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Abstract 
 
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to 
reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward 
uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward 
uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to 
make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, 
namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN 
neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner 
that reflected monkeys’ overall preferences for amount, delay, and uncertainty. After decision-making, in 
response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting 
a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN 
participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric 
disease.  
 

Introduction 
 
The dorsal raphe nucleus (DRN), the main source of serotonin to the forebrain1, is strongly implicated in 
various psychiatric disorders associated with deficits in value-based decision-making2-11. Many of these 
deficits, including impaired sensitivity to reward amount12,13, impulsivity when facing reward delays14-23, and 
risk-seeking when grappling with reward uncertainty12,24-26 can be experimentally recapitulated by manipulating 
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serotonergic transmission or DRN activity. However, while DRN neurons have been shown to be sensitive to a 
diverse range of behavioral paradigms and task variables in rodents10,11,27-32, much less is known about DRN’s 
functional roles in primates33-36. Further, little is known about DRN’s role in complex cognitive tasks like multi-
attribute value-based decision-making, where subjects must integrate reward, delay, and uncertainty to judge 
an offer’s overall subjective value and make a choice.  
 
Despite this gap in knowledge, there are several theories about the functional role of DRN that have key 
implications for clinical intervention. One important set of theories suggests that DRN neurons broadcast 
‘beneficialness’11,37 or ‘the availability of time and resources’10, a signal that integrates multiple distinct features 
or attributes to reflect the overall subjective value of offers or motivational outcomes and guide the neural 
computations that underlie emotion, mood, and value-guided behaviors, including multi-attribute decision-
making. If so, DRN neurons should signal the subjective value of multi-attribute offers, for example, by 
integrating over reward amount, delay, and uncertainty. Another important set of theories suggests that DRN is 
involved in continuously tracking value-related statistics on multiple timescales, in the service of motivating 
behavior6,27,29,31,33,35,38. However, much is still unknown about whether and how DRN neurons signal such 
motivational variables, including surprise28,39, signed prediction errors2, or ‘global reward state’ (long-term 
average reward)2,18,29,40,41, particularly in the context of primate decision-making. 
 
To test how DRN neurons process reward, delay, and uncertainty during decision-making, we recorded single 
DRN neurons from two monkeys as they chose between offers whose attributes, namely expected reward 
amount, reward delay, and reward uncertainty, varied independently. We found that many DRN neurons 
signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that 
reflected monkeys’ overall preferences for amount, delay, and uncertainty. After decision-making, in response 
to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader 
role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in 
integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.  
 

Results 
 
Monkeys integrate reward amount, delay, and uncertainty to make multi-attribute decisions 
 
We recorded single DRN neurons from two monkeys as they chose between two multi-attribute offers that 
each varied independently in expected reward amount (E[R]), reward delay (T[R]), and reward uncertainty 
(Unc[R]) (Figure 1A). Each offer, if chosen, provided a juice reward that was randomly drawn from a set of four 
possible outcomes, depicted as four bars of juice (Figure 1B, left). Thus, different offers provided different 
probability distributions of rewards, which could have different levels of E[R] (mean height of the bars) and 
Unc[R] (variability of the height of the bars, operationalized here as standard deviation). T[R], the delay 
between the time of choice and time of reward delivery, also varied across offers and was indicated by a ‘visual 
clock’ that provided explicit, online timing of progress towards reward delivery (Figure 1B, right).  
 
To quantify the effect of reward attributes on monkeys’ decision-making, we employed a standard approach of 
fitting their choice behavior using a generalized linear model (GLM) where the log-odds of choosing between 
the two offers is equal to the difference in their overall subjective values, and where the overall subjective value 
of each offer is equal to a linear combination of offer attributes multiplied by their respective weights on value 
(Methods). Examining the resulting weights revealed that both monkeys understood the task and its offers. 
Consistent with previous work42-44, monkeys chose offers more when they had larger E[R] and shorter T[R] 
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(Figure 1C). The monkeys also had significant preferences for Unc[R], though in different manners, again 
consistent with individual variability in risk preferences seen in our42,45 and others’46,47 previous work. 
 
Thus, monkeys demonstrated preferences for expected reward amount, reward delay, and reward uncertainty 
as they traded off these attributes to make multi-attribute decisions. We next asked whether and how DRN 
neurons signal these attributes during multi-attribute decision-making.  
 
DRN neurons signal reward amount, delay, and uncertainty during multi-attribute decision-making 
 
We recorded 219 DRN neurons as the two monkeys performed the task (n=117 in Monkey Z, and n=102, in 
Monkey P). The recording locations were verified using MRI imaging of the recording electrode within DRN 
(Figure 2A) and histology (Figure 2B). We reconstructed the neurons’ positions within DRN using previously 
established methods (Figure 2C). We also verified that our recordings took place in a subregion of DRN that is 
dense in serotonergic cell bodies48-50, by examining our MRI- and histology-based reconstruction along with 
macaque DRN tissue that was stained for serotonin transporter (SERT) using previously established 
methods51 (Figure 2D).  
 
An analysis of variance across all epochs in our task, including trial start, choice, and post-decision epochs 
(Methods) revealed that 107/219 DRN neurons displayed task-related modulation. Neurons’ intrinsic 
electrophysiological properties and anatomical positions were not related to whether they were task-responsive 
(Figure 2C, Supplementary Figure 1, Supplementary Tables 1,2). We therefore focused our analyses on the 
107 task-responsive DRN neurons. 
 
We inspected the offer responses of DRN neurons and found that neurons commonly scaled their activity 
based on E[R], T[R], and Unc[R]. An example neuron’s responses to these offer attributes are shown in Figure 
3A. Following offer presentation, this neuron displayed relatively phasic activations that scaled with E[R] (left), 
T[R] (middle), and Unc[R] (right). The mean cross-validated normalized activity (Methods) across task-
responsive neurons demonstrated similar phasic dynamics that robustly discriminated offers based on their 
E[R], T[R], and Unc[R] (Figure 3B). To identify attribute-signaling neurons, we employed a standard approach 
of fitting neurons’ offer responses using a GLM where normalized firing rate is modeled as a linear weighted 
combination of offer attributes (Methods). Thus, a significant fitted weight for an attribute indicates that a 
neuron’s signals were related to that attribute. This approach identified significant proportions of task-
responsive DRN neurons that signaled E[R], T[R], and Unc[R] (E[R]: 24/107, p=5.1E-10; T[R]: 22/107, p=1.5E-
8; Unc[R]: 11/107, p=0.018; one-tailed binomial tests) (Figure 3C). Thus, all three of these offer attributes were 
signaled by DRN neurons. 
 
DRN neurons integrate reward amount, delay, and uncertainty during multi-attribute decision-making 
 
If DRN neurons signal the overall value of each offer, then they should signal attributes in accordance with 
each monkey’s subjective preferences, integrating these attributes by signaling their values jointly in the same 
direction as these preferences.  
 
We therefore asked whether and how DRN neurons’ E[R], T[R], and Unc[R] signals reflected the subjective 
value monkeys assigned to each attribute based on their preferences. To test this, we quantified each task-
responsive neuron’s signal for each attribute using an attribute value index, with indices above 0 indicating 
higher firing in response to offers with higher value based on that attribute (Methods). Strikingly, we found that 
all three attributes were predominantly signaled in the direction of subjective value (Figure 4). E[R]-signaling, 
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T[R]-signaling, and Unc[R]-signaling neurons had significantly positive E[R], T[R], and Unc[R] value indices, 
respectively (E[R]: 0.23, p=8.1E-5; T[R]: 0.14, p=0.00098; Unc[R]: 0.16, p=0.0098; two-tailed signed-rank 
tests). Even considering all task-responsive neurons, the mean E[R] and T[R] value indices were significantly 
positive, and Unc[R] had a similar trend (E[R]: 0.068, p=6.4E-7; T[R]: 0.042, p=0.0047; Unc[R]: 0.019, p=0.10; 
two-tailed signed-rank tests). Moreover, for each attribute, there were significant proportions of neurons with 
significantly positive attribute value indices (E[R]: n=22/107, p=2.8E-14; T[R]: n=17/107, p=1.6E-9; Unc[R]: 
n=9/107, p=0.0015; two-tailed binomial tests), but not with significantly negative indices (E[R]: n=2/107, p=1; 
T[R]: n=5/107, p=0.20; Unc[R]: n=2/107, p=1; two-tailed binomial tests). Thus, task-responsive DRN neurons 
tended to signal attributes in accordance with monkeys’ preferences. 
 
Next, we asked whether these attribute value signals are integrated. Specifically, we wondered whether DRN 
neurons’ E[R] signals, which convey information about an offer’s value based on its E[R], also conveyed 
information about an offer’s value based on its T[R] and Unc[R]. Consistent with integrated signaling of 
attributes, E[R] value indices were strongly correlated with T[R] and Unc[R] value indices, across task-
responsive neurons (Figure 5A). Moreover, E[R]-signaling neurons strongly signaled T[R] and Unc[R] in the 
same direction as E[R] and with phasic dynamics that resembled how they signaled E[R] (Figure 5B). We also 
observed more neurons than expected by chance that had significant E[R] and T[R] value indices, or E[R] and 
Unc[R] value indices, in the same direction (E[R] and T[R]: n=10/107, p=3.3E-16; E[R] and Unc[R]: n=6/107, 
p=6.2E-09; two-tailed binomial tests, null proportion = 0.05*0.05/2). Thus, DRN neurons tended to integrate 
attributes, signaling them jointly and in directions consistent with monkeys’ preferences.  
 
DRN neurons integrate cognitive and physical rewards 
 
So far, we have demonstrated that DRN neurons can signal the value of offers, integrating the expected 
amount, delay, and uncertainty of juice, a physical reward. These data so far are consistent with the notion that 
DRN neurons can signal the overall value of an offer. However, if DRN neurons signal overall value, integrating 
all motivational variables, then they should also signal the value of non-physical or cognitive rewards.  
 
To test this, we took advantage of recent findings showing that monkeys, like humans, often place high value 
on obtaining advance information to resolve uncertainty about upcoming reward outcomes42,45,52-56. Importantly, 
they value this information even when they cannot use it to influence the physical reward outcome, suggesting 
that they value resolving uncertainty even when this has no objective, instrumental value for obtaining physical 
rewards. To measure DRN neurons’ responses to this kind of uncertainty-resolving information, we included 
two types of offers: informative (‘Info’) and non-informative (‘Noinfo’) (Figure 6A). After monkeys chose an Info 
offer, a cue would appear early in advance of reward delivery that highlighted the outcome bar, thus resolving 
reward uncertainty (Figure 6A; Info, ‘Cue’). Conversely, after monkeys chose a Noinfo offer, a visually matched 
control cue would appear that indicated a random bar, thus leaving reward uncertainty unresolved until just 
before reward delivery, when the upcoming outcome was revealed (Figure 6A; Noinfo, ‘Reveal’). Consistent 
with previous work showing that the value of information scales strongly with reward uncertainty42,45,57,58, both 
monkeys significantly scaled up the value of information with increasing Unc[R] (Figure 6B).  
 
Having replicated previous findings that monkeys integrate the values of juice reward and uncertainty-resolving 
information to make their decisions, we next asked whether DRN neurons integrate the values of these 
cognitive and physical rewards in a similar manner. To quantify neurons’ signals for the value of information to 
reduce uncertainty, we computed an InfoxUnc[R] value index based on the fitted interaction of Info and Unc[R], 
analogous to the attribute value indices for physical reward (see Methods). Consistent with integration of 
cognitive and physical rewards, InfoxUnc[R] and E[R] value indices were correlated across task-responsive 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.17.553745doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553745
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

neurons (Figure 6C). Moreover, on average, E[R]-signaling neurons signaled InfoxUnc[R] in the same direction 
as E[R] and with phasic dynamics that resembled how they signaled E[R] (Figure 6D). Thus, DRN neurons can 
integrate the values of cognitive and physical rewards.  
 
Finally, to estimate how strongly neurons’ offer responses code an offer’s overall value, integrating across its 
many attributes, we computed a value coding index for each neuron using a recently-employed approach42 
(see Methods). As suggested by the strong pairwise patterns of integration detailed above, we saw that DRN 
neurons tended to have very high value coding indices, often very close to the maximum index, consistent with 
coding of an offer’s overall value, integrating across its many attributes (Supplementary Figure 2). 
 
DRN neurons track changes in value after decision-making by signaling reward prediction errors 
 
Finally, DRN is thought to continuously track reward states on multiple timescales, potentially containing 
neurons sensitive to reward predictions or changes in reward predictions2,18,27-29,31,33,35,38,40,41. This raises the 
possibility that the DRN neurons we found to signal value predictions based on offers may continue to track 
changes in value predictions based on post-decision feedback. We thus asked whether and how DRN neurons 
process post-decision feedback.  
 
We first characterized DRN neurons’ responses to post-decision feedback, which was provided by the first 
post-decision event on each trial to indicate the amount of reward to be delivered (Cue on Info trials; Reveal on 
Noinfo trials; Figure 6A). To do this, we took advantage of several features of our task. Our task precisely 
manipulated reward predictions and outcomes by offering a diverse set of explicitly communicated reward 
distributions to the monkeys. This let us precisely test how responses to post-decision feedback were related 
to (a) the animal’s initial prediction about the offer’s reward value (i.e. E[R] of the chosen offer), before viewing 
the feedback, (b) the animal’s updated prediction of the offer’s reward value, after viewing the feedback and 
finding out the actual outcome to be delivered, and (c) the difference between the updated and initial 
predictions, known as reward prediction error (RPE), which is thought to guide learning and motivation59-62. In 
addition, our task let us test how consistently neurons encode these variables. Specifically, we can test 
whether neurons encode these variables consistently for feedback with different sensory features and timing63-

66 (Cue on Info trials vs Reveal on Noinfo trials), consistently across their full range of values (for example, do 
neurons respond when the actual outcome is better than predicted, worse than predicted, or both)67,68, and in a 
signed or unsigned manner28,66,69. 
 
We found that many DRN feedback responses strongly resembled a positively signed RPE signal. For 
example, consider the neuron in Figure 7A. This neuron was excited when feedback indicated that the reward 
outcome would be better than predicted (positive RPE), inhibited when feedback indicated that the reward 
outcome would be worse than predicted (negative RPE), and had little change in activity when feedback 
indicated that the reward outcome would be the same as predicted (zero RPE). The neuron did this 
consistently across both task events that provided post-decision feedback, the Cue for Info offers and the 
Reveal for Noinfo offers (Figure 7A).  
 
To test whether DRN feedback responses had the key properties needed to function as a positively signed 
RPE signal, we quantified how each neuron’s responses discriminated between positive, zero, and negative 
RPEs (based on ROC analysis; Methods). First, we found that DRN feedback responses consistently and 
bidirectionally signaled both positive and negative RPEs. That is, they were more active when reward feedback 
was better than predicted and were less active when reward feedback was worse than predicted. To test this, 
we computed separate RPE indices for how neurons discriminated positive RPE from zero RPE (+RPE index) 
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and zero RPE from negative RPE (-RPE index; Methods). As expected for a positively signed RPE signal, 
these two indices were strongly positively correlated (Supplementary Figure 3A). Second, we found that DRN 
feedback responses consistently signaled RPEs for both distinct feedback-related events in the task. To test 
this, we computed separate RPE indices for responses to the Info offer Cue (Info RPE index) and the Noinfo 
offer Reveal (Noinfo RPE index; Methods). As expected for a positively signed RPE signal, these two indices 
were strongly positively correlated (Supplementary Figure 3B). Third, we found that DRN feedback responses 
commonly responded in opposite directions to the initial reward prediction (the offer’s expected value) and the 
updated reward prediction (the actual reward outcome that would be delivered), consistent with signaling the 
difference between them. To test this, we fit each neuron’s activity using a GLM with separate terms for 
predicted and delivered reward. As expected for a positively signed RPE signal, neurons predominantly 
signaled delivered amounts positively and predicted amounts negatively (Supplementary Figure 4A). In sum, 
this activity profile is consistent with a positively signed RPE signal.  
 
For each neuron, we summarized its RPE signal using a single RPE index computed as the mean of its + and - 
RPE indices for Info and Noinfo trials. The mean RPE index across all task-responsive neurons was strongly 
and significantly positive (+0.57, p<1E-16; two-tailed signed-rank test), consistent with a positively signed RPE 
signal like that of the example neuron. A large proportion of neurons had significant RPE indices (n=69/107, 
64%), which were overwhelmingly positive. The proportion of neurons with significantly positive RPE indices 
was much greater than chance (n=62/107, p<1E-16; two-tailed binomial test). Interestingly, there was also a 
significant, albeit small, proportion of neurons with significantly negative RPE indices (n=7/107, p=0.018; two-
tailed binomial test), in line with prior observations of some DRN neurons with negative reward 
discrimination27,34-36,70. There was also a subpopulation of neurons with feedback responses that were less 
influenced by reward expectation (Supplementary Figure 4A-C), again in line with prior reports29,33,34. 
 
We then examined the relationship between offer value signals during decision-making and RPE signals after 
decision-making. E[R] value indices and RPE indices were strongly correlated across task-responsive neurons 
(Figure 7D). Similarly, signed value coding indices and RPE indices were also strongly correlated across 
strongly attribute-responsive neurons (Supplementary Figure 5). Moreover, E[R]-signaling neurons signaled 
RPE in the same direction as Offer E[R] and with similar phasic dynamics (Figure 7B), and we observed more 
neurons than expected by chance that had significant RPE and E[R] value indices in the same direction 
(n=18/107, p<1E-16; two-tailed binomial test). E[R]-signaling neurons were also significantly more likely to 
respond to post-decision feedback by both positively signaling delivered amounts and negatively signaling 
predicted amounts, as expected for a positively signed RPE signal (Supplementary Figure 4C,D). 
 
In summary, we find that DRN neurons that signal the value of offers during decision-making also commonly 
signal positively signed, bidirectional RPEs in response to feedback after decision-making. Thus, DRN 
signaling of offer attributes during decision-making may reflect a more generalized role in tracking changes in 
value predictions across task epochs and behavioral contexts. 
 

Discussion 

We found that DRN neurons signal expected reward amount, reward delay, and reward uncertainty during 
decision-making, in a manner reflecting the integrated value that guides monkeys' choices. Additionally, we 
demonstrate that DRN neurons signal RPEs in response to post-decision feedback, suggesting a broader role 
in tracking value across task epochs and contexts. 

Value is a complex construct thought to reflect preferences over many distinct attributes and to regulate value-
based decision-making and other value-guided behaviors71-73. Our results provide the first evidence that DRN 
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reflects the integrated value of offers during decision-making based on multiple attributes of juice reward, 
including expected amount, delay, and uncertainty, as well as the value of uncertainty-resolving information. 
There are many other factors that influence value and which other brain areas have been shown to process 
during value-based decision-making43,74-87, such as effort or punishment. While we did not assess all of these 
factors, our findings that DRN signals integrated value based on multiple attributes of physical and cognitive 
rewards, in a systematic manner across the neural population, raise the possibility that they can integrate an 
even wider range of the many motivational variables that govern decisions. 

We found that DRN neurons can track changes in value predictions by signaling positively signed, bidirectional 
RPEs. This was somewhat unexpected because some previous results reported that DRN neurons may 
primarily signal the value of outcomes themselves29,33,34, or respond positively to both positive and negative 
RPEs, as if signaling surprise28. However, other results have been consistent with positively signed RPE, with 
DRN neurons responding more strongly to unexpected vs expected rewards29,36 and cues predicting more vs 
less reward28,29,34,36. It is possible that different task conditions and behavioral strategies engender different 
response patterns in DRN neurons. In addition, differences in recording locations could target DRN subregions 
with distinct functions88,89. Indeed, recent studies suggest that axons originating from more caudal subregions 
of DRN are predominantly inhibited by rewards90, whereas neurons in more rostral subregions, potentially 
more analogous to our recording locations, are predominantly excited91. There is likely also heterogeneity 
within subregions of DRN; for example, we also observed a subset of neurons whose responses to post-
decision feedback primarily reflected the reward amount to be delivered, with relatively weak modulation by the 
predicted amount (Supplementary Figure 4A-C). Finally, it is also possible that some aspects of DRN function 
differ across species, given the known differences in DRN nuclear organization and projection patterns 
between rodents and primates92.  

DRN receives input from several areas that could support value and RPE computations, including regions of 
prefrontal cortex (PFC), lateral hypothalamus, ventral pallidum (VP), and the lateral habenula (LHb)92-95. PFC 
areas involved in emotion and cognition project strongly to DRN, including the anterior cingulate cortex (ACC) 
and dorsolateral PFC (DLPFC)96,97. ACC is known to signal multiple motivational variables77,98-102, and we 
recently showed that VP signals partially integrated offer attributes in the same task used here42. Also, both 
ACC and VP have been implicated in processing motivational predictions and outcomes99,103. DRN could utilize 
these inputs from ACC and VP in flexible ways depending on changes in internal needs such as hunger or 
thirst, potentially modulated by lateral hypothalamus input104, or differing task demands or contingencies, 
potentially signaled by DLPFC105. Among DRN inputs, LHb is notable because it is well-known to potently 
signal negatively signed RPEs106,107. Moreover, we recently showed that it also negatively signals integrated 
value in this same multi-attribute decision-making task paradigm42. LHb has reciprocal connections with DRN 
and an established role in controlling other neuromodulators108. It also receives input from many DRN-
projecting areas, including the medial PFC, VP, and lateral hypothalamus109. Future studies should investigate 
the relationship between integrated value and RPE signals and the dynamics of their co-emergence in the 
DRN-LHb circuit.  

DRN is the largest component of the serotonin (5-HT) system, sending projections throughout the brain110. In 
addition to its 5-HT neurons, DRN contains other cell types111,112, which project to cortical and subcortical 
targets and regulate DRN 5-HT neurons113-115. While we recorded in areas enriched with 5-HT neurons, where 
some estimate >60% of neurons release 5-HT50, we cannot confirm cell types in our data and it is unlikely that 
we exclusively recorded 5-HT neurons. DRN also contains glutamate-113,116,117, GABA-113,118, and dopamine-
releasing70,119-121 subpopulations that are involved in motivational processing, potentially through projections to 
downstream areas or local influence over DRN 5-HT neurons115,118,122-125. Future studies should examine cell-
type heterogeneity in primates during decision-making and other complex behaviors. Nonetheless, dissecting 
how value is processed within DRN is crucial for understanding the complex role of the 5-HT system in 
coordinating value-guided computations throughout the brain.  

An influential theory of 5-HT function posits an opponent role to dopamine (DA), with phasic modulations 
signaling punishment prediction errors2,126. In contrast, we find that many DRN neurons positively signal offer 
value and RPEs, which strikingly resembles the responses of midbrain DA neurons in the ventral tegmental 
area (VTA) and substantia nigra pars compacta (SNc)60-62. This is broadly consistent with previous 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.17.553745doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553745
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

observations of DRN neurons that code reward-related variables positively – some reporting a mix of positive 
and negative coding neurons27,34-36,70 and others reporting predominantly positive29,30,117,127,128 – and with recent 
findings that DRN may contribute to VTA RPE signals through monosynaptic projections onto DA neurons129. 
While these results do not rule out the possibility that certain subpopulations of neurons in subregions of 
DRN91 or other 5-HT nuclei130 may indeed play an opponent role to DA, they suggest a new, potentially 
cooperative relationship between the 5-HT and DA systems131.  

The cortex receives relatively light DA input compared to striatum132-134 and within the frontal lobe, DA 
projections follow an increasing rostro-caudal gradient, with motor cortex receiving the most DA input and PFC 
receiving less135-139. Thus, other neuromodulators may also be required to supply value-related signals to PFC 
to support its many roles in value-related processes140. 5-HT projections, while widespread, display a pattern of 
regional distribution that differs from and may complement that of DA. 5-HT projections are more balanced 
between cortex and striatum132,133 and within the frontal lobe, 5-HT projects more strongly to PFC than DA and 
only lightly to motor areas136,137,141. Thus, the DRN 5-HT system could broadcast value-related information to 
regulate networks at least partially distinctly from DA. The functional significance of these observations 
requires further investigation. 

Our findings that DRN signals integrated value and RPE are broadly in line with existing theories of DRN and 
5-HT in signaling reward variables such as ‘beneficialness’11,37, ‘the availability of time and resources’10, and 
‘global reward state’ (long-term average reward rate)18,40,41. While these value-related constructs likely cannot 
fully explain the functions of the entire DRN and 5-HT system, a DRN signal tracking integrated value could 
explain how the diverse set of DRN projections89,91,110,111,142 and complex repertoire of 5-HT receptors143-148 
coordinately regulate multiple computational and behavioral processes4,8,10,11,38,126,149-153. Firstly, DRN and the 
5-HT system are theorized to regulate value-based decision-making3-5,20. Signaling the integrated value of 
offers or opportunities as they appear in the environment could support dynamic, online decision-making, 
potentially through DRN projections to orbitofrontal cortex (OFC)73,87,154,155 or LHb42,156,157, whose value-related 
activity is causally involved in decision-making, or DLPFC, which has been implicated in decision processes 
more generally80,155,158-160. Secondly, an early theory of 5-HT proposed a role in mediating behavioral 
inhibition161. While this is often considered in the context of avoiding punishments4,126,162, obtaining maximal 
rewards can also require patience, persistence, and deliberation10,163-168, which an integrated value signal could 
help to regulate10,169. Indeed, optogenetic stimulation of DRN 5-HT neurons170,171 or their projections to OFC 
and a region of rodent medial PFC thought to be homologous to ACC172 promotes waiting for rewards173, 
whereas chemical inhibition of DRN 5-HT neurons174 or blockade of 5-HT1A receptors175 reduces waiting for 
rewards. Thirdly, the 5-HT system is theorized to regulate learning and cognitive flexibility28,150,176-192. Integrated 
value signals could indicate that time and resources are available for safe and fruitful learning10,28,176,183,190,193 , 
by promoting exploration and information-seeking through DRN projections to ACC and ventrolateral 
PFC99,194,195 or by accelerating the rate of learning through 5-HT-mediated neuroplasticity across the brain196. 
Additionally, DRN’s RPE signal could update value or policy estimates, directly through 5-HT-mediated long-
term depression197,198 or indirectly by influencing DA-mediated long-term potentiation197,198 through DRN 
projections to VTA DA neurons129,199. 

Major depressive disorder (MDD) is perhaps the psychiatric illness most often linked to DRN and 5-HT system 
dysfunction200,201, and drugs targeting 5-HT transmission remain the main pharmaceutical therapeutics202, 
including conventional drugs such as selective serotonin reuptake inhibitors (SSRIs) and emerging ones such 
as psilocybin, a serotonergic psychedelic203-205. However, computational frameworks for understanding MDD 
are limited, in part due to its poorly defined neural correlates and complex, heterogenous clinical 
presentations206-208. MDD is characterized by wide-ranging symptoms, mainly low mood and anhedonia, but 
also other deficits such as psychomotor slowing, sleep abnormalities, and impaired cognitive function209. An 
integrated value signal that modulates multiple computational and behavioral processes could also contribute 
to the wide-ranging symptomatology of MDD and link it to DRN and the 5-HT system. A signal tracking the 
environment’s changes in integrated value could modulate mood, which has been hypothesized to represent 
‘environmental momentum’210-213. Similarly, lower estimates of value could contribute to anhedonia, defined as 
loss of interest or pleasure from objects or activities one previously found rewarding207,214, and negativity 
biases215. In turn, mood and value could regulate various behavioral parameters, including action vigor207,216, 
sleep207,217, and decision-making206,207,218. Moreover, while theories of serotonergic antidepressant mechanisms 
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have been proposed at the cellular and psychological levels, it is difficult to unify them without a computational 
understanding of DRN and the 5-HT system. The therapeutic efficacy of both SSRIs and psychedelics has 
been linked to their effects on the activity of DRN neurons, 5-HT receptor availability, and neuroplasticity219-224, 
which may then manifest as adaptive psychological changes, such as reduced negativity biases and improved 
cognitive flexibility219,225-229. The efficacy of these drugs in treating other psychiatric illnesses such as anxiety or 
obsessive-compulsive disorder may also depend on similar mechanisms230-237. Thus, an integrated value signal 
that is processed within DRN could link these neurobiological and psychological effects transdiagnostically. In 
summary, in addition to guiding theories of the 5-HT system in adaptive behavior, our findings about the neural 
computations of DRN neurons will also inform our understanding of the neural and computational basis of 
psychiatric disease, potentially leading to improved therapeutic avenues. 
 
Methods  
 
Experimental model and subject details 
 
Two adult male monkeys (Macaca mulatta; Monkey Z and P; ages: 7-10 years old) were used for experiments. 
All of these procedures conform to the Guide for the Care and Use of Laboratory Animals and were approved 
by the Institutional Animal Care and Use Committee at Washington University. 
 
Data acquisition 
 
A plastic head holder and plastic recording chamber were fixed to the skull under general anesthesia and 
sterile surgical conditions. The chambers were tilted laterally (28° in Monkey Z; -34° in Monkey P) and aimed 
at DRN. After the monkeys recovered from surgery, they participated in behavioral and neurophysiological 
experiments.  
 
While the monkeys participated in the behavioral procedure, we recorded single neurons in DRN. Electrode 
trajectories were determined with a 1 mm-spacing grid system and with the aid of MR images (3T) obtained 
along the direction of the recording chamber. This MRI-based estimation of neuron recording locations was 
aided by custom-built software238. In addition, in order to further verify the location of recording sites, after a 
subset of experiments the electrode was temporarily fixed in place at the recording site and the electrode tip’s 
location in the target area was verified by MRI (Figure 2A). 
 
Electrophysiological recordings were performed using multi-contact electrodes (Plexon V-probes, 32 or 64 
channels, 50 μm spacing) inserted through a stainless-steel guide tube and advanced by an oil-driven 
micromanipulator (MO-97A, Narishige). Signal acquisition (including amplification and filtering) was performed 
using an OmniPlex 40 kHz recording system (Plexon). Spike sorting was performed offline using publicly 
available software (Kilosort2) to extract clusters from the recordings, followed by manual curation to identify 
sets of clusters that corresponded to single neurons, the spans of time when they were well isolated, and 
whether they were in the regions of interest. DRN was identified based on neurons’ electrophysiological 
characteristics, firing patterns, and locations relative to anatomical landmarks estimated from MRIs and 
recordings at multiple grid locations. Specifically, we relied on visuo-auditory responses in the superior 
colliculus, distinct electrophysiological characteristics in the periaqueductal gray, oculomotor responses in the 
trochlear nucleus, and axonal characteristics in the medial longitudinal fasciculus. Neuronal and behavioral 
analyses were conducted offline in Matlab (Mathworks, Natick, MA). 
 
Eye position was obtained with an infrared video camera (Eyelink, SR Research). Behavioral events and visual 
stimuli were controlled by Matlab (Mathworks, Natick, MA) with Psychophysics Toolbox extensions. Juice, 
used as reward, was delivered with a solenoid delivery reward system (CRIST Instruments). 
 
Behavioral task 
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Each trial began with the appearance of a white fixation point at the center of the screen which the animal was 
required to fixate with its gaze. The task proceeded once the animal maintained fixation continuously for 0.25 s 
and at least 0.5 s had passed since fixation point onset. If the animal did not fixate within 5 s of fixation point 
appearance, or broke fixation before 0.5 s had passed since fixation point onset, the trial was counted as an 
error, moved immediately to the inter-trial interval (ITI), and repeated until it was performed successfully. After 
the fixation requirement was successfully completed, the fixation point disappeared and there was no longer 
any gaze requirement to advance the task. Simultaneously with fixation point disappearance, the first offer 
appeared on the screen. After 1 s, the second offer appeared on the screen. After a further 0.5 s, the choice 
period began. An offer was counted as chosen once the animal held its gaze on it continuously during the 
choice period for a fixed duration (0.4 s in Monkey Z; 0.5 s in Monkey P). For Monkey Z, if the monkey did not 
choose an offer within 5 s of the start of the choice period, the computer randomly selected an offer and the 
trial proceeded as if the animal had chosen it. For Monkey P, if the monkey did not choose an offer within 5 s 
of the start of the choice period, the current trial would end and a repeat trial would begin after the normal ITI, 
on which the same offers would be shown. For both monkeys, failure to choose within 5s occurred rarely, and 
computer-chosen trials and repeat trials as well as error trials were excluded from analysis unless otherwise 
noted. The size of each offer stimulus was approximately 6 x 5 degrees of visual angle. The locations of the 
two offers on the screen were randomly selected on each trial from a set of three possible locations (center, 10 
degrees left of center, 10 degrees right of center). 
 
Each offer featured a reward distribution that was visually depicted with 4 bars, with the height of each bar 
proportional to the volume of its juice reward, up to a maximum size Rmax (1.2 mL) corresponding to the 
maximum bar height. If an offer was chosen, one of its 4 bars was selected uniformly at random as the 
outcome, and hence the juice volume indicated by that bar was delivered to the animal at the time of outcome 
delivery. Juice was delivered through a metal spout placed directly in the mouth, to ensure that anticipatory 
actions such as licking were not required to obtain the reward and did not influence the amount of reward that 
was received. 
 
We presented offers with multiple types of reward distributions. In brief, when randomly generating each offer 
on each trial, the offer first had its expected reward selected uniformly at random from a pre-specified set of 
possible expected rewards. To reduce the number of trials with trivial decisions where one offer was much 
better than the other, Offer 2’s expected reward was constrained to be within a pre-specified range of Offer 1’s 
expected reward. Then, the offer had its reward distribution randomly drawn from one of the following types: 
Safe distributions with 100% probability of delivering a specific reward amount; 25/50/25 distributions with 25, 
50, and 25% chances of delivering small, medium, and large reward amounts, respectively, where the medium 
amount was equal to the mean of the small and large amounts; and 50/50 distributions with 50% chances of 
delivering small or large amounts. Then, after the offer’s distribution type was selected, its reward range was 
randomly drawn from a pre-specified set of ranges (50% or 70% of Rmax).  
 
Each offer also could be informative (Info) or non-informative (Noinfo), indicated by its bars having distinct 
visual textures (we used complex visual textures sourced from images of scenes; for clarity of presentation, 
these are depicted in the figures as simple colors, i.e. orange or purple). If an informative offer was chosen, a 
visual cue was later presented that highlighted the single bar that was selected to be the outcome on that trial. 
If a non-informative offer was chosen, the same visual cue was presented at the same time but highlighting a 
single random bar. Thus, choosing an informative offer gave early access to information about the trial’s 
upcoming reward outcome. For monkey P, to reduce choice complexity, informativeness was always matched 
between Offer 1 and 2. 
 
After the choice was made, the unchosen offer disappeared, and then a sequence of timed events occurred. 
First, at time Tcue, a visual “cue” appeared on the chosen offer in the form of a black box highlighting one of its 
bars. Then, at time Treveal, a “reveal” occurred in which three of the bars disappeared and only one bar 
remained, and then a further 1.1 s the reward was delivered (thus, Treveal fully determined the reward delay, 
with T[R] = Treveal + 1.1 s). The remaining bar always indicated the trial’s outcome, and hence, always 
provided full information about the trial’s upcoming outcome. This was to ensure that both informative and non-
informative offers did eventually provide complete information about the trial’s outcome before it was delivered, 
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to ensure that animals always had adequate time to physically prepare to consume the reward. Finally, the 
offer disappeared 8 s after the choice was made, and then a 1.2 s ITI occurred before the next trial began. 
 
Each offer’s event timing, including Tcue and Treveal, was visually depicted as a large “clock” in the form of a 
horizontal bar placed at the bottom of the offer. This has been described in full detail previously42. The 
horizontal extent of the clock represented the full-time duration between choice and the end of the trial (8 s). 
The clock was divided into three sequential segments, representing the segments of time (A) from the choice 
to the cue (Tcue), (B) from the cue to the reveal (Tadvance = Treveal - Tcue), and (C) from the reveal to the 
end of the trial (8 s - Treveal). The time of reward delivery was not explicitly indicated but was always exactly 
1.1 s after the reveal. The three segments of the clock each had distinct visual textures, which were also 
distinct for informative vs. non-informative offers (again, for clarity of presentation, these are depicted in figures 
as simple colors). In addition, two thick black vertical lines indicated the time of the cue and the time of the 
reveal. Finally, to help animals learn how the clock corresponded to real world time, and to help them 
anticipate the time of each event during each trial, we animated the clock. Specifically, after the choice was 
made, a “hand of the clock” appeared at the left edge of the clock, in the form of a thick black rectangle whose 
position on the clock indicated the current time during the trial. The hand moved from left to right at a constant 
speed as the trial proceeded. When the hand touched the first black vertical line indicating Tcue, an animation 
played lasting 0.6 s in which the vertical line moved upward to the center of the cued bar and then expanded to 
become the cue. When the hand touched the second black vertical line indicating Treveal, an animation played 
lasting 0.6 s in which the vertical line moved upward to the center of the chosen offer and then became an 
expanding rectangular region with the background color of the screen, “erasing” three of the bars thus leaving 
only one bar remaining. Finally, when the hand touched the right edge of the clock, the trial ended. 
 
We presented offers with different cue and reveal (and thus, reward delivery) timing. For monkey Z, reveal 
timing was drawn jointly with cue timing. Specifically, the pair of event times, (Tcue, Treveal), was drawn 
uniformly at random from the set of all possible such pairs meeting the following requirements: Tcue was 
between 0.4-5.8 s; Treveal was between 1.2-6.7 s; Tcue came at least 0.8 s before Treveal; Tcue and Treveal 
were both multiples of 0.1 s. For monkey P, Treveal was drawn uniformly at random from the set (2.0, 2.9, 5.6, 
6.5 s), while Tcue was fixed at 0.5 s to maximize the value of information42 and reduce choice complexity.  
 
Data analysis 
 
All statistical tests were two-tailed unless otherwise noted. All statistical significance corresponds to p < 0.05 or 
a 95% confidence interval excluding 0 unless otherwise noted. Neural firing rates in response to each offer 
were analyzed in a time window 150-575 ms after offer onset. Firing rates for each neuron were converted to 
normalized firing rates by z-scoring. Specifically, for each neuron, we computed a vector of firing rates 
representing its full activity throughout the task by binning its data from all times during all trials in non-
overlapping 500 ms bins. We then normalized the neuron’s firing rates in our analyses by subtracting the mean 
of that vector and dividing by the standard deviation of that vector. For plotting purposes, activity was 
smoothed using a Gaussian kernel (σ = 50 ms). 
 
Task-responsiveness 
Significant task-responsiveness was defined as variance in neural activity across all task events. To determine 
whether recorded neurons had significant task event-related modulations, we computed P values by 
comparing activities across different trial or types within the time windows of: -800 to 0 ms from Cue or Reveal 
onset and 0 to 900 ms from Offer 1, Offer 2, Cue, Reveal, or Reward delivery onset (Kruskal–Wallis test; 
P�<�0.05). The windows were chosen such that they included key neuronal modulations and were wide 
enough to avoid bias towards a particular response pattern (e.g., phasic versus tonic). For Post-Offer 1, Post-
Offer 2, Pre-Cue, and Pre-Reveal windows, 1-way comparisons were made for E[R], Unc[R], T[R], and Info, 
split into quantiles with 5, 5, 4, or 2 (Info vs Noinfo) levels, respectively. For Post-Cue and Post-Reveal 
windows, the same 1-way comparisons were made, but with the addition of delivered reward amount minus 
chosen offer E[R], split into quintiles. For the Post-Reward delivery window, a 1-way comparison was made 
only for delivered reward amount, split into quintiles. The P values were then combined using Fisher’s 
combined probability test239,240. This nonparametric method has fewer assumptions than parametric methods.  
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Offer attribute models for behavior and neuronal activity 
We fit each individual’s binary choice data using a generalized linear model (GLM) designed to model a 
standard decision-making formulation in which values are computed for each of the two offers, and then the 
resulting choice probability is a logistic function of the difference in the values: 
 

log(p(Choose Offer 2) / p(Choose Offer 1)) = V(Offer 2) – V(Offer 1) 
 
And the value of each offer i is a linear weighted combination of the offer’s vector of n attributes 
<xi,1,xi,2,xi,3,...,xi,n>: 
 

V(Offer i) = βpreference,1*xi,1 + βpreference,2*xi,2 + … + βpreference,n*xi,n 
 
Thus, the resulting model was a GLM for binomial data with a logistic link function, with the equation:  
 

log(p(Choose Offer 2) / p(Choose Offer 1)) =  
βpreference,0 + βpreference,1(x2,1 - x1,1) + βpreference,2(x2,2 - x1,2) + … + βpreference,n(x2,n - x1,n) 

 
…where βpreference,0 is the subject’s choice bias. 
 
For analysis of neuronal data, we used an analogous GLM to fit neuronal firing rates in response to Offer 1, for 
normal data with an identity link function (i.e. equivalent to ordinary linear regression): 
 

Rate(Offer) = βsignal,0 + βsignal,1*x1 + βsignal,2*x2 + … + βsignal,n*xn + ε 
 
…where β0 is the neuron’s mean or baseline response to the offer and ε is the error term. 
 
There were also several aspects of the model fitting procedure that held across models. First, to permit more 
interpretable comparisons between attributes, unless otherwise noted, all attributes that were not binary were 
standardized by z-scoring. Second, in addition to the terms described below related to the values of the offers, 
all models also included terms for response biases, including the location in space of each offer and the 
sequential order in which the offers were presented. For both behavioral and neural data, this included binary 
attributes representing whether or not the offer was on the left side of the screen and whether or not the offer 
was on the right side of the screen. 
 
For monkey Z’s data, there were many possible variables to consider, since the data included manipulations of 
both Tcue and Treveal, in addition to all of the other task variables described above. Therefore, we focused on 
a core set of attributes that most strongly governed the subjective value of offers across monkeys, adapted 
from the set derived using a model selection procedure in our previous study42: E[R], T[R], Unc[R], E[R] x T[R], 
E[R] x SD[r], Info, Info x E[R], Info x T[R], Info x Unc[r], Info x Tadvance, Tadvance x Unc[R], Info x Tadvance x 
Unc[R]. For monkey P’s data, the main effect of Info and interactions involving Tadvance were excluded, since 
Info was always matched between offers and Tadvance was fully determined by T[R]. We then defined a 
model with these attributes for our analysis of both monkey behavior and neuronal activity in this task.  
 
For each neuron, we computed its attribute value indices simply as the fitted β weight for each attribute, sign-
flipped based on the direction of the recorded monkey’s preference for each attribute such that positive 
attribute value signals indicate higher firing for offers with higher value based on that attribute. 
 
Analysis of reward prediction error coding 
To quantify each neuron’s coding of conventional juice reward prediction errors, we computed a reward 
prediction error index (RPE Index) using the following approach. First, we defined the RPE on each correctly 
performed trial as the difference between the delivered reward amount and expected reward amount (i.e. the 
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chosen offer’s E[R]). Next, we selected the subsets of trials which fell into each of four categories, based on 
the 2×3 combinations of the chosen offer’s informativeness (Info or Noinfo) and the resulting RPE (+,0,-), 
corresponding to RPEs > +0.1 mL juice, < +0.1 mL juice and > -0.1 mL juice, or < −0.1 mL juice). We then 
analyzed single trial firing rates on these trials after two task events where RPEs commonly occurred in our 
task: a post-cue time window 250-750 ms after cue onset for Info trials, and a post-reveal time window 250-
1050 ms after reveal onset for Noinfo trials. We then used this activity to compute separate measures of the 
strength of the positive and negative components of the RPE responses separately for Info vs Noinfo trials.  
Specifically, we first computed 4 separate indices as ROC(X,Y), the ROC area under the receiver operating 
characteristic curve241 between the set of single trial normalized activities in condition X vs. condition Y, such 
that the ROC area is > 0.5 if condition Y generally has higher activity than condition X, and < 0.5 if condition Y 
generally has less activity than condition X, and 0.5 if the distributions are the same. Significance was 
assessed by Wilcoxon the rank-sum test. For each index, X and Y were defined as:  
 

For Info RPE+, X and Y were Info trials where RPE was 0 or +, respectively. 
For Info RPE-, X and Y were Info trials where RPE was - or 0, respectively. 
For Noinfo RPE+, X and Y were Noinfo trials where RPE was 0 or +,respectively. 
For Noinfo RPE-, X and Y were Noinfo trials where RPE was - or 0, respectively. 

 
To assess the relationship between RPEs elicited by Info Cues vs Noinfo Reveals, we computed Info and 
Noinfo RPE indices by averaging Info RPE+ and Info RPE- or Noinfo RPE+ and Noinfo RPE- indices, 
respectively. P-values for these averaged indices were computed from the p-values of the two constituent 
measures using Fisher’s combination test239,240. Finally, the total RPE Index was computed as the mean of the 
Info and Noinfo RPE indices and its p-value was again computed from the p-values of these two constituent 
measures using Fisher’s combination test. Since RPE is defined as the difference between the delivered 
reward amount and the predicted reward amount (i.e. the chosen offer’s E[R]), RPEs are positively correlated 
with the delivered reward and negatively correlated with the predicted reward amount. In order to verify that 
apparent RPE signaling did not simply reflect signaling of either the delivered reward amount or predicted 
reward amount, we also computed delivered reward amount and predicted reward amount indices. Specifically, 
we fit each neuron’s normalized activity to two GLMs for normal data with an identity link function (i.e. 
equivalent to ordinary linear regression). The models were fit to activity in the post-cue window on Info trials or 
the post-reveal window on Noinfo trials. Specifically, the models were expressed as: 
 

Info model: Activity(Cue) = β0 + βdelivered,Info*Rdelivered + βpredicted,Info*Rpredicted  + ε 
Noinfo model: Activity(Reveal) = β0 + βdelivered,Noinfo*Rdelivered + βpredicted,Noinfo*Rpredicted  + ε 

 
…where β0 is the neuron’s mean or baseline response to the Cue or Reveal, Rdelivered and Rpredicted are the 
delivered and predicted reward amounts, and ε is the error term. 
 
The delivered reward amount and predicted reward amount indices were then computed by averaging the 
corresponding fitted β weights across the Info and Noinfo models, and p-values for these averaged indices 
were computed from the p-values of the two constituent measures using Fisher’s combination test: 
 
 Delivered reward index = Mean(βdelivered,Info, βdelivered,Noinfo) 
 Predicted reward index = Mean(βpredicted,Info, βpredicted,Noinfo) 
 
Analysis of peri-stimulus activity 
To analyze cross-validated timecourses of Offer 1 E[R], T[R], and Unc[R] responses across the population of 
task-responsive neurons (Figure 3B), we used the following procedure. For each neuron, its data were split 
into two cross-validation folds, 1 and 2, which included odd-numbered and even-numbered trials, respectively. 
The neuronal offer attribute model was fit to each fold’s data to obtain βsignal weights. For each attribute, we 
split trials into High vs Low based on Offer 1 (Larger vs Smaller E[R], median split; Shorter vs Longer T[R], 
median split; Uncertain vs Certain Unc[R]), separately for each fold. We computed the attribute’s effect on the 
Offer 1 response as the difference in mean normalized firing rate during the Offer 1 analysis window on High 
vs Low trials. Then, we computed the total cross-validated effect by taking the mean of the effects in the two 
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folds, after multiplying each fold’s effect by the sign of the βsignal,attribute weight derived from the other fold’s 
effect. This provided a cross-validated measure of the total strength of the attribute effect in units of normalized 
activity, such that a more positive effect indicates a stronger interaction, regardless of whether the underlying 
effect on firing rate had a positive or negative sign. Specifically, if the neuron had a true effect that could be 
measured with a consistent sign in both folds, then its total effect would be positive (regardless of whether the 
sign of the underlying effect reflected a positive or negative influence on firing rate). Conversely, under the null 
hypothesis that the neuron had no true effect, the total effect would have an expected value of 0, since each 
fold would be equally likely to be multiplied by either a negative or positive sign. We then tested whether the 
median total cross-validated effect across the population of neurons was different from 0 (signed-rank test). 
We also plotted the full timecourse of the mean normalized activity for High vs Low conditions and total cross-
validated effect by computing it using the full spike density functions from each cross-validation fold, sign-
flipped as in the analysis above (so that the full timecourse of each neuron’s activity in each fold was 
normalized using a consistent sign). 
 
To analyze time courses of Offer 1 E[R], T[R], Unc[R], and Info x Unc[R] responses across the population of 
E[R]-signaling neurons, we used the following procedure. We selected E[R]-signaling neurons based on 
significance of βsignal,E[R] from the neuronal offer attribute model. For E[R], T[R], and Unc[R] (Figure 5B), we 
again split trials into two categories based on Offer 1, but this time into preferred vs unpreferred, based on 
animals’ behavior. For E[R] and T[R], these were again median splits of Larger vs Smaller E[R] or Shorter vs 
Longer T[R], respectively. For Unc[R], these were Uncertain vs Certain Unc[R] for monkey Z and Certain vs 
Uncertain Unc[R] for monkey P. If a neuron had a negative βsignal,E[R], its preferred vs unpreferred trials were 
exchanged. These categories of trials then represented what a value-signaling neuron should signal as High vs 
Low value for each attribute. For Info x Unc[R] (Figure 6D), we first split trials into 2x2 categories (Info, Noinfo) 
x (Uncertain, Certain) based on Offer 1. For each neuron, we computed the difference in Offer 1 response on 
Info vs Noinfo trials, separately for Uncertain vs Certain trials to obtain Uncertain Info vs Certain Info effects, 
respectively. If a neuron had a negative βsignal,E[R], its Uncertain vs Certain effects were exchanged, to give what 
a value-signaling neuron should signal as High Info value vs Low Info value. 
 
Value coding index 
We used a value coding index we previously defined42 to quantify the extent to which the offer responses of 
each neuron aligned with our behaviorally-derived estimate of how animals weighted those attributes to 
compute the offer’s overall subjective value. To do this, we first fit each neuron’s Offer 1 responses using the 
attribute model described above, which allows the neuron to have separate weights for each of the selected 
attributes described above that influenced the animal’s choices. We then fit responses with a new model called 
the “value model”, which only had a single attribute, ‘Value’, equal to the estimated value of the offer derived 
from the behavioral model (using the procedure described above). Thus, the value model represents the 
hypothesis that the neuron’s attribute-related activity is fully explained by encoding of a single variable, the 
offer’s overall subjective value; or equivalently, that the neuron’s weighting of the offer’s many attributes to 
govern its response, is perfectly correlated with the animal’s weighting of the offer’s many attributes to compute 
subjective value. Finally, we quantified what fraction of the above-chance variance in the neuron’s activity that 
was explained by the attribute model could also be explained by the value model. To do this, we used a 
measure based on R-squared (R2) to quantify the fraction of the response variance that each model explained. 
Specifically, to correct for the fact that the attribute model had more parameters than the value model, we 
computed the shuffle-corrected R-squared (R2

corr), defined as the R2 computed on the neuron’s real data minus 
the mean of the R2 computed on 100 shuffled datasets in which the neuronal offer responses were shuffled 
across trials. Thus, R2

corr quantified the fraction of variance of neuron’s offer responses that the model 
explained, above and beyond the chance level expected under the null hypothesis that attributes and values 
had no influence on the neuron’s activity. Finally, we defined the value coding index with the equation:  
 

ValueCodingIndex = c((R2
corr for value model) / (R2

corr for attribute model))  
 

…where the function c(x) = max(0,min(1,x)) clamps the index between 0 and 1 (for rare cases where the index 
was slightly < 0 or > 1 such as due to small variations in the shuffling used for the shuffle correction). For some 
analyses, we used a signed value coding index, which was simply the value coding index multiplied by the sign 
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of the fitted ‘Value’ weight in the value model. Importantly, because the value coding index is expressed as a 
ratio relative to the corrected variance explained by the attribute model, it is only meaningful and reliably 
estimated for neurons for which a meaningful fraction of the variance was explained by the attribute model. 
Therefore, we only computed this index for neurons that were strongly attribute-responsive, which we defined 
as neurons for which the R2

corr for the attribute model was greater than or equal to 0.03 and were fit with a 
significant effect for at least one attribute using the attribute model. 
 
Intrinsic electrophysiological properties 
Spike width was calculated as the duration between the peak and the trough of the waveform. Baseline 
measures of firing rate and irregularity were computed based on activity in the last 1000 ms of the ITI. We used 
an irregularity metric (IR) that was previously used for DRN neurons33,34,242, described here in brief. First, 
interspike intervals (ISIs) were computed. If spike(i − 1), spike(i), and spike(i + 1) occurred in this order, the 
duration between spike(i − 1) and spike(i) corresponds to ISIi; the duration between spike(i) and spike(i + 1) 
corresponds to ISIi + 1. Second, the difference between adjacent ISIs was computed as |log(ISIi/ISIi + 1)|. 
Finally, we computed IR as the median of all such differences during the baseline window. Thus, small IR 
values indicate regular firing and large IR values indicate irregular firing. This measure has an advantage over 
traditional measures of irregularity, such as the coefficient of variation of the interspike intervals, which require 
a constant firing rate during the measurement period. However, for comparison, we also computed the 
coefficient of variation (CV) of ISIs. 
 

Figure captions 
 
Figure 1. Monkeys exhibit preferences for expected reward, delay, and uncertainty during multi-
attribute decision-making. (A) Two offers (Offer 1 and Offer 2) are presented sequentially and then the 
monkey has 5 seconds to free view and make a choice by fixating one offer for 0.5 seconds. After a delay, the 
outcome is revealed and the reward is delivered. (B) Left: Vertical bars represent the probability distribution 
over rewards, indicating the expected reward amount (E[R]) and reward uncertainty (Unc[R]). Right: Horizontal 
bar acts as a clock, representing reward delay (T[R]). To allow monkeys to prepare to consume the upcoming 
reward, when the reward delay has elapsed, the stimulus changes to reveal the outcome, and then the reward 
is delivered 1.1 s later (Methods). The total time between choice and end of the trial was always 8s. (C) Fitted 
weights describing each monkey’s subjective preferences for E[R], T[R], and Unc[R]. Error bars denote s.e.m. 
Both monkeys placed significant weights on each reward attribute (** p<0.01, *** p<0.001). 
 
Figure 2. Recording single neurons in primate dorsal raphe nucleus. (A) MRI taken with electrode in 
recording location, verifying its position in DRN. Shown are coronal views slightly tilted to align with the 
electrode track. The electrode is visible as a black ‘shadow’ on the MRI. (B) Nissl staining showing electrode 
track and marking lesions (Red arrows), delineating approximate range of recordings. The trochlear nucleus is 
visible just ventral to the recording track. (C) Anatomical reconstruction of recorded neurons, based on 
previously published methods238. Empty circles represent recorded neurons that were not task-responsive. 
Filled circles are task-responsive neurons. Top: Neurons from +3 to +4.5 interaural are shown on a plane 
corresponding to approximately +3.5 interaural. Bottom: Neurons from +2 to +2.5 interaural are shown on a 
plane corresponding to approximately +2.5 interaural. (D) SERT staining of tissue slices cut along the 
transverse axis of the brainstem, approximately corresponding to reconstructions shown in (C). Aq, cerebral 
aqueduct; MLF, medial longitudinal fasciculus; PAG, periaqueductal gray.   
 
Figure 3. DRN neurons signal expected reward, delay, and uncertainty during multi-attribute decision-
making. (A) Rasters and SDFs showing example neurons’ responses to Offer 1 on trials where it had Large vs 
Small E[R] (left, red), Short vs Long T[R] (center, blue), or Uncertain vs Certain Unc[R] (right, green). (B) Mean 
cross-validated normalized activity for task-responsive DRN neurons on trials where Offer 1 E[R] (left, red), 
T[R] (center, blue), or Unc[R] (right, green) was preferred or non-preferred by the neuron. (C) Difference in the 
activity shown in B. Error bars denote s.e.m. Average discrimination during the offer response analysis window 
(150-575 ms after Offer 1 presentation, black bar) was significant for E[R], T[R], and Unc[R] signals (two-tailed 
signed-rank test, *** p<0.001). (D) Proportion of task-responsive DRN neurons with significant fitted weights for 
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each attribute, fitting normalized activity in response to Offer 1 (one-tailed binomial test, ** p<0.01, *** 
p<0.001). Error bars indicate 68% confidence interval (Clopper–Pearson method).  
 
Figure 4. DRN neurons positively signal the value of expected reward, delay, and uncertainty. 
Histograms showing E[R] (left, red), T[R] (center, blue), Unc[R] (right, green) value indices (see Methods) of 
task-responsive neurons. Signals are biased in the direction of monkey preferences (dashed lines show mean; 
median significantly different from 0 by signed-rank test). The proportions of neurons with significant signaling 
of each attribute in the direction of monkey preferences are significant, while the proportions signaling the 
opposite are not (two-tailed binomial test). One outlier with an extreme E[R] value index was omitted from the 
left plot for presentation purposes (E[R] value index = 1.0, sig.). Colors indicate that neither (black), the x-
coordinate (red), the y-coordinate (blue), or both (magenta) are significant (p < 0.05). 
 
Figure 5. DRN expected reward signals integrate the value of delay or uncertainty. (A) Scatter plots 
showing E[R] vs T[R] (left) or E[R] vs Unc[R] (right) value signals across task-responsive neurons. E[R] signals 
are strongly positively correlated with T[R] and Unc[R] (Pearson and Spearman correlations, two-tailed 
permutation tests). Gray lines show Type 2 regression. One outlier with an extreme E[R] value index was 
omitted from the scatters for presentation purposes (E[R] value index = 1.0, sig.; T[R] value index = 0.14, n.s.; 
Unc[R] value index = 0.30, sig.). Colors indicate that neither (black), the x-coordinate (red), the y-coordinate 
(blue), or both (magenta) are significant (p < 0.05). (B) Top: Average normalized activity for E[R]-signaling 
neurons on trials where Offer 1 T[R] (left) or Unc[R] (right) was valued in the direction of the neuron’s E[R] 
value signal (Higher) or the opposite (Lower) (see Methods). Bottom: Difference in the activity shown in B. 
Error bars denote s.e.m. Average discrimination during the offer response analysis window (150-575 ms after 
Offer 1 presentation, black bar) was significant (two-tailed signed-rank test, ** p<0.001, *** p<0.001).  
 
Figure 6. DRN expected reward signals integrate the value of information to reduce uncertainty 
(A) The task also measured the value of information to reduce uncertainty about upcoming rewards. Trials 
could either be informative (Info, orange), for which reward uncertainty would be resolved soon after choice, or 
non-informative (Noinfo, purple), for which reward uncertainty would not be resolved until immediately before 
reward delivery (see Methods). One outlier with an extreme E[R] value index was omitted from the scatter for 
presentation purposes (E[R] value index = 1.0, sig.; InfoxUnc[R] value index = 0.10, n.s.). (B) Bar plot showing 
fitted InfoxUnc[R] interaction weight (see Methods). Error bars denote s.e.m. Monkeys strongly scaled the 
value of information with uncertainty. (C) Same as Figure 5A, but for E[R] vs InfoxUnc[R] value signals. E[R] 
and InfoxUnc[R] are strongly positively correlated (Pearson and Spearman correlations, two-tailed permutation 
tests). Gray line shows Type 2 regression. Colors indicate that neither (black), the x-coordinate (red), the y-
coordinate (blue), or both (magenta) are significant (p < 0.05). (D) Same as Figure 5B but showing differences 
in normalized activity between Info and Noinfo, splitting trials based on Offer 1 Unc[R]. 
 
Figure 7. DRN neurons that signal expected reward during decision-making signal reward prediction 
errors after decision-making. (A) Rasters and SDFs showing an example neuron’s responses to Info Cue 
(left, orange) or Noinfo Reveal (right, purple) on trials where it elicited an RPE that was positive (RPE +, solid, 
dark), 0 (RPE 0, solid, light) or negative (RPE -, dashed, dark). (B) Same as A but showing average 
normalized firing across E[R]-signaling neurons. Info and Noinfo RPE indices (see Methods) were significant 
(two-tailed signed-rank test, *** p<0.001). Activity was analyzed in the analysis windows shown in the black 
bars (250 to 750 ms post-cue, Info; 250 to 1000 ms post-reveal, Noinfo). (C) Histogram showing RPE indices 
(see Methods) of task-responsive neurons. Signals are predominantly positive (dashed lines show mean; 
median significantly different from 0 by signed-rank test). The proportion of neurons with significant positive 
RPE indices is large and strongly significant, while the opposite is small and weakly significant (two-tailed 
binomial tests). (D) Scatter plot showing RPE indices vs E[R] value signals. RPE indices and E[R] value 
signals were strongly positively correlated (Pearson and Spearman correlations, two-tailed permutation tests). 
Gray line shows Type 2 regression. One outlier with an extreme E[R] value index was omitted from the scatter 
for presentation purposes (E[R] value index = 1.0, sig.; RPE index = 0.84, sig.) Colors indicate that neither 
(black), the x-coordinate (red), the y-coordinate (blue), or both (magenta) are significant (p < 0.05). 
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Supplementary Figure 1. Electrophysiological characteristics of recorded DRN neurons based on task 
responses. Scatter plot showing spike width (ms; see Methods) vs mean baseline firing rate (Hz) of recorded 
neurons. Spike width was significantly negatively correlated with mean baseline firing rate (Spearman 
correlation, two-tailed permutation test). Filled and empty circles show neurons that were task-responsive or 
not, respectively. Top: Histogram showing mean baseline firing rate of recorded neurons. Marker indicates 
mean across neurons. 
 
Supplementary Figure 2. DRN neurons signal the overall subjective value of offers during multi-
attribute decision-making. (A) Scatter plot showing % of variance in neuronal offer responses explained 
above chance (100 x R2

corr) by the attribute model (x-axis) or value model (y-axis), respectively, for each task-
responsive DRN neuron. Vertical dashed line indicates the threshold (attribute model R2

corr > 0.03) for 
classifying cells as strongly (colored circles) or not strongly (gray points) attribute-responsive (see Methods). 
(B) DRN neurons exhibit a strong tendency to code attributes according to their contributions to the overall 
subjective value of an offer, shown by histogram of value coding indices from strongly attribute-responsive 
DRN neurons.  
 
Supplementary Figure 3. DRN neurons signal positively signed reward prediction error in response to 
post-decision feedback. (A) Scatter plot showing RPE+ indices vs RPE- indices (see Methods) across task-
responsive neurons. Positive and negative components of RPE were strongly positively correlated (Pearson 
and Spearman correlations, two-tailed permutation tests), consistent with a positively signed RPE. Gray line 
shows Type 2 regression. Colors indicate that neither (black), the x-coordinate (red), the y-coordinate (blue), or 
both (magenta) are significant (p < 0.05). (B) Scatter plot showing Info RPE indices vs Noinfo RPE indices (see 
Methods). RPEs elicited by Info Cue and Noinfo Reveal were strongly positively correlated (Pearson and 
Spearman correlations, two-tailed permutation tests), consistent with a signal that generalizes between trial 
and feedback types. Gray line shows Type 2 regression. Colors indicate that neither (black), the x-coordinate 
(red), the y-coordinate (blue), or both (magenta) are significant (p < 0.05). 
 
Supplementary Figure 4. DRN reward prediction error signals reflect difference between delivered and 
predicted rewards. (A) Scatter plot showing delivered reward indices vs predicted reward indices (see 
Methods). Neurons were concentrated in the upper-left quadrant, consistent with signals that positively reflect 
delivered reward amount and negatively reflect predicted reward amount (i.e. a positively signed RPE). Colors 
indicate that neither (black), the x-coordinate (red), the y-coordinate (blue), or both (magenta) are significant (p 
< 0.05). (B) PSTHs showing average normalized activity in response to Reveals on Info or Noinfo trials with 
positive or negative RPEs (‘RPE at Reveal’, left) or that delivered Small, Medium, or Large amounts of reward 
(Rdelivered) (‘Rdelivered at Reward delivery’, right) for neurons with significantly positive delivered and significantly 
negative predicted reward indices, (‘+RPE sig. neurons’, top) or those with significantly positive delivered 
reward indices but non-significant predicted reward indices that were at least tan(10°)-fold weaker in 
magnitude than the corresponding delivered reward indices (i.e. within 10° of the positive y-axis of the scatter 
plot shown in A) (‘+Rdelivered sig. neurons’, bottom). +RPE sig. neurons were excited by positive RPEs and 
inhibited by negative RPEs, in response to the Reveal event on Noinfo trials, and did not phasically modulate 
firing in response to the Reveal event on Info trials, when feedback had already been delivered by the Cue; but 
these cells did not discriminate Rdelivered following reward delivery. Conversely, while +Rdelivered neurons were 
more excited by positive vs negative RPEs in response to the Reveal event on Noinfo trials, they responded 
similarly on Info trials, for which Reveals should not elicit RPEs; also, these neurons discriminated Rdelivered 
following reward delivery. (C) Heatmaps showing proportions of Offer E[R]-signaling (left) or not Offer E[R]-
signaling (right) neurons in each of 3x3 categories: (significantly positive, not significant, or significantly 
negative delivered reward indices)x(significantly positive, not significant, or significantly negative predicted 
reward indices). Neurons that signal positively signed RPEs should appear in the top left (highlighted in black). 
(D) Heatmap showing log10 odds ratio of Offer E[R]-signaling vs not Offer E[R]-signaling neurons for each of 
the 3x3 categories shown in (C). Offer E[R]-signaling neurons were significantly more likely to have 
significantly positive delivered reward indices and significantly negative predicted reward indices, consistent 
with a positively signed RPE signal, and significantly less likely to have neither index be significant, while none 
of the other proportions significantly differed (Two-tailed Fisher’s exact test; ** p<0.01, *** p < 0.001). Gray 
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squares represent undefined values due to no neurons being in those categories in one or both groups of 
neurons. 
 
Supplementary Figure 5. DRN neurons that signal offer value during decision-making commonly signal 
reward prediction errors after decision-making. (A) Modified Venn diagram showing overlap between 
strongly attribute-responsive neurons with high value coding indices (>0.6) (left, red) and significant RPE 
indices (right, blue), where the intersection includes only neurons whose value coding indices were high, RPE 
indices were significant, and signed value coding indices and RPE indices had the same sign (>0 and >0.5, 
respectively). (B) Scatter plot showing RPE indices vs signed value coding indices. RPE indices and signed 
value coding indices were significantly positively correlated (Spearman correlation, two-tailed permutation test). 
 
Tables 
 
Neurons Firing rate Spike width IR CV 
All (n=219) 4.52±0.48 

(0.28-18.97) 
0.45±0.01 
(0.13-0.95) 

0.64±0.03 
(0.2-1.24) 

1.41±0.09 
(0.36-3.95) 

Task-responsive 
(n=107) 

5.66±0.91 
(0.24-25.3) 

0.42±0.02 
(0.13-0.84) 

0.6±0.03 
(0.21-1.17) 

1.44±0.14 
(0.35-3.87) 

Not task-responsive 
(n=112) 

3.44±0.33 
(0.41-14.48) 

0.48±0.02 
(0.13-1.34) 

0.67±0.05 
(0.17-1.33) 

1.38±0.13 
(0.39-4.54) 

 
Supplementary Table 1. Electrophysiological characteristics of recorded DRN neurons based on task-
responsiveness. Intrinsic electrophysiological properties of subsets of recorded neurons grouped by task-
responsiveness. Properties were computed based on baseline activity (see Methods). Each property is shown 
as Mean ±1SE (95% range) for each subset of neurons. Properties did not significantly differ between groups. 
IR = irregularity index (see Methods), CV = coefficient of variation.  
 
 AP LM 
Mean 3.43 0.06 
SD 0.58 0.60 
 
Supplementary Table 2. Distribution of recorded neuron locations. Mean and standard deviation of all 
recorded neurons’ (n=219) antero-posterior locations (AP), relative to interaural (where positive indicates 
anterior), and latero-medial locations (LM), relative to midline (where positive indicates to the right).  
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