 0 48 0 44 4 10 6.1 T C intron MODIFIER

NW_008793941.1 85870 unfolded snp 0 46 5 46 0 10 6.6 G A intron MODIFIER
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Supplementary Figure 1. Schematic representations of the potential distribution of ancestral and derived alleles at
a biallelic site across two ingroup and one outgroup samples. Ingroup1: Emperor penguin; ingroup2: King penguin;
outgroup: Pygoscelis (Adélie + Gentoo) penguins. Blue and yellow circles represent copies of the ancestral and
derived alleles. The number of allele copies per sample is only given as an example. Missing data are represented
as no circles. The yellow star represents the branch and timing the mutation to the derived allele likely occurred at.
For ALLFIX and INFIXOUTMISS configurations, the allele of ingroup1 is arbitrarily considered as ancestral. Ingroup1
or ingroup2 missing data configurations are not shown. This algorithm is implemented in the python script
vcf2missenseFreq.2d.py (available at https://github.com/emitruc/ExpressionLoad).

1.5 Distribution of derived alleles frequencies
After removing monomorphic sites across Emperor and King penguin samples (e.g., INFIXANC
and ALLFIX configurations in Supp. Fig. 1) from the dataset, we checked whether the derived
alleles distribution was in line with basic expectations from population genetics. To avoid
downstream normalisation, we selected only sites without missing data in the target species.
In addition, we choose sites which were properly polarised (flagPol=UNFOLDED) based on at
least four alleles present in the outgroup and with coverage depth range between 6X and 8X,
i.e., one standard deviation (ca. 1X) from the mean (ca. 7X). Such a narrow coverage range
was applied to mitigate as much as possible the inclusion of sex-chromosome related regions,
which could have been incorrectly assembled within autosomal scaffolds, and multiple-copy
regions, which were not properly assembled in the reference genome sequence (see Supp.
Fig. 2 for a comparison at different coverage ranges). Both types of regions are also
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characterised by marked deviation from Hardy-Weinberg equilibrium (HWE). Applying a
coverage threshold as a filter, we could retain sites which are not in HWE due to other
processes (e.g., population structure, selection). Using all intergenic sites with no missing data
for both species, we summarised the joint derived allele frequency (DAF) distribution (Supp.
Fig. 2). As expected, a very small proportion (note the log scale of the heatmap in Supp. Fig.
2) of derived alleles appear as segregating in both species, with a minimal covariance in the
low and in the very high frequency classes. The latter suggests some mis-polarisation due to
sites hit by multiple mutations (see below). Nevertheless, when setting the coverage range
between 6X and 8X, co-segregating derived allele frequencies largely appear as uncorrelated
between the two species as expected in case of incompletely sorted ancient variation.

Supplementary Figure 2. Joint derived allele frequency distributions in King and Emperor penguins samples at
different ranges of coverage.

DAF were separately summarised according to the predicted annotation as intergenic,
intronic, synonymous and nonsynonymous in each species (Supp. Fig. 3). In general, the
shape of observed DAF is consistent with the expectations from population genetics theory.
The slight (note the log scale on the y-axis in Supp. Fig. 3) increase in very high frequency
variants has been commonly observed (also in human population data; Marchi and Excoffier
2020) and it is likely due to mis-polarisation of ancestral/derived alleles at sites hit by multiple
mutations (Hernandez et al 2007), rather than to migration from a “ghost” population (Marchi
and Excoffier 2020). DAF from intergenic sites represent the best approximation to neutrality,
with a shape depending on past population demography only. On the contrary, DAF from
missense sites are expected to be enriched in low frequency and depleted in medium-high
frequency classes as deleterious alleles are less likely to increase in frequency in the
population due to negative selection. Such a pattern is clearly appearing in both Emperor and
King penguins. Synonymous sites DAF show small deviations from neutrality, likely due to
linked selection within missense sites in exons. On the other hand, DAF from intronic and
intergenic sites are fully overlapping with each other, suggesting very limited linked selection
spanning from exons to introns.
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Supplementary Figure 3. Derived allele frequency distributions for different types of variants (Intergenic, intronic,
synonymous and missense as annotated by SNPeff)

1.6 Population statistics
Nucleotide diversity (π) and Tajima’s D were estimated in non-overlapping windows of 10
thousand base pairs (kbp) in Emperor and King penguin samples using vcftools from 432
scaffolds. As we are interested in the species-level long-term adaptation processes, we
included in our samples individuals from multiple locations to get an accurate representation
of the whole species diversity. Previous studies, based on reduced-representation genome
sequencing of hundreds of individuals per species, described both Emperor and King penguin
as quasi-panmictic species, with only one very large population each and very little
differentiation among colonies (Cristofari et al 2016, 2018). By estimating Weir and Cockerham
(1984) FST in 10 kbp non-overlapping windows using vcftools (Supp. Fig. 4 inset), we confirmed
previous results finding negligible genetic differentiation between King penguin samples from
Crozet and Heard, and South Georgia (FST mean 0.003, std 0.024) and between Emperor
penguin samples from Terre Adélie and Dronning Maud Land (FST mean 0.004, std 0.020).
Principal component analysis (SNPRelate - Zheng et al 2012, 500 bp pruning for linkage
disequilibrium) on a subset of ca. 20,000 SNPs from scaffold NW_008796188 showed no
genetic structure in any of the two species (Supp. Fig. 4).
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Supplementary Figure 4. No signature of genetic differentiation among distant colonies of Emperor (left) and King
penguin (right). Main plots show the results of Principal Component Analysis run in SNPRelate using 20,256 and
18,256 SNPs not closer than 500 bp from scaffold NW_008796188, respectively. Histograms of FST estimated in
non-overlapping 10 kbp windows across the whole genome are shown as insets. DML: Dronning Maud Land; ADE:
Terre Adélie; CRO: Crozet; HEA: Heard; GEO: South Georgia.
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2. Gene expression data
2.1 Sample collection and storage
During June-September 2016 field campaigns at Dumont d'Urville Station in Antarctica and at
the Alfred Faure station in Crozet archipelago, samples of five different tissues (brain, liver,
kidney, skin and muscle) were collected from three freshly-predated 3-7 months-old chicks
from natural populations of Emperor and King penguins, respectively (Pirri et al in
preparation). All tissue samples were collected immediately after death, directly fixed in
RNAlater (Applied Biosystems, Warrington, UK) and frozen at −80°C until RNA extraction.

2.2 RNA extraction, pooled library preparation and sequencing
Total RNA was isolated from 40 mg of each tissue sample by a standard laboratory-based
chloroform extraction after homogenization in 500 ul of TRIzol® reagent (Invitrogen,
ThermoFisher Scientific). Samples were added to 100 μl of chloroform, vortexed, and
centrifuged at 12,000×g for 15 min at 8°C; the upper aqueous phase was collected and
transferred to a new tube for precipitation with isopropanol by centrifugation at 12,000 g for
10 min at 8 °C; the RNA pellet was washed with 75% ethanol and centrifuged at 7,500×g for 5
min at 8 °C, the ethanol removed and the RNA pellet resuspended in RNase free water to be
stored at -80C°. As TRIzol-based extraction from skin and muscle yielded poor RNA quality
and quantity, likely due to large amount of proteins, connective tissue, and collagen in these
tissues, RNA from these two tissues was extracted using the RNeasy Fibrous Tissue Mini Kit
(Qiagen) according to the manufacturer’s instructions. Also in this case, isolated RNA was
dissolved in RNase free water and stored at -80C°. Concentration and purity (i.e., the
A260/A280 ratio) of each RNA sample was assessed by Nanodrop 2000 (Thermo Fisher
Scientific) and Qubit 4.0 fluorometer (ThermoFisher Scientific) while RNA integrity was
evaluated by capillary electrophoresis on Agilent 2100 Bioanalyzer (Agilent technologies,
Santa Clara, CA). As the target of our study was to estimate the global level of gene
expression (across tissues), a total of six RNA pools (three pools of five tissues per three
individuals for each species) were assembled starting from 15 RNA samples per species, after
concentration was normalised. RNA-seq library preparation and sequencing was carried out
by BMR Genomics Service (Padova, Italy). Libraries were synthesised using the TruSeq
Stranded mRNA Sample Prep kit (Illumina, San Diego, CA), according to the manufacturer’s
instructions. Poly-A mRNA was fragmented for 3 minutes at 94°C, and each purification step
was carried out with 1 × Agencourt AMPure XP beads. Paired-end sequencing (100 bp from
each end) was then performed on the Novaseq 6000 (Illumina, San Diego, CA) at a
sequencing depth of 100 million reads per library. Raw reads are publicly available at ENA
database as one pool of reads per species (Project ID: PRJEB64484, sample accession ID
King penguin: ERS16093259; sample accession ID Emperor penguin, ERS16093260).

2.3 RNA mapping, base-pair and gene expression rate estimates
RNAseq reads from the two penguin species were mapped to the same reference genome
(i.e., A. forsteri reference genome - RefSeq assembly accession: GCF_000699145.1) as for the
genomic data. In particular, after standard filtering and trimming with Trimmomatic, RNA reads
were mapped using STAR v.2.7.9a (Dobin et al 2013) and resulting bam files indexed with
SAMtools. From bam files, counts of reads overlapping each gene were estimated with HTseq
(Anders et al 2015) using the available genome annotation for GCF_000699145.1 reference
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genome. Multi- mapped and overlapping multiple expression features reads were discarded.
For each gene, genomic coordinates, exon and CDS length were extracted from the
annotation of GCF_000699145.1 reference genome with the following bash commands and
merged with the RNAseq expression counts from both Emperor and King penguin samples:

while read i; do echo -ne $i '\t' ; grep -e 'gene='$i';'
GCF_000699145.1_ASM69914v1_genomic.gff | grep -e ' gene ' | cut -f 1,4,5 | sort -k1,1
-k2n | bedtools merge ; done < gene.list > geneCoord

while read i e ; do echo -ne $i '\t' ; grep -e 'gene='$i';'
GCF_000699145.1_ASM69914v1_genomic.gff | grep exon | cut -f 1,4,5 | sort -k1,1 -k2n |
bedtools merge | awk '{sum+=$3-$2} END {print sum}'; done < gene.list > geneLength

while read i e ; do echo -ne $i '\t' ; grep -e 'gene='$i';'
GCF_000699145.1_ASM69914v1_genomic.gff | grep -e " CDS" | cut -f 1,4,5 | sort -k1,1 -k2n |
bedtools merge | awk '{sum+=$3-$2} END {print sum}'; done < gene.list > cdsLength
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3. Testing the effect of gene expression on purifying selection
3.1 Gene-based analyses

Counts of synonymous and missense polymorphic sites were summarised per gene using a
custom python script (FinalPipeline.ipynb; https://github.com/emitruc/ExpressionLoad). After
applying the stringent filters for coverage (from 6X to 8X) and missing data (no missing
genotype), we used the genomic coordinates of all genes to subset the list of SNPs in the
daf.joint dataset and count the number of synonymous and missense polymorphic sites per
gene. RNAseq counts per gene from HTseq were then normalised by CDS length and total
number of reads as transcript per million (TPM), separately per Emperor and King penguin
samples (Supp. Fig. 5).

Supplementary Figure 5. Expression rate as transcripts per million (TPM) per gene in King (yellow) and Emperor
(blue) penguins. Whole range of expression (left panel) and up to 6000 TPM (right panel).

Counts of synonymous and missense polymorphic sites per gene were also normalised by
CDS length. To estimate the intensity of purifying selection in each gene we used the ratio of
missense (N) over synonymous (S) polymorphic sites (pN/pS).

We used these data to test two hypotheses:

First, if purifying selection is driven by gene expression rate, we should observe a decline in
pN/pS with increasing expression and such decline should be determined by a corresponding
decline in missense polymorphism. To test this hypothesis, we studied the distribution of
normalised synonymous and missense counts and pN/pS values in genes grouped by 5%
percentiles of TPM.

Our second question is more complex and concerns the relative weight of population size
and gene expression, respectively, in driving purifying selection. When comparing two
populations with different historical effective population size, we expect the smaller
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population to show lower diversity at both neutral and deleterious sites, but higher pN/pS
because of larger drift which, in turn, reduces the efficacy of purifying selection. If population
size is the main driver of purifying selection, we expect that the difference in diversity, and of
pN/pS, between the two populations of different size will be the same across the whole range
of gene expression. If gene expression is instead the main driver of purifying selection, we
expect that the difference in diversity between the two populations of different size will
decline with increasing gene expression rate at deleterious sites but not at neutral sites. To
answer this question we tested whether the difference in the distributions of normalised
counts of synonymous and missense sites between the two species was statistically
significant by a 2-samples Kolmogornov-Smirnov test for groups of genes characterised by
increasing expression rate (5%-percentiles of TPM).

Python scripts used for data handling, parsing, plotting and statistical testing are available in
the FinalPipeline.ipynb (https://github.com/emitruc/ExpressionLoad).

3.2 Polymorphic sites-based analyses
For each polymorphic SNP in our genomic dataset (daf.joint.no00), we separately estimated
the RNA reads coverage in King and Emperor penguin samples using SAMtools module depth
and a bed file listing all polymorphic sites in the genomic dataset. Per site RNA read coverage
was then added to the genomic dataset, as one value (total number of reads) per species
(daf.joint.no00.rnaCov; https://doi.org/10.6084/m9.figshare.23863503.v1). Raw mRNA
coverage per site was normalised as counts per million reads (CPM) dividing this value by the
sum of mapped RNA reads x 1 million, separately per species:

emp_counts = [62589631 + 85819833 + 72587896] #mapped reads in each of the three pools
king_counts = [66803162 + 64732729 + 58348853] #mapped reads in each of the three pools

emp_CPM = emp_RnaCov / emp_counts * 1000000
king_CPM = king_RnaCov / king_counts * 1000000

After applying the same stringent filters for coverage (from 6X to 8X), outgroup missing data
(at least 4 alleles present), and King and Emperor penguin missing data (no missing
genotype), we generated different datasets of synonymous and nonsynonymous variants
separately per species. Next, after capping the maximum CPM value to 5, we grouped the
variants in each dataset applying the same 100 bins of CPM. We then estimated the ratio of
nonsynonymous over synonymous variants in each bin separately per species (Supp. Fig. 6).
To investigate the effect of gene expression on the allele frequency of synonymous and
nonsynonymous variants, we estimated the derived allele frequency spectra grouping the
variants by discrete values of CPM (Supp. Fig. 7): i) CPM < 0.3, CPM > 0.3; ii) CPM < 0.5, CPM >
0.5; iii) CPM < 0.3, 0.3 < CPM < 2, CPM > 2. In order to exclude the possibility that a few genes
were driving the observed pattern (i.e., pseudoreplication) in the comparison of the site
frequency spectra at different expression rates, we replicated ten times the analysis by
grouping variants with CPM < 0.3 or CPM > 0.3 after randomly subsampling one synonymous
and one nonsynonymous variant per gene. Out of ten replicas, we estimated the 95%
intervals for each derived allele count in the site frequency spectra (Figure 3 in main text).
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Supplementary Figure 6. Ratio of missense to synonymous segregating sites per 0.05 intervals of counts per
million (CPM) mRNA coverage of each site. Total mRNA read coverage (normalised as counts per million reads)
across five tissues from three specimens has been scored for all nonsynonymous and synonymous sites. Note
these are density histograms where the total sums up to 1 in each species.
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Supplementary Figure 7. Site frequency spectra of all nonsynonymous (left column) and synonymous variants
(right column) across all genes of Emperor (blue) and King (yellow) penguins with mRNA expression partitioned by
different values of CPM. The relative frequency of each count class is log10 transformed.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.08.552445doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.08.552445
http://creativecommons.org/licenses/by/4.0/


4. Testing the relative weight of effective population size and gene expression in realistic
forward simulations
The genomic and transcriptomic data analysed in the previous section show that i) purifying
selection (estimated as pN/pS) on any gene appears as correlated with its level of expression,
and that ii) the effect of gene expression on purifying selection overrides the effect of
population size (i.e., King and Emperor penguin populations show similar trends concerning
pN/pS while their demographic histories were different; Trucchi et al 2014, Cristofari et al
2016, 2018). To understand the relative contribution of gene expression and population size
on purifying selection, we devised a forward in time genomic simulation framework in SLiM
v4.0.1 (Haller and Messer 2023). In particular, we used both general Wright-Fisher (WF) and
penguin-specific non Wright-Fisher (nonWF) models to study the effect of different population
sizes (i.e., genetic drift) and the effect of different selection coefficients on pN/pS. Our
hypothesis was that the effect of demography alone isn’t strong enough to generate the
pN/pS values as observed in our King and Emperor penguin data, but a much stronger
selection coefficient on highly expressed genes is needed in the model.

Firstly, to investigate the correlation between population size (Ne) and pN/pS, we designed a
WF (WF Pop Size Effect Model) and a nonWF model (nonWF Pop Size Effect Model), which we
ran with different carrying capacities (Ne = 1,000, 10,000 and 100,000). The main difference in
the nonWF model is that we modelled realistic King penguin life history traits (Céline Le
Bohec, personal communication) with population size as a non-fixed parameter which can
fluctuate around the set carrying capacity. The genomic model is the same in WF and nonWF
simulations and it is implemented as a reduced version of the whole CDS of the King penguin
with the coding component of 1,000 genes of length 2,400 bp (i.e., the mean value for the
coding sequence per gene in King penguin). The recombination rate is set at 1e-8 within
genes and at 4.8e-4 between genes (1e-8 rate scaled to the average intergene length).
Mutation rate is set at 1e-8 and the ratio between the occurrence of deleterious and neutral
mutations is 2.31:1 (Kim et al 2017). The selection coefficient is assigned to each deleterious
mutation using a random value from a gamma distribution with mean -0.01314833 and shape
0.186 (Kim et al 2017). This distribution has been used before in humans and other mammals
but we believe it could approximate the distribution of fitness effect also in our target species.
For the dominance coefficient we used a h-mix model (Kyriazis et al 2021), where weakly
deleterious mutations (s ≥ −0.01) are partially recessive (h = 0.25), while strongly deleterious
mutations (s < -0.01) are totally recessive (h = 0).

We designed similar WF and nonWF models (WF Gene Expression Effect Model and nonWF
Gene Expression Effect Model, respectively) to investigate the effect of gene expression on
pN/pS. As the pN/pS in the largest simulated population size (Ne = 100,000) of the Pop Size
Effect models did not reach small values as observed in our King and Emperor penguin data,
we implemented a more extreme selection scenario. In the previous Pop Size Effect models
the gamma distribution used to randomly assign the selection coefficient of a novel
deleterious mutation resulted in most of the mutations being weakly deleterious (s >= -0.01).
Here, we assigned a fixed selection coefficient (s = -0.001, -0.01, and -0.1) to every gene so that
all nonsynonymous mutations appearing in a gene have the same selection coefficient, then
we simulated 100 genes for each selection coefficient resulting in a set of 300 genes. We
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followed the same strategy for the dominance coefficient assignment, thus it is assigned to
every gene deriving it from its fixed selection coefficient following the hs relationship (1)
(Kyriazis et al 2021), so that dominance and selection coefficients result to be inversely
proportional.

(1) ℎ (𝑠) =  1/2
1 + 7071.07 × 𝑠 ( )

The recombination coefficient is set at 1e-8 within genes and 0.5 between genes in order to
make genes independent to one another. Since most of the genes resulted in a low number
of mutations at the end of the simulated generations and to keep the computational running
time tractable, we instead increased the gene length from 2,400 to 34,000 bp (the average
total gene length in King penguin genome) in the final models, we then estimated the pN/pS
per each selection coefficient category of genes under different carrying capacities (Ne =
1,000, 10,000, 100,000).

In total, we designed four models, each of them testing three carrying capacities. For each of
these 12 scenarios, we ran three replicas of 10*N generations each (except for the Ne =
100,000 model where we ran for Ne generations due to computational time), as suggested by
SLiM authors in order to make the population reach an equilibrium state (i.e., burn-in). At the
end of the simulations, we estimated the pN/pS based on 24 individuals, as in our genomic
and transcriptomic real data, repeating the estimate 100 times by randomly resampling 24
individuals. Slim scripts are available at XXX github repository (to be published).

Supplementary Figure 8. Selection coefficients in highly expressed genes. Distributions of pN/pS estimated in 100
genes where each deleterious mutation is assigned a fixed selection coefficient of -0.001, -0.01, or -0.1 in simulated
populations of 1,000, 10,000, or 100,000 individuals, plotted by population size (left panels) or selection coefficient
(right panels). As expected, stronger selection coefficients (i.e., -0.1) are effective also when population size is small.
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5. Expression rate per fitness effect class predicted by SNPeff
Genetic load is the cost paid by any population to its potential further evolution. It is an
inherent feature of populations evolving by random mutations which more often have
deleterious than advantageous effects on fitness. In conservation genomics, genetic load is
getting growing attention as a more appropriate measure of a population's genomic health
(Bertorelle et al 2022). However, genetic load is difficult to estimate in non-model species,
especially when relying on genomic data only, without information on mutations' fitness effect.
In such a case, genetic load can be estimated using i) either the predicted effect of a mutation
on the amino acid sequence (Cingolani et al 2012), ii) or the evolutionary conservation of a
certain allele at orthologous sites across multiple species (i.e., GERP; Davydov et al 2010). The
latter has the advantage that it can be applied even outside coding regions, but on the other
hand, it requires large multi-species genomic alignments, which are extremely computation
intensive and error-prone. Even if it can only be applied to coding sequences, a genomic load
proxy based on gene expression could be more accurate and easier to compute, given that
mRNA expression data from multiple tissues of the target species (or one closely related) are
available.

After excluding intergenic variants from the daf.joint.no00.rnaCov file with a simple bash
command (awk '$14 != "intergenic"' daf.joint.no00.rnaCov >
daf.joint.no00.rnaCov.noIntergenic) and applying the same filters for coverage (between 6X
and 8X) and missing data in ingroup (no missing) and outgroup samples (at least 4 alleles
present for polarisation) as before, we applied an additional Z-normalisation to the CPM for
clarity of interpretation only.

#CPM normalization
eCPMscal = sum of rnaCov_emp / 1000000
kCPMscal = sum of rnaCov_king /1 000000
eCPM = rnaCov_emp / eCPMscal
kCPM = rnaCov_king / kCPMscal

#CPM Z-normalisation
eCPMstdz = eCPM - eCPM_mean / eCPM_std
kCPMstdz = kCPM - kCPM_mean / kCPM_std

Next we selected the variants based on their fitness effect predicted by SNPeff (Cingolani et
al 2012): LOW-synonymous (we excluded all of the LOW which are present in introns, mostly
as splice-region-variants, as these are not covered by mature mRNA seq data), MODERATE,
and HIGH effect.

We then summarised the Z-normalised CPM mean and standard deviation across all private
variants (segregating and fixed) or only in private fixed variants in each species per SNP effect
(Table 1 in the main text).

As site-specific expression of HIGH deleterious variants (mainly start/stop codons loss/gain
and splice acceptor/donor variants) could be biassed in mature mRNA sequencing due to
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their sequence position, we also estimated their expression using the expression rate of the
gene they occurred in. Using the gene-based expression data generated before, we tested
whether the expression rate of the group of genes with HIGH deleterious derived alleles was
significantly lower than all the rest of the genes. Even if we applied a rather conservative test,
the expression of genes with predicted highly deleterious variants is on average three times
lower than all genes (Kolmogorov-Smirnov test p-value = 0.00095) in the King penguin and
slightly lower, even if not significant, in the Emperor penguin.

MODERATE variants show the same average expression rate in both Emperor and King
penguin samples (0.78) while a higher average expression in private fixed variants, with a
larger difference in Emperor (1.41) than King (0.93) penguin sample. The variance in
expression is also larger in fixed than in segregating variants (Table 1 in the main text). Instead
of a major role of purging, which could anyway still be part of the process, derived
nonsynonymous (which mainly contribute to the MODERATE effect variants) alleles which are
fixed at highly expressed genes could actually be truly advantageous variants fixed by
positive selection. The lower average expression in King penguin is in line with the expected
larger effect of random drift in this population leading to fixation of a larger number of derived
nonsynonymous variants (2229 in the King penguin as compared to 1166 in the Emperor
penguin), but in genes with lower expression rate and, hence, lower effect on individual
fitness. More purging could be again suggested in this case, limiting the fixation of deleterious
missense in highly expressed genes. We also suggest that the more intense purging of
deleterious variants in the King penguin could be the cause of the lower average expression
of synonymous variants which were reduced in more expressed genes by background
selection (Table 1 in the main text).

To test our hypothesis that private fixed derived MODERATE variants could actually be truly
advantageous, we screened the Emperor and King penguin genome data for selection
signatures using Sweepfinder2 (De Giorgio et al 2016) and OmegaPlus (Alachiotis et al 2012)
in windows of 10 kb, following the authors’ instructions with default settings. Fixed derived
alleles are in regions showing higher signatures of selection and lower diversity in both
species, and higher differentiation between the two species, hallmarks of highly conserved
and lowly recombining genomic regions (Supp. Tab. 3). This has to be considered as a
preliminary indication of the potentially positive effect of some of the private fixed MODERATE
variants in each species. More targeted analyses are, however, necessary to conclude on the
fitness effect of fixed differences with a MODERATE effect on fitness.
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Supplementary Table 3. Signatures of selection (SF2: Sweepfinder2; OP: Omega+), nucleotide diversity (π) and

differentiation between King (k) and Emperor (e) penguins (FST) in 10 kb genomic regions with fixed differences

(Fix) or segregating variants (Seg). All comparisons between the distribution of the statistics across regions with
fixed differences and segregating variants for both species are significant (Kolmogorov-Smirnov test p-value <
0.05).

eFix eSeg kFix kSeg

eSF2 29.953265 3.886132 21.077176 5.764172

kSF2 11.175642 2.338862 10.622353 1.844183

eOP 3.166764 2.367568 2.759333 2.46341

kOP 3.613646 2.965366 3.808706 2.965772

eπ 0.002055 0.003088 0.002386 0.002906

kπ 0.001484 0.00196 0.001539 0.001929

FST 0.644212 0.509277 0.612177 0.521541
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