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Results 
We first simulated baseline activity in models of human PFC microcircuits in health and 

schizophrenia. We modeled healthy microcircuits by adapting our previous detailed models of 

human cortical L2/3 microcircuits (Fig. 1A-B) using the proportions of Pyr neurons and 

PV/SST/VIP interneurons in human PFC as seen experimentally (Fig. 1C). To simulate the 

intrinsic healthy baseline activity of the PFC microcircuit, all neurons received background 

random excitatory input corresponding to baseline cortical and thalamic inputs. We constrained 

the baseline microcircuit activity to reproduce firing rates measured in vivo in humans (for Pyr and 

PV interneurons) and rodents (for SST and VIP interneurons). The baseline rates in the different 

neuron types were - Pyr neuron: 0.73 ± 0.03 Hz, SST: 3.64 ± 0.14 Hz, PV: 6.64 ±  0.17 Hz, VIP: 

2.51 ± 0.14 Hz (Fig. 1D). We analyzed the spectral power of the microcircuit activity by simulating 

EEG during baseline activity and calculating the PSD. The simulated PSD exhibited a peak in the 

theta (4 – 8 Hz) and alpha (8 – 12 Hz) frequency bands (Fig. 1E), as well as a 1/f relationship, all 

of which were in line with spectral properties of human prefrontal resting-state EEG activity.%

 
Figure 1. Detailed models of human prefrontal microcircuit baseline spiking activity and EEG. (A) 
Detailed models of human PFC microcircuits showing placement of 1000 connected neurons, human 
neuronal morphologies of the four key neuron types (green: PV, red: SST, black; Pyr, yellow: VIP), and 
the media from the microcircuit to the scalp EEG electrode. (B) Connectivity diagram between neuron 
types in the microcircuit. (C) Cellular proportions of each neuron type: Pyr (72%), SST (4%), PV (11%), 
VIP (13%). (D) Left - raster plot of neuronal spiking in the microcircuit at baseline, color-coded according 
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to each neuron type. Right - baseline firing rates of all neurons (mean and SD). (E) Power spectral density 
(PSD) plot of simulated EEG at baseline (mean across n = 30 random microcircuits, showing bootstrap 
mean and 95% confidence interval. Canonical frequency bands are shown by vertical dotted lines. Inset: 
the same plot in logarithmic axes scale, showing 1/f relationship.  
 

 We modelled microcircuit changes in schizophrenia by implementing two key mechanisms 

involving PV interneuron inhibition (Fig. 2A) according to human PFC post-mortem studies. The 

first mechanism (referred to as the output mechanism) was a reduced PV interneuron synaptic and 

tonic inhibition conductance, either at the level estimated from expression (22%, SCZ20) or the 

double effect (44%, SCZ40). The second mechanism (referred to as the input mechanism) was a 

reduction in NMDA synaptic conductance from Pyr neurons to PV interneurons, either at the level 

estimated from expression (20%, SCZ20) or double the effect (40%, SCZ40) model. 

 We simulated baseline activity in the schizophrenia microcircuits and compared it to healthy 

microcircuits (Fig. 2B). Baseline Pyr neuron firing rates in the SCZ20 microcircuit model (0.87 ± 

0.03 Hz) and the SCZ40 microcircuit model (1.18 ± 0.04 Hz) increased by 20% (p < 0.0005, 

Cohen’s d = 4.8) and 62% (p < 0.0005, Cohen’s d = 12.8) respectively compared to the healthy 

microcircuit (0.73 ± 0.03 Hz). Simulation of either the input or output mechanisms alone showed 

that the SCZInput mechanism was the main contributor to the effect on the baseline Pyr neuron 

firing rate (SCZ20Input +18%, 0.86 ± 0.03 Hz, p < 0.0005, Cohen’s d = 4.3; SCZ40Input: +46%, 

1.07 ± 0.05 Hz, p < 0.0005, Cohen’s d = 8.1), whereas the SCZOutput mechanism had a minor 

effect (SCZ20Output: +3%, 0.75 ± 0.03 Hz, p = 0.002, Cohen’s d = 0.8 ; SCZ40Output: +10%, 0.80 

± 0.03 Hz, p < 0.0005, Cohen’s d = 2.41).  

 Interneuron baseline firing rates also increased in schizophrenia microcircuits (Fig. 2C). PV 

interneuron firing rates increased by 22% in SCZ20 (8.09 ± 0.21 Hz, p < 0.0005, Cohen’s d = 7.5), 

and by 66% in SCZ40 (11.05 ± 0.28 Hz, p < 0.0005, Cohen’s d = 18.8), SST interneuron firing 

rates increased by 19% in SCZ20 (4.33 ± 0.13 Hz, p < 0.0005 , Cohen’s d = 5.1) and by 52% in 

SCZ40 (5.53 ± 0.19 Hz, p < 0.0005, Cohen’s d = 11.1), and VIP interneuron firing rates increased 

by 40% in SCZ20 (3.5 ± 0.19 Hz, p < 0.0005, Cohen’s d = 5.9) and by 120% in SCZ40 (5.51 ± 

0.24 Hz, p < 0.0005, d =15.0). 
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 The SCZOutput mechanism had a larger effect on PV interneuron firing rates compared to 

the SCZInput mechanism (+51%, 10.05 ± 0.25 Hz, p < 0.0005, Cohen’s d = 15.7 vs 10% increase, 

7.27 ± 0.21 Hz, p < 0.0005, Cohen’s d = 3.2, respectively in SCZ40, Fig. 2D). In contrast, for the 

other interneurons the SCZInput mechanism had a larger effect than the SCZOutput mechanism 

(SST in SCZ40: 39% increase, 5.06 ± 0.19 Hz, p < 0.0005, Cohen’s d = 8.4 vs 8% increase, 3.94 

± 0.11 Hz, p < 0.0005, Cohen’s d = 2.4; VIP in SCZ40: 73% increase, 4.33 ± 0.28 Hz, p < 0.0005, 

Cohen’s d = 8.0 vs 32% increase, 3.31 ± 0.18 Hz, p < 0.0005, Cohen’s d = 4.9, respectively). 

 
Figure 2: Increased baseline activity in models of schizophrenia cortical microcircuits with altered 
PV interneuron inhibition. (A) Connectivity diagram of the schizophrenia microcircuit models showing 
the altered PV output and input mechanisms (green and black dashed lines). (B) Pyr baseline spike rates in 
healthy, SCZ20 and SCZ40 microcircuits, and in microcircuits that included only the SCZInput or SCZOutput 
mechanism (mean and SD). (C) Baseline interneuron spike rates in healthy, SCZ40 and microcircuits that 
included only the SCZ40Input or SCZ40Output mechanism (mean and SD). (D) Raster plot of example spiking 
activity in a healthy microcircuit. (E) Same as (D) but for a SCZ20 microcircuit. (F) Same as (D) but for a 
SCZ40 microcircuit. 
 

We looked for signatures of the altered inhibition effects on simulated resting-state EEG 

by comparing the PSD in healthy and schizophrenia microcircuit models (n = 30 randomized 

microcircuits, Fig. 3). Simulated EEG from schizophrenia microcircuits showed a prominent peak 

in the alpha band (8 - 12 Hz) as the healthy microcircuit models but exhibited a rightward shift 

(Fig. 3A). We decomposed the EEG PSDs into aperiodic (Fig. 3B) and periodic (Fig. 3C) 
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components to compare the distinct functional components of absolute PSDs. There were no major 

changes in aperiodic broadband power (Fig. 3B), but there was a large rightward shift in periodic 

peak alpha frequency from 10.1 to 12.4 Hz in SCZ40 compared to healthy (+23%, p < 0.0005, 

Cohen’s d = 1.5, Fig. 3C), evident also in a large increase in low beta (12 – 20 Hz) power compared 

to healthy (+63%, p < 0.0005, Cohen’s d = 4.78). There was also a small rightward shift in peak 

alpha frequency from 10.1 to 11.2 Hz in SCZ20 compared to healthy (+11%, p = 0.001, Cohen’s 

d = 0.8).  

 
Figure 3:  Resting-state EEG signatures of reduced PV interneuron inhibition in schizophrenia 
microcircuit models. (A) Power spectral density plot of simulated EEG from the healthy (black), SCZ20 
(magenta) and SCZ40 (purple) microcircuit models (n = 30 randomized microcircuits per condition, 
bootstrapped mean and 95% confidence interval). (B) Aperiodic component of the PSD in the different 
conditions. (C) Periodic component of the PSD in the different conditions.  
 

After modelling the baseline activity, which in the PFC also corresponded to the activity 

during response to standard tones, we simulated oddball (deviant tone) response by reproducing 

the firing rate profile of Pyr neurons along the period 100 – 160 ms post-stimulus as recorded in 

primates (Fig. 4A,B). We then applied the same stimulus paradigm to the SCZ20 and SCZ40 

microcircuit models. Reduced PV interneuron inhibition had only a small effect on Pyr neuron 

response in SCZ20 microcircuits (Fig. 4C, healthy: 6.85 ± 0.4 Hz; SCZ20: +3%, 7.04 ± 0.39 Hz p 

= 0.008, Cohen’s d = 0.5) and a slightly larger effect in SCZ40 microcircuits (+9%, 7.46 ± 0.46 

Hz, p < 0.0005, Cohen’s d = 1.4).  

To better understand the implications of a larger increase in baseline (standard response) 

PFC firing compared to oddball response in schizophrenia microcircuits, we calculated the signal-

to-noise ratio (SNR) of oddball/standard response firing rates. The SNR ratio decreased by 15% 
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in SCZ20 microcircuits (healthy: 8.69 ± 0.75, SCZ20: 7.39 ± 0.56, p < 0.0005, Cohen’s d = 1.0, 

Fig. 4D), and by 31% in SCZ40 microcircuits (6.04 ± 0.54, p < 0.0005, Cohen’s d = 4.1, Fig. 4D). 

We next compared the MMN in the ERP response in healthy and schizophrenia 

microcircuit models (Fig. 4E,F), by simulating EEG during response and baseline and plotting the 

difference. The MMN response in schizophrenia microcircuits was significantly reduced compared 

to healthy microcircuit, with a 16% decrease in peak amplitude in SCZ20 microcircuits (healthy: 

4.43 ± 0.4 pV, SCZ20: 3.7  ± 0.4 pV, p < 0.0005, Cohen’s d = 1.6, Fig. 4F), and a 32% decrease 

in peak amplitude in SCZ40 microcircuits (3.0 ± 0.5 pV, p < 0.0005, Cohen’s d = 3.1, Fig. 4F).  

Figure 4: Simulated oddball response and MMN in healthy and schizophrenia microcircuits. (A) 
Peristimulus time histogram (n = 100 randomized microcircuits) of simulated oddball response in healthy 
(left) vs. SCZ40 (right) microcircuit models. Healthy models reproduced response firing rates and profiles 
as recorded in primates. Blue dashed line denotes the external stimulus time and red dashed line denotes 
PFC activation time. (B) Raster plot of simulated spike response in healthy (left) and schizophrenia (right) 
microcircuit models. (C) Average Pyr spike rate during simulated standard (baseline) and oddball response 
in healthy, SCZ20 and SCZ40 microcircuits (mean and SD). (D) SNR of Pyr neurons in healthy, SCZ20 
and SCZ40 microcircuits (mean and SD). Asterisks indicate significance p < 0.05. (E) Simulated ERP of 
the MMN during oddball response of healthy, SCZ20, and SCZ40 microcircuit models (oddball - standard 
response, mean and SD) (F) Peak amplitude of MMN response in healthy, SCZ20 and SCZ40 microcircuits 
(mean and SD). Asterisks indicate significance p < 0.05. 
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Discussion  
We determined the implications of reduced PV interneuron inhibition in schizophrenia on 

impaired processing in prefrontal cortical microcircuits and the associated EEG signatures, using 

detailed models constrained by human cellular, circuit and gene-expression data in health and 

schizophrenia. Our simulations of microcircuit baseline activity and oddball response showed that 

a reduced PV interneuron inhibition in schizophrenia can account for the decrease in MMN 

amplitude seen in patients, by increasing baseline spike rates (noise) and thus decreasing the SNR 

of cortical processing of oddball vs standard response. Our results thus mechanistically link altered 

cell-specific inhibition with clinically relevant EEG changes in schizophrenia, establishing PV 

interneuron inhibition as a target mechanism for new treatments. Moreover, our results make 

testable quantitative predictions about the degree of reduced PV inhibition that underlies reduced 

MMN amplitude in different severities, which may improve the subtyping of schizophrenia and 

the early detection of the disorder when it is still largely asymptomatic.  

Reduced MMN amplitude in our simulated schizophrenia microcircuits is in agreement 

with previous clinical studies in patients [70,71]. Our results mechanistically link the reduced 

MMN amplitude with reduced PV interneuron inhibition, and thus validate previous hypotheses 

[72]. The reduction in MMN amplitude of 33% on average in our SCZ40 microcircuits is within 

the range seen in schizophrenia patients [70,71]. It involved a double effect of the percent indicated 

by gene expression, which is supported by other gene expression studies that found a larger 

reduction in PV expression in bulk cortical layers 3 and 4 [2] than the reduction estimated on 

average in PV interneurons. The SCZ40 effect on MMN amplitude was about twice the effect of 

the SCZ20, which indicate a linear relationship. The dysfunction in NMDA mechanism 

contributed more than the reduced synaptic conductance, suggesting that altered MMN amplitude 

deficits may primarily result from NMDA receptor dysfunction, which has been associated with 

both MMN amplitude reductions [73] and psychotic symptoms [74]. According to a recent meta-

analysis review, the MMN signal was found to be the ERP measure that best predicted the 

conversion to psychosis in clinically-high-risk patients [71]. 

The decrease in MMN amplitude of 16% on average in our SCZ20 models corresponds 

well with the 15% decrease seen on average in individuals that are at clinically high risk for 

schizophrenia [7,75]. This indicates that the at-risk population may already have a reduced PV 

interneuron inhibition, which may underly the milder symptoms that could later develop into 
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schizophrenia. For example, people at high-risk of developing schizophrenia have a reduced ability 

to distinguish novel features of the environment from their background at early stages of cognitive 

processing. This could predispose the individual to schizophrenia symptoms such as 

misinterpretations of one’s surroundings, perceptual illusions or the experience of ordinary stimuli 

as intense, distracting or salient [75]. Thus, our models of schizophrenia PFC microcircuits 

quantitatively characterize the implications of different levels of reduced PV interneuron inhibition 

on the MMN response, which may be used to better stratify schizophrenia subtypes and severity, 

and improve the early detection and outcome prediction in at-risk population.    

The MMN amplitude was reduced in schizophrenia microcircuits, but Pyr neuron firing 

rates at baseline and oddball response increased. A possible explanation is that reduction in PV 

interneuron inhibition disinhibited SST interneurons, enhancing their inhibition of the distal apical 

dendrites of Pyr neurons [76], thus reducing the summated potential amplitude recorded by EEG 

[77]. The apical dendrites generally receive a large number of excitatory inputs from cortical areas 

as well as globally modulatory subcortical projections, making the apical region a negative current 

source. Since the distance between the apical dendrites source and the soma and basal dendrites 

sink is large, this difference in potential is the major contributor of the dipole from the neuron. 

Increased SST interneuron inhibition of the apical dendrites due to the reduced in PV interneuron 

inhibition makes the apical dendrites less positively charged, which consequently reduces the 

electric dipole of the neuron and thus the MMN amplitude measured by EEG. 

The increased baseline firing rates in schizophrenia microcircuits across all cell types are 

the net effect of different circuit interactions resulting from the reduced PV interneuron inhibition. 

PV interneurons innervate the peri-somatic region of Pyr neurons (soma and basal dendrites) and 

thus have a powerful regulatory control over Pyr neuron activity. Hence, a reduction of PV 

interneuron inhibition will ultimately disinhibit the nearby Pyr excitatory neurons, causing them 

to be more excited and fire at a higher rate. In turn, the increased Pyr neuron rates can account for 

the increased rates of interneurons, since they all receive excitatory input from Pyr neurons. The 

smaller increase in SST interneuron firing rate in our simulations is likely due to SST interneurons 

being more strongly inhibited by both PV and VIP interneurons, whereas PV interneurons are 

primarily inhibited by VIP interneurons. As part of the net effect of reduced PV interneuron 

inhibition, the increased activity of VIP interneurons keeps the microcircuit from being 

overinhibited by the increased activity in PV and SST interneurons. The increase in baseline rates 
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is in agreement with previous studies that showed increased baseline activity in schizophrenia, 

which has been associated with positive symptoms [78,79]. 

Our results show that the reduced NMDA input mechanism of PV interneurons in 

schizophrenia had a larger contribution to the increased Pyr neuron baseline firing rate compared 

to the reduced synaptic/tonic output mechanism. This was likely because the reduced NMDA input 

conductance directly reduced the firing rates of PV interneurons, thus completely abolishing the 

resulting IPSPs, whereas the reduced synaptic/tonic output mechanism involved only a partial 

reduction of the IPSP amplitude.  

The schizophrenia microcircuit models exhibited a rightward shift in the peak frequency 

from high-alpha band to low-beta band. These results agree with numerous studies that reported 

an increase in resting-state beta power in schizophrenia [36–41]. Reduced power in the alpha 

frequency band has been associated with schizophrenia positive and negative symptoms and with 

chronicity [80]. Beta oscillations are observed during executive control of action [81–83], working 

memory [84,85] and thus increased beta power is associated with increased distraction [86,87], 

which is seen in schizophrenia. Other PSD changes that we did not capture in the models, such as 

increased theta power, could be due to additional mechanisms that change in schizophrenia, 

especially a loss of SST interneuron inhibition as suggested by recent gene expression studies 

[3,23,87,88].  

Our biomarkers can be applied on patient data, with simulation of additional levels of PV 

inhibition reduction, to better stratify patients and facilitate early detection in at-risk population.  

Our models can also serve to identify EEG biomarkers of other mechanisms of schizophrenia, e.g. 

the possible altered levels of SST interneuron inhibition indicated by our study and recent gene-

expression studies [3,23,89]. Moreover, the computational models that we developed can provide 

a powerful tool to identify potential EEG biomarkers of novel therapeutic compounds and 

treatments for schizophrenia via in-silico testing to improve monitoring treatment efficacy and 

dose prediction [90]. The simulated EEG that our models provide can also be related to that of 

recorded EEG, by scaling to account for the difference between the number of neurons in our 

models compared to the amount of neurons that generate the recorded EEG at a given electrode, 

which would be about a factor of 10,000 to 100,000 [91,92].  

In this study, we applied gene expression data to estimate a reduction in synaptic and tonic 

conductance due to inhibitory connections from PV interneurons [2]. The link between gene 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.08.11.553052doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.553052
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

expression and cellular function is not trivial, but a few factors support our framework. Studies 

have shown that in schizophrenia, interneurons  exhibited reduced PV accompanied with reduced 

GAD67, an enzyme that synthesizes GABA [93]. Moreover, a reduction of cortical PV-expressing 

GABAergic interneurons was shown to elicit deficits in social behaviour and cognition [94]. The 

change in gene expression could alternatively correspond to a reduced number of synapses [95], 

however the net decrease in inhibition would be mostly similar in either scenario. We also 

simplified the implementation of the 50% reduction in NMDA NR2A subunit, which is  expressed 

in 40% of the PV interneurons in the PFC [27], as a 20% reduction in overall synaptic NMDA 

conductance from all Pyr à PV interneurons in the microcircuit, assuming that the net decrease 

in inhibition would be mostly similar in either case. 

For both NMDA and synaptic mechanisms, we examined an implementation that was of 

the proportion indicated by the change in gene expression (SCZ20), as well as an alternative 

implementation that involved a double effect (SCZ40). The correspondence of the reduction in 

MMN amplitude seen experimentally in schizophrenia and the simulated MMN in microcircuit 

models with the double effect (SCZ40) suggest that the percent change in gene expression may 

translate to a larger physiological effect in terms of NMDA and synaptic conductance. Although 

additional mechanisms could explain the discrepancy, a doubling effect of the magnitude indicated 

by altered expression is possible. Alternatively, bulk-tissue expression studies indicate that some 

layers (3 and 4) may involve a larger reduction of PV expression than suggested by average 

expression per PV interneurons [2]. Future studies should therefore characterize the expression in 

layer 2/3 PV interneurons to improve the estimate. 

 Our models were constrained with microcircuit data taken from PFC where possible, and 

various other brain regions due to limited availability of human neuronal and microcircuit data, 

thus the models aimed to primarily represent canonical cortical microcircuits. While different brain 

regions such as the PFC and sensory regions have some differences in wiring and function when 

taking into account all six layers of the cortex, the canonical layers 2 and 3 microcircuitry is similar 

across regions [96]. Finally, for this study we modelled oddball processing in a single region (PFC 

microcircuit) rather than the interaction between multiple brain regions. While oddball processing 

may involve ongoing interactions between PFC and other brain regions such as the primary and 

secondary auditory cortex [97], the main computation of the MMN signal is performed in the PFC 

[33], thus supporting modeling and studying it in isolation. However, future studies can simulate 
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multiple microcircuits to study the multi-regional aspects of oddball processing in health and 

schizophrenia.   
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