
1 
 

A neural network model for the evolution of learning in changing 1 

environments 2 

 3 

Magdalena Kozielska1* and Franz J. Weissing1† 4 

 5 

Affiliations: 6 

1 Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The 7 

Netherlands 8 

 9 

* m.a.kozielska@rug.nl 10 

† f.j.weissing@rug.nl  11 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.18.553831doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.18.553831
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 12 

The ability to learn from past experience is an important adaptation, but how natural selection shapes 13 

learning is not well understood. Here, we present a novel way of modelling learning using small neural 14 

networks and a simple, biology-inspired learning algorithm. Learning affects only part of the network, 15 

and it is governed by the difference between expectations and reality. We used this model to study the 16 

evolution of learning under various environmental conditions and different scenarios for the trade-off 17 

between exploration (learning) and exploitation (foraging). Efficient learning regularly evolved in our 18 

individual-based simulations. However, in line with previous studies, the evolution of learning was less 19 

likely in relatively constant environments (where genetic adaptation alone can lead to efficient foraging) 20 

or in the case of short-lived organisms (that cannot afford to spend much of their lifetime on exploration). 21 

Once learning did evolve, the characteristics of the learning strategy (the duration of the learning period 22 

and the learning rate) and the average performance after learning were surprisingly little affected by the 23 

frequency and/or magnitude of environmental change. In contrast, an organism’s lifespan and the 24 

distribution of resources in the environment had a strong effect on the evolved learning strategy. 25 

Interestingly, a longer learning period did not always lead to better performance, indicating that the 26 

evolved neural networks differ in the effectiveness of learning. Overall, however, we showed that a 27 

biologically inspired, yet relatively simple, learning mechanism can evolve to lead to an efficient 28 

adaptation in a changing environment. 29 

 30 

Author Summary 31 

The ability to learn from experience is an important adaptation. However, it is still unclear how learning 32 

is shaped by natural selection. Here, we present a novel way of modelling the evolution of learning using 33 

small neural networks and a simple, biology-inspired learning mechanism. Computer simulations reveal 34 

that efficient learning readily evolves in this model. However, the evolution of learning is less likely in 35 

relatively constant environments (where evolved inborn preferences can guide animal behaviour) and in 36 

short-lived organisms (that cannot afford to spend much of their lifetime on learning). If learning does 37 
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evolve, the evolved learning strategy is strongly affected by the lifespan and environmental richness but 38 

surprisingly little by the rate and degree of environmental change. In summary, we show that a simple 39 

and biologically plausible mechanism can help understand the evolution of learning and the structure of 40 

the evolved learning strategies. 41 

 42 

Introduction 43 

Learning can be defined as a change in the nervous system manifested as altered behaviour due to 44 

experience [1]. The ability to learn is widespread in the animal kingdom as it is an important adaptation 45 

to life in complex environments [2–5]. Learning has been studied extensively in different fields, like 46 

psychology, ethology, neurobiology, and more recently artificial intelligence. A number of theoretical 47 

studies have been conducted in order to understand the evolution of learning but many questions still 48 

remind unanswered [6]. 49 

The limited progress may be related to the fact that only a few evolution-oriented theoretical studies 50 

considered that experience-based changes in behaviour are achieved via changes in neural networks. 51 

Many studies take a behavioural-gambit approach [7], assuming that mechanisms do not matter and that 52 

evolution will always shape learning in such a way that the outcome is optimal. Modelling studies that 53 

do take mechanisms into consideration, typically focus on the evolution of simple learning rules that are 54 

determined by a small number of parameters (e.g. [8–13] but see [14]). It is difficult to imagine how 55 

such rules could emerge via the evolution of brain plasticity. 56 

In contrast, machine learning and artificial intelligence deal with complex neural networks capable of 57 

learning. However, the proposed learning mechanisms often rely on complicated algorithms, such as 58 

backpropagation, which affect all connections in the network [15,16]. Such techniques are very efficient 59 

in machine learning applications but are far removed from biological reality [17]. Additionally, when 60 

evolutionary considerations are included, they are usually limited to network optimisation instead of 61 

asking evolutionary questions (but see [18,19]). Mutation and selection are usually viewed as useful 62 

tools that can be freely designed to achieve a computationally efficient outcome and often unrealistic 63 

assumptions are made about the way how natural selection works [20–22]. 64 
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Here, we take a first step toward filling the gap between these two approaches. We study the evolution 65 

of neural networks that are capable of learning via a simple but plausible mechanism. In our model, 66 

neural networks can change over the generations through evolution by natural selection, but also through 67 

learning within the lifetime of an individual. Experience-induced changes in the network are localized 68 

and affect only a small number of neural connections – an approach inspired by “reservoir computing” 69 

[23,24]. The learning mechanism is based on prediction error, the difference between an animal’s 70 

expectation and observed reality. Such a mechanism is biologically plausible, as prediction errors are 71 

signalled by the neurotransmitter dopamine, which is ascribed an important role in learning [25,26]. 72 

Learning algorithms based on error prediction have also been successfully implemented in machine 73 

learning applications [23]. To our knowledge, this is the first time that such a biology-inspired local 74 

learning mechanism is implemented in a study on the evolution of learning. Yet, we would like to stress 75 

that it is not our goal to build a realistic model of a brain. Rather, we view our model as a conceptual 76 

tool to explore how the addition of mechanistic detail affects the evolution of learning.  77 

Learning theory predicts that the degree of environmental change affects the adaptive value of learning 78 

and therefore the probability that learning evolves [6]. Generally speaking, learning is expected to be 79 

most advantageous for moderate rates of environmental change [27]. If there is little or no change, 80 

genetic control of behaviour should evolve. Learning is also not profitable if the change is too frequent 81 

because information on the environment gets outdated too fast. We therefore study the evolution of 82 

neural networks and their learning mechanisms in different regimes of frequency and magnitude of 83 

environmental change, as it allows us to investigate whether a more mechanistic implementation of 84 

learning is in line with the predictions of “mechanism-free” theory. 85 

We also touch upon a rarely studied aspect of learning theory – the effect of lifespan on the evolution 86 

of learning. As far as we know there are only two studies addressing this question [28,29]. These models 87 

are vastly different from each other in assumptions and ecological context and lead to different 88 

predictions on whether the investment in learning should be highest for shorter or longer lifespans. To 89 

add to this limited body of knowledge, we also study how different lifespans affect the evolution of 90 

learning and the evolved learning strategy. 91 
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Our simulation study addresses the following research questions: Under which environmental conditions 92 

does learning evolve? What is the evolved learning strategy and how efficient is it? What is the effect 93 

of lifespan on the evolved learning strategy? 94 

 95 

Methods 96 

Model overview 97 

We used individual-based simulations to study the evolution of simple neural networks that are able to 98 

adapt to changing environment by learning. 99 

In our model, individuals harbour a neural network that guides their foraging decisions. Individuals have 100 

a fixed lifetime of a given number of timesteps. At the start of their life, they can spend a number of 101 

timesteps on learning. During this learning period, they gather information about the quality (energy 102 

content) of food items in their environment, and they use this information to adjust their neural network. 103 

After the learning period, individuals switch to foraging, when they use their network to assess the 104 

available foraging options. They choose the food item their neural network finds the most profitable, 105 

consume it and gain energy equal to its quality. The more energy their gather during the whole foraging 106 

phase, the more offspring they have. There is a trade-off between exploration and exploitation: the 107 

longer the learning (‘exploration’) period, the shorter the foraging (‘exploitation’) period, but potentially 108 

the higher the efficacy with which the foraging period is used. 109 

Offspring inherit their neural network and their learning strategy (the duration of the learning period and 110 

the learning rate) from their parents, subject to rare mutations. Environmental conditions can change 111 

between generations, making learning a potentially adaptive strategy. 112 

 113 

Neural networks  114 

Each individual possesses a neural network that is used to predict the quality of food items on the basis 115 

of environment-specific cues.  116 
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We consider relatively simple neural networks consisting of 10 neuron-like nodes (Fig 1). In a pilot 117 

study, we also considered more complex networks, but the network considered here performed almost 118 

as well as more complex networks while being faster. Our network receives a cue C as input and it 119 

produces an output ( )pQ C  that can be interpreted as the predicted quality of a food item emitting that 120 

cue. The networks consist of nodes (the circles in Fig 1) that are organized in a sequence of layers. Each 121 

node is connected to one or several nodes in the subsequent layer (the arrows in Fig 1), and it can 122 

stimulate or inhibit the activities of these nodes.  123 

 124 

 125 

Fig 1. The neural network used in this study. Our network receives a cue C as input and it produces 126 

an output Qp that is the predicted quality of a food item emitting that cue. In this model we use a network 127 

with one input and one output (C and Qp, respectively) and two hidden layers, each with four nodes. 128 

Arrows indicate the information flow in the network. Solid arrows represent genetically hardwired 129 

connection that do not change during learning. Dashed arrows represent the weights that are genetically 130 

determined but can also change during learning (see text for more details). 131 

 132 

Each connection has a certain strength - weight w, where a positive value of w represents stimulation, 133 

while a negative value corresponds to inhibition. The input node receives the cue value C which is a real 134 

number. This value is processed and determines the node activities at the subsequent level. More 135 

precisely, the activity iy  of node i in each layer is given by an expression of the form  136 
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  i ij j ij
y A w x b .    (1) 137 

Here j runs over all nodes of the previous layer that are connected to i, jx  is the activity of node j, and 138 

ijw  is the strength of the connection between nodes j and i. ib  is the baseline activation of node i. 139 

Function A is a so-called “activation function.” Such functions can be useful, as they allow for more 140 

versatile input-output relationships of neural networks and because they can ensure that the activity 141 

levels iy  are restricted to a certain range (such as the interval [0,1]) [30]. A preliminary test showed that 142 

the results are not strongly affected by the applied activation function. In this paper, we used the 143 

”clamped ReLU” function that is fast and returns 0 if given values lower than 0, and 1 for the values 144 

larger than 1. For values between 0 and 1, it returns these values without transformation. No activation 145 

function was used for the output node. 146 

We assumed that the network architecture does not change throughout the simulation and that all the 147 

network parameters ijw  and ib  are heritable and transmitted from parents to offspring (subject to 148 

mutation, see below). Therefore, the strength of connections between the nodes and the baseline node 149 

activations can change in the process of evolution. Additionally, some weights can change during the 150 

individual’s lifetime via learning. 151 

 152 

Learning 153 

Four weights of the network connected to the output node (dashed arrows in Fig 1) can be modified via 154 

learning during the individual’s lifetime.  155 

Different methods for network learning are used in artificial intelligence applications. Many of them 156 

implement relatively complex algorithms that change all (or most) weights of the network based on 157 

global information (e.g. error backpropagation) and are therefore unrealistic from the biological point 158 

of view. As far as we know, there is no experimental data supporting such learning happening in the 159 

brain. Additionally, at the initial stages of the evolution of learning a simple learning algorithm is more 160 

likely to evolve from scratch.  161 
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Therefore, we decided to use a simple learning method, inspired by reservoir computing [23,24], that 162 

assumes that learning is more localised in the brain and that it only leads to changes in weights of the 163 

last layer, i.e. weights that directly influence the output of the network. These changes are governed by 164 

the so-called “Delta Rule” that has proven to be effective in reservoir computing and other machine 165 

learning applications [23]. It uses the difference between the current network output (prediction) and the 166 

feedback received from the environment as a teaching signal. Interestingly, local dopamine 167 

concentrations in the brain may signal such prediction error [25,26,31] and prediction-error-based 168 

learning is a well-known phenomenon in animal psychology research [32].  169 

Therefore, the changes in weights of the last layer (connected to the output node; dashed arrows in Fig 170 

1) after one round of learning are given by the ‘Delta Rule’ [30]: 171 

( )ij p jw L Q Q x   ,    (2) 172 

where  ijw  is the change in the weight connecting node j in the preceding layer to the output node i; Q 173 

is the actual quality of the food item; pQ  is the quality predicted by the network before the weights are 174 

updated; L is the learning rate (a heritable parameter), and jx  is the activation level of node j. 175 

It should be noted that the values of the modified weights are not passed to the offspring, but only the 176 

genes specifying the weights’ values at the beginning of life. 177 

 178 

Environment 179 

Individuals live in an environment that contains food items of different quality. Food items can be 180 

distinguished on the basis of their properties (like colour or smell) that we will call ‘cues’. For simplicity, 181 

we assume that the cues can be arranged on a circle or, equivalently, on the ‘wrapped’ interval [-1,1], 182 

where -1 corresponds to +1. The energetic quality Q of a food item emitting cue C is given by a Gaussian 183 

function (see Figure 2):  184 

2

1
2( ) exp



         

C P
Q C    (3) 185 
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where P is the location of the peak of the Gaussian while σ describes the width of the function. In our 186 

simulations, the peak was initially located at zero. As a default, we used σ = 0.25, but other values were 187 

also tested. 188 

 189 

Fig 2. Three Gaussian functions with σ = 0.25 illustrating the relationship between food cues and 190 

food quality at three different points in time. The peak of the quality function can shift, indicating a 191 

change in the environment. 192 

 193 

We assume that the environment can change over the generations, in the sense that the quality associated 194 

with specific cues may change. We model this by shifting the whole quality function randomly to the 195 

left or to the right. As mentioned above, we wrapped the quality function in order to assure that the total 196 

amount of resources in every generation is the same (see Fig 2). 197 

In order to study the effect of environmental change on the evolution of learning, we considered (a) 198 

different frequencies of environmental change (f) – we present results for the values f = {1, 0.1, 0.01}, 199 

corresponding to a change every 1, 10 and 100 generations, respectively; and (b) different magnitudes 200 

of environmental change (m) – how much the peak of the quality distribution shifts (left or right) when 201 

the environment changes. Throughout the simulations we used values m = {0.1, 0.25, 0.4}. Each time 202 

the peak moved, a small error term (with a coefficient of variation of 5%) was added to m to prevent 203 

that only finitely many peak locations would be experienced in the course of evolution. 204 

 205 
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Life history 206 

The lifespan of each individual is divided into a fixed number of discrete timesteps. We focus on a 207 

lifespan of 500 timesteps but later also briefly discuss the effect of shorter lifespan on the outcome of 208 

evolution. The first part of life is spent on learning; the duration of the learning period is either a fixed 209 

parameter or a heritable property. The second part of life is spent on foraging, where previous learning 210 

can potentially improve the ability to choose food items of better quality. At the end of their life, 211 

individuals reproduce and then die.  212 

Learning period 213 

In each timestep of the learning period, each individual explores one food item: it gets one randomly 214 

chosen cue, predicts the food quality associated with that cue (using its current neural network), is 215 

informed about the true food quality of the corresponding food item, and updates its network accordingly 216 

(see above). Once the learning period is finished, the network resulting from the succession of learning 217 

steps is used to guide the individual’s decisions in the foraging phase. To reduce one source of 218 

randomness from our simulations, all individuals in the population were presented with the same 219 

sequence of random cues during the learning period. 220 

Foraging period 221 

In each timestep of the foraging period, each individual is presented with n food items (n was set to 5 in 222 

all simulations). Based on the food properties (cues) an individual has to decide which item to consume. 223 

To this end, the individual uses its neural network (that is partly inherited and partly adjusted by 224 

learning) to predict the quality of the food items presented. Subsequently, it consumes the item it 225 

predicted to be the best, gaining energy equal to the food item’s true quality. In the next timestep, a new 226 

set of food items is presented, etc. Again, we reduced the randomness by presenting the same sets of 227 

food items to all individuals in the population. 228 

Reproduction 229 

Individuals reproduce after the foraging period. The expected reproductive success of an individual is 230 

proportional to the total amount of energy the individual gathered during its entire foraging period. For 231 
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each of the N individuals of the offspring generation, a parent is drawn at random (with replacement); 232 

the probability that a given individual is drawn as a parent is proportional to the individual’s total energy 233 

gained. The offspring inherits all network parameters, learning rate and the number of learning episodes 234 

from its parent. With per-locus mutation probability μ = 0.01, a parental allele is affected by a mutation. 235 

When for a given locus a mutation occurs, a small number ε is added to the parental value. For weights, 236 

biases and learning rate the mutational step size ε is drawn from a normal distribution with mean 0 and 237 

standard deviation 0.1. In case of the number of learning episodes (which is a non-negative whole 238 

number), a mutation either leads to the increase or to the decrease by one unit, both with equal 239 

probability. The offspring population replaces the parental population and the new generation starts. 240 

 241 

Simulation setup 242 

In our simulations, we consider a population of 1000N  haploid individuals and discrete, non-243 

overlapping generations. Each individual harbours genes that encode the (initial) connection weights 244 

and biases of its neural network (in total 33 values), the learning rate (L in equation 2) and the number 245 

of learning episodes. Weights and biases can take any real value, the learning rate can be any non-246 

negative real number and the length of the learning period is an integer in the range [0, lifespan]. 247 

Each simulation started with a population consisting of individuals with random parameter values. Initial 248 

weights and biases were drawn from a uniform distribution U(-1,1) and the learning rate from the 249 

uniform distribution U(0,1). The number of initial learning episodes was set to a specific value 250 

depending on the type of simulation (see Results). 251 

Most simulations were run for 50 thousand generations, but evolutionary equilibrium (judged by the 252 

population average of the amount of gathered energy) was usually reached in a much shorter time. 253 

 254 

Results 255 

We present our results in three sections. In the first section, the duration of the learning period is fixed. 256 

This removes the exploration-exploitation trade-off and allows us to focus on the evolution of the 257 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.18.553831doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.18.553831
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

network and the learning mechanism. In the second section, we investigate the joint evolution of the 258 

network and the duration of the learning period in order to study the trade-off between exploration and 259 

exploitation. In the first two sections, we focus on organisms with a lifespan of 500 time units and an 260 

intermediate width of the environmental quality distribution (σ=0.25). In the last section, we study how 261 

the evolutionary outcome is affected by changes to these parameters. 262 

 263 

Fixed duration of the learning period 264 

As a first step, we fixed the number of learning episodes (LE) to different values. For simplicity, we 265 

present the results for a lifespan of 500, but the same pattern is seen for other lifespans, as long as the 266 

absolute number of learning episodes is the same.  267 

One of the most important measures for the performance of a network is its ability to choose a high-268 

quality food item among the available options. We calculated the relative performance (“performance” 269 

in brief) of a network within a given choice situation by dividing the energy content of the food item 270 

chosen by the energy content of the highest-quality food item on offer. Therefore, performance equals 271 

one if during the foraging period an individual always chooses optimally, and it is smaller than one 272 

otherwise. All other things being equal, a higher performance leads to higher fitness, which in our model 273 

is proportional to the “lifetime energy gain”, that is, to the sum of the energy of all food items collected 274 

throughout the lifetime. When, however, the learning periods differ, a higher performance does not 275 

necessarily result in a higher lifetime energy gain. If the higher performance is associated with a longer 276 

learning period and, hence, a shorter foraging time it may not offset the time “lost”. 277 

Fig 3 shows how, for a given duration of the learning period, the performance and the lifetime energy 278 

gain of the evolved learning networks are affected by the frequency and magnitude of environmental 279 

change. As a benchmark, consider first the absence of learning (LE = 0; red dots and lines). For the 280 

environmental quality distribution considered here (σ=0.25), a randomly choosing individual would 281 

achieve a performance of about 0.41. Even without learning, the networks typically perform better than 282 

this, because they adapt genetically to the pattern of environmental change. Such “adaptive tracking” 283 

[33] can lead to a high network performance if the environmental change is rare and/or if the magnitude 284 
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of environmental change is small. In the case of f=0.01 (change once every 100 generations) and m=0.1 285 

(small magnitude of change), the non-learning networks achieve practically the same high performance 286 

as the networks that were allowed to learn. In this case, the non-learning networks even have a fitness 287 

advantage (a higher lifetime energy gain), as they do not lose foraging time. On the other hand, if f=1 288 

(change every generation) and m=0.4 (large magnitude of change), the genetic mechanism cannot 289 

adaptively track the environmental changes, and the networks do not perform better than 0.41, the 290 

performance of a random-choice mechanism.  291 

 292 

Fig 3. Effect of a fixed number of learning episodes (LE) on (A) evolved network performance and 293 

(B) lifetime energy gain in different environmental regimes. Panels in different columns corresponds 294 

to a different frequency of environmental change f, ranging from 0.01 (a change once every 100 295 
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generations) to 1.0 (a change every generation). The x-axis of each panel represents the magnitude of 296 

environmental change: the distance that the environmental quality peak moves when change occurs. 20 297 

replicate simulations were run for each parameter combination (in all cases, lifespan = 500). Each 298 

replicate is represented by a coloured point, which corresponds to the population mean of this replicate, 299 

averaged over the last 2000 generations. The lines connect the median values of 20 replicates for 300 

different parameter settings. As expected, performance tends to increase with the number of learning 301 

episodes. However, the total amount of resources gained tends to be highest for an intermediate number 302 

of learning episodes, because a longer learning period reduces the time left for foraging.  303 

 304 

As expected, when learning is present, a longer learning period has a positive effect on network 305 

performance (Fig 3A). In general, performance increases with the number of learning episodes, but 306 

levels off from a certain point onward. In other words, the returns from adding more learning episodes 307 

diminish and eventually they become negligible. Therefore, the foraging time lost to longer learning can 308 

to some extent be compensated by improved performance, but there is a limit to that. Accordingly, 309 

fitness (lifetime energy gain) is typically maximized for an intermediate number of learning periods (Fig 310 

3B).  311 

Fig 4 shows the temporal dynamics in more detail, for a scenario where the environment changes every 312 

ten generations. Without learning (LE=0), performance drops every time when environmental change 313 

happens and subsequently recovers (due to the genetic evolution of the network) to its former value. 314 

Learning reduces the drop in performance considerably, especially if the learning period is long 315 

(LE=20).  316 

 317 
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Fig 4. The time course of network performance in a changing environment. The panels show the 318 

time course of average population performance over the last 100 generations of simulations with an 319 

environmental change rate f=0.1 (change once every 10 generations) and magnitude m=0.4. For four 320 

values of the number of learning episodes (LE = 0, 5, 10, 20) four randomly chosen replicate simulations 321 

are shown. In the absence of learning (LE = 0), the population performance clearly drops to low levels 322 

every time the environment changes (indicated by vertical dashed lines). With an increasing number of 323 

learning episodes, the drops in performance are smaller, and performance is better throughout the 324 

simulation.  325 

 326 

Quite generally, learning strongly improves the match between the real environmental quality and the 327 

one predicted by individuals if the environment changes frequently and/or if the magnitude of change is 328 

large. This is exemplified in Fig 5 which shows prediction profiles for networks evolved for different 329 
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durations of the learning period. When there is no learning and the environment changed, the prediction 330 

profile does not match the real quality associated with different cues. With learning, the innate quality 331 

prediction can be relatively poor, as it is considerably improved by learning. Even though the predicted 332 

quality after learning does not perfectly match the real environmental quality for all cues, individuals 333 

perform quite well, as they only need to assess the relative quality associated with the five cues available 334 

during one foraging episode and to find the one that is linked with the highest energy level. 335 

Conversely, if environmental change happens less frequently or is smaller in magnitude, even though 336 

individuals spent time learning they are not necessarily efficient at it and a considerable number of 337 

learning episodes is needed to reach an improvement in performance (Fig 3A and Fig A in S1 Appendix). 338 

 339 

Figure 5. Prediction profiles of networks evolved for different durations of the learning period. 340 

For each of the 16 populations presented in Fig 4, one network was chosen at random at the end of the 341 

simulation (when the environment had just changed) and was investigated in more detail. The plots show 342 

the environmental quality function (blue), the prediction profile (i.e., the quality predicted for each 343 

possible cue) of the network before learning had started (green) and at the end of the learning period 344 

(red). For longer learning periods, the “learned” prediction profiles (red curve) match the “true” 345 
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environment quality profile (blue curve) reasonably well, even though the “innate” prediction profile 346 

(green curve) is way off target. Parameter settings as in Fig. 4 (f=0.1, m=0.4). 347 

 348 

Examples of the evolved neural networks and the effect of learning on the weights can be seen in Fig 6. 349 

In different replicates, different networks evolved, but within a replicate variability between individuals 350 

was low.  351 

 352 

Fig 6. Examples of evolved neural networks and their prediction profiles before and after learning. 353 

Networks from three different replicates from simulations with LE = 20 are shown (three of the four 354 

individuals shown in Fig 5). Blue arrows correspond to excitatory connections (positive weights) and 355 

red to inhibitory connections (negative weights) The thickness of the lines is proportional to the strength 356 

of the connection. The baseline activation of each node is represented by circles with a blue edge for 357 

positive values and by diamonds with a red edge for negative values. The absolute strength of the 358 

baseline activation is given by the inner shading of the symbol, the darker the colour the larger the value. 359 
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During learning only the four numbered weights can change. For example, for the network in the centre, 360 

two weights changed the strength and the type of connection (from excitatory to inhibitory - weight 2; 361 

and the other way round – weight 3) and weight 4 weakened in strength. Such relatively small changes 362 

to the network lead to a drastic change in the prediction profile (right column, plotting convention as in 363 

Fig 5). Note that the four “learning weights” of the networks tend to have smaller absolute weight values 364 

(thinner lines) than other weights. This was a common pattern for networks that evolved efficient 365 

learning (Fig C in S1 Appendix). 366 

 367 

We also looked at the evolved learning rate. In environmental settings in which learning increases 368 

performance (i.e., when environmental change is frequent and/or of large magnitude), the learning rate 369 

tends to slightly decrease with the increasing learning period (Fig B in S1 Appendix). In other words, 370 

when the learning period is brief, learning tends to take place in larger strides, while it tends to take 371 

place in smaller steps when there is much time for learning. 372 

 373 

Evolution of the duration of the learning period  374 

From now on, we assume that the duration of the learning period coevolves with the learning rate and 375 

the properties of the network. Accordingly, the evolutionary outcome reflects the exploration-376 

exploitation trade-off: the system should evolve to a state in which the time spent learning (and lost for 377 

foraging) is compensated by the better choices made during foraging. There is, however, a start-up 378 

problem. When a simulation starts with a random network, the learning period may evolve toward zero 379 

(as learning does not provide any benefit at the early stage of network evolution). Once the learning 380 

period is around zero, and the selection for learning is weak, the evolution of the optimal number of 381 

learning episodes is hampered. To overcome this problem, we started each simulation with a fixed 382 

number of learning episodes (LE = 20) and let the network and the learning rate evolve for 10K 383 

generations. After this initial period, the number of learning episodes became subject to mutations and 384 

could therefore start to evolve as well for further 50K generations.  385 
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Fig 7 shows that learning persists in the population under a broad range of environmental conditions, 386 

leading to greatly increased performance and fitness (compared to a population with no learning; Fig 387 

7A). This shows again that the time spent learning can be compensated by the better choices made in 388 

the foraging phase. In other words, the benefits of learning often outweigh the costs in terms of a 389 

shortened foraging time. 390 

Fig 7. The joint evolution of (A) network performance, (B) duration of the learning period, and 391 

(C) learning rate for various environmental scenarios. Parameter settings and graphical conventions 392 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.18.553831doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.18.553831
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

are as in Fig. 3. In (A), the performance of the evolved networks in the simulations in which learning 393 

was allowed to evolve is shown in turquoise. For comparison, the simulations in Fig. 3A where learning 394 

was not allowed to evolve (LE=0) are also shown (in red). (B) shows the evolved number of learning 395 

episodes. Notice that LE often evolves toward zero (i.e., learning disappears in the course of evolution) 396 

when the magnitude of change is small and environmental change is infrequent. (C) shows the evolved 397 

learning rates – different colours indicate the association between the evolved learning rate and the 398 

evolved duration of the learning period in the replicate simulations. Notice that the evolved learning rate 399 

is close to 0.5 in all simulations where learning evolved (LE > 10). When learning disappeared in the 400 

course of evolution (LE < 5), the learning rate is no longer under strong selection and can take on many 401 

different values (three data points with LE < 5 are not visible, as the learning rate exceeds 3). 402 

 403 

Whether learning evolves can be to a large extent predicted from the results of the previous section. Fig 404 

3 shows what number of learning episodes (among the ones tested) lead to the highest gain in resources, 405 

and, hence fitness. For example, when the environment changes every generation the simulations with 406 

learning episodes of 10 and 20 obtained the highest energy. When we let the number of learning episodes 407 

evolve it reaches a median value of around 17 (Fig 7B). On the other hand, when a small change of 0.1 408 

happens every 100 generations, then the highest energy gain was obtained in simulations with no 409 

learning. In line with this, the number of learning episodes converges to zero, corresponding to the loss 410 

of learning from the population.  411 

Smaller and less frequent environmental changes reduce the likelihood that learning is maintained. 412 

Interestingly, when learning evolves, the number of learning episodes, network performance, and 413 

network fitness are practically independent of the magnitude or frequency of environmental change (Fig 414 

7). This seems to be due to the fact that when effective learning evolves, the networks do not track 415 

environmental change genetically but fully rely on learning. In other words, the “innate prediction 416 

profile” is relatively stable over time, while the “learned prediction profile” is adjusted to the current 417 

environmental quality function (see Fig D in S1 Appendix).  418 
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In addition to the duration of the learning period (the number of learning episodes), the learning rate is 419 

also an important aspect of the learning strategy. This parameter is also practically independent of the 420 

environmental conditions in the replicates in which the efficient learning evolved (Fig 7C).  421 

Fig 8 illustrates that the relationship between the number of learning episodes and performance is not 422 

straightforward. First of all, in some environmental conditions, the outcome of evolution differs 423 

considerably across replicates. If that is the case, networks that do not learn have worse performance 424 

(their ability to choose the best environment is lower) than networks that learn (Fig 8). This is often 425 

linked with lower fitness, i.e., more time spent foraging does not compensate for lower performance. 426 

However, similarly to what we observed in the previous section, when learning evolves, a longer 427 

learning period does not always lead to better performance. In some environmental regimes, a wide 428 

range of learning episodes leads to practically the same performance (Fig 8). We hypothesize that the 429 

variability between replicates might be partly explained by the properties of the coevolved networks. 430 

Each replicate evolves a unique network that likely affects the effectiveness of learning. Loss of learning 431 

in some replicates even if retention of learning could potentially lead to higher fitness could be linked 432 

to the learning ability of a specific network. However, due to the complexity of the system, we were not 433 

able to prove this hypothesis. It is also worth noting that in environmental regimes that lead to either 434 

loss or maintenance of learning, in some replicates in which learning was lost at some point, it revolved 435 

again. 436 

Within each environmental regime, a range of learning episodes evolve. One might expect that in 437 

replicates in which the learning period is shorter, the learning rate is higher to allow for faster adjustment 438 

of weights and vice versa (similarly to the situation with fixed LE). When efficient learning evolves, in 439 

some environmental regimes there is indeed a negative relation between the learning rates and the 440 

number of learning episodes, but this is not a general trend (Fig 9). For example, for a small (0.1) 441 

environmental change every 10 generations, in replicates in which learning evolved the learning rate 442 

value seems to be even slightly positively correlated with the number of learning episodes (Fig 9). If the 443 

number of learning episodes is very small (below 5), learning is not effective (Fig 8) and the learning 444 

rate is very variable between replicates, consistent with random drift (Fig 9).  445 

 446 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.18.553831doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.18.553831
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Fig 8. The relationship between performance and the number of learning episodes in different 447 

environmental regimes. Different columns correspond to different frequencies of environmental 448 

change (f) and different rows to different magnitudes of environmental change (m). Each point 449 

represents the average of the population mean over the last 2000 generations of a single replicate. One 450 

simulation (f=0.1, m=0.1) with low average LE (=0.93) is not visible, as the average performance (=0.65) 451 

was too low. 452 

 453 

The last, but crucial part of the evolved learning mechanism is the neural network itself, and specifically 454 

the value of its weights. Neural networks are notoriously difficult to analyse but we decided to look at 455 

some of the properties of evolved neural networks. The only pattern we could see is that the average 456 

strength of connections that can be adjusted through learning was clearly lower for networks that 457 

evolved learning compared to networks that did not evolve learning (Fig C in S1 Appendix). This 458 

suggests that efficient learning cannot be achieved when weights are too high. 459 
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Effect of lifespan and environment on the evolution of learning 460 

Until now, we considered an organism with a lifetime of 500 timesteps where the exploration-461 

exploitation trade-off is relatively weak because efficient learning can be accomplished within a period 462 

of 20 timesteps. In this section, we consider an organism with a lifespan of only 50 timesteps, where the 463 

cost of learning is much larger, as each timestep spent learning corresponds to 2% of the organism’s 464 

lifetime and hence reduces the foraging time considerably. 465 

Figure 9. Effect of lifespan on the evolution of learning. For two lifespans (50 timesteps: red; 500 466 

timesteps: blue) each panel shows the evolved relationship between the learning rate and the number of 467 

learning episodes in 20 replicate simulations. The panels correspond to different environmental regimes: 468 

the columns show three frequencies of environmental change (f) and the rows three magnitudes of 469 

change (m). Each point represents the average of the population mean over the last 2000 generations of 470 
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a single replicate. For clarity, only learning rates up to 2.0 are shown; 34 data points with a learning rate 471 

above 2.0, all with a very low number of learning episodes (= no learning), are not visible. 472 

 473 

For various environmental regimes, Fig 9 compares the evolutionary outcome for the two lifespans 474 

considered. Not surprisingly, learning is less likely to evolve in the case of a shorter lifespan, especially 475 

in those environmental regimes where adaptive tracking is, at least to a certain extent, efficient (a low 476 

rate of change and/or a small magnitude of change). When learning evolves despite the short lifespan, 477 

the evolved learning period is shorter in absolute terms (smaller number of learning episodes) but longer 478 

in relative terms (a larger percentage of the lifespan is spent on learning). As in the case of a long lifespan 479 

(Fig 7BC), both the number of learning episodes and the learning rate is practically independent of the 480 

magnitude and rate of environmental change. However, the number of learning episodes is less variable, 481 

reflecting a stronger selection on the efficient use of every single timestep. 482 

Fig 10 shows that, whenever learning evolves at all, the resulting performance is smaller in case of a 483 

short lifespan. In view of the fact that short-lived organisms spend less time learning, this is not too 484 

surprising. Interestingly, when learning evolves in both lifespan conditions, even though the number of 485 

learning episodes is clearly different, the evolved learning rate is only slightly higher for lower lifespan 486 

for some environmental conditions (e.g. for the very frequent environmental change) but is independent 487 

of the lifespan for other conditions (see Fig 9 and Fig E in S1 Appendix). 488 

Fig 10. Effect of lifespan on performance. Results for two lifespans (50 timesteps: red; 500 timesteps: 489 

blue) and nine environmental regimes (defined by the rate f and the magnitude m of change) are shown. 490 
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The average population performance in the last 2000 generations of 20 replicate simulations for each 491 

parameter set is indicated by coloured dots.  492 

 493 

All results presented thus far were based on an environmental quality function with σ = 0.25 (Fig 2). 494 

Here, we consider the implications of a narrower (σ = 0.1) or a wider (σ = 0.4) Gaussian function. If the 495 

function is narrow, only a small fraction of the available food is of high quality. Therefore, mistakes in 496 

choosing among food items potentially lead to a severe loss of fitness. On top of this, environmental 497 

change has a more drastic effect. If, for example, the magnitude of environmental change is large (e.g., 498 

m = 0.4), all high-quality food items in the previous generation become low-quality, while a small range 499 

of the previously low-quality items become high-quality after the shift. One would therefore expect a 500 

much stronger selection for learning in case of σ = 0.1. Conversely, selection for learning is expected to 501 

be weaker in case of σ = 0.4. 502 

Fig 11 shows how the evolution of learning (= the evolved duration of the learning period) depends on 503 

lifespan and the width of the environmental quality function. Figs E and F in S1 Appendix show the 504 

corresponding learning rates and performance levels, respectively. Consider first the case of a narrow 505 

quality function (σ = 0.1). As argued above, one would expect that learning is more important in this 506 

case. It is therefore somewhat surprising that learning less easily off the ground than in our standard 507 

scenario (σ = 0.25). This may be explained by the fact that efficient learning is difficult to achieve in the 508 

case of a narrow quality function. The reason can be that most of the cues sampled during the learning 509 

period are of very low (practically zero) quality (cues are sampled randomly); accordingly, these cues 510 

provide little information on where the peak of the function is located. 511 

When the quality function is broad (σ = 0.4) the environmental conditions (frequency and magnitude of 512 

change) in which learning evolves are very similar to the ones with σ = 0.25 (Fig 11). One clear 513 

exception is an environmental change of m=0.25 every 10 generations (f=0.1) for the lifespan of 50. In 514 

this case for σ = 0.4 learning never evolves, while it does for roughly half of the replicates for σ = 0.25. 515 

It seems that for a relatively small and rare change spending time learning doesn’t compensate enough 516 

for lost foraging opportunities if food quality changes only slightly around the peak and choosing less 517 

optimally does not reduce fitness considerably (for σ = 0.4). 518 
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 519 

Fig 11. Effect of lifespan and the width of the quality distribution on the evolution of learning. 520 

Rows correspond to different values of σ (sigma), that is, to different widths of the quality function. 521 

Graphical conventions as in the previous figures.  522 

 523 

When learning is maintained, the number of learning episodes increases with decreasing σ, while at the 524 

same time, performance decreases (Fig F in S1 Appendix) as every mistake is more costly. Similarly, 525 

the learning rate decreases with decreasing σ, supporting the general expectation that with a lower 526 

number of learning episodes, the learning rate should be larger to allow for faster learning in a shorter 527 

time (Fig E in S1 Appendix). However, as noted earlier, within one environmental regime learning rate 528 

might not correlate with the number of learning episodes. 529 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.18.553831doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.18.553831
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

As observed earlier, for a given width of quality distribution, if learning evolves the number of learning 530 

episodes and learning rate do not depend on the magnitude and frequency of environmental change (Fig 531 

11 and Fig E in S1 Appendix). 532 

 533 

Discussion 534 

We presented a novel way of modelling the evolution of learning, using small neural networks and a 535 

simple, biology-inspired learning algorithm. We used this model as a tool to answer evolutionary 536 

questions that are usually tackled by simple analytical models. Contrary to analytical methods, even a 537 

relatively simple network, as studied here, allows for more complex phenotypes and learning strategies 538 

and at the same time can lead to efficient adaptation and novel insights into the evolution of learning. 539 

In line with the literature (e.g [6,10,27,34]), the frequency of environmental change had a large effect 540 

on the probability that learning will be maintained in the population. The same holds for the magnitude 541 

of environmental change, although this aspect of environmental variation has rarely been studied. 542 

Usually, environmental change is assumed to be random and there is no correlation between subsequent 543 

environmental states (e.g., [10,35] and references therein), even though it is likely not the case in the 544 

real world [36]. In our model, when environmental change is infrequent and/or small, genetic tracking 545 

evolved. In less stable environments, learning (a “plastic” response) was selected for, but if the change 546 

was very frequent and large, individuals made random choices – a strategy resembling bet-hedging. 547 

Similar results for the evolution of adaptive tracking, plastic responses, and bet-hedging were observed 548 

by Botero et al. [33], although they modelled the predictability of the future environment based on the 549 

current cues, while in our model different magnitudes and frequencies of environmental change can say 550 

something about how much the current environment predicts a future state. 551 

Whenever learning evolves one might expect that the learning strategy (the length of the learning period 552 

and the learning rate) is fine-tuned to the environmental change regime. However, surprisingly, we 553 

found that the learning strategy was independent of the environmental change regime. To the best of our 554 

knowledge, our study is the first to report such a finding. The few studies that investigated such effects 555 

reported a relationship between the frequency of environmental change and the evolved or optimal 556 
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learning parameters [28,29,34,37,38]. We are not aware of any neural network models studying the 557 

effect of environmental change regimes on the learning strategy.  558 

The discrepancy between our results and those of previous studies may reflect the higher number of 559 

degrees of freedom in our model or the peculiarities of the task itself. In earlier models, learning 560 

(governed by a single parameter) affects only one variable., which is sometimes identical to the 561 

“phenotype”. Under this restriction, different learning parameter values seem necessary to deal with 562 

different frequencies of environmental change. In our model, the “phenotype” is more complex (the 563 

function ascribing a predicted quality to a range of cues) and learning affects more than one parameter 564 

(four network weights). When the environment changes, the relationship between cues and their quality 565 

changes. In this case, when efficient learning evolves it lets organisms predict the current location of the 566 

environmental peak, independent of when and how much it changed in the past. In the future, it would 567 

be interesting to study the evolved learning strategy of networks challenged by a different task, e.g. 568 

having to know the quality of all environmental cues, rather than just identifying the ones that are the 569 

best in a set of options. 570 

For learning to be efficient, not only a learning strategy must be fine-tuned, but also the underlying 571 

neural network. While many networks can perform the task, not all are suitable to learn. For example, 572 

our initial networks with random weights did not support efficient learning and the performance of our 573 

simulated organisms was initially poor. Randomly initialised neural networks can show a good 574 

performance if the learning algorithm is very efficient (e.g. backpropagation) and if the learning consists 575 

of many learning steps [39]. However, different studies consistently indicate that networks that evolved 576 

initial weights can be trained significantly faster and better than networks with random initial weights 577 

[20,40] (but see the discussion on reservoir computing below). This seems to apply also to our less 578 

sophisticated learning mechanism and supports the view that learning and evolution together are more 579 

successful than either alone [40,41]. As noted by Mery and Burn “evolution of a combination of learning 580 

and innate behavioural responses is probably a common process” [42] but it has very rarely been 581 

included in models of the evolution of learning. Neural networks provide an intuitive way of studying 582 

the intertwined evolution of innate and learned responses to the environment. 583 
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Another interesting finding of our study is that the distribution of resources in the environment strongly 584 

affects the probability of learning evolving and the evolved learning strategy. To our knowledge, this 585 

has never been observed (or even investigated) before. When only a small fraction of available resources 586 

provides nutrients (small σ in our model) then one could expect that learning would be more likely to 587 

evolve to allow individuals to find the cues that are linked with profitable food. However, this is not the 588 

case and learning is actually less likely to evolve then. It seems that learning is less likely to evolve 589 

whenever sampling the environment can lead to frequent encounters with items that do not provide 590 

resources and therefore information – “clueless environments” [43]. In this case, spending time learning 591 

is relatively more costly, which seems to shift the cost-benefits balance against learning. More studies 592 

looking at this aspect of the environment would be welcome. 593 

Not only environmental but also organismal properties can affect the evolution of learning. One obvious 594 

one is an organism’s lifespan. While it is generally assumed that shorter-lived organisms should invest 595 

less in cognitive functions, as the cost of learning is relatively larger while the time to profit from 596 

learning is shorter (see the discussion on this topic in [29,44]), there are, to the best of our knowledge, 597 

only two modelling studies that investigated the effect of lifespan on learning. Eliassen et al. [28] studied 598 

learning in the context of the exploration-exploitation trade-off and showed that learners should invest 599 

less in learning for shorter expected lifespans (higher external mortality). But the optimal speed of 600 

learning depended not only on the expected lifespan but also on the temporal change in the environment. 601 

Liedtke & Fromhage [29] built a vastly different and simpler model in which learning reduced the 602 

handling time of food items. They showed that the learning speed and the investment in learning (in 603 

their model the higher the learning speed the higher costs paid) should be highest for short and 604 

intermediate lifespans. Our results are to some extent in line with those of Eliassen et al. and the common 605 

wisdom that short-lived organisms should invest less in learning. However, in our model, lifespan and 606 

the pattern of environmental change have a surprisingly small (or even negligible) effect on the learning 607 

speed when learning evolves. Clearly, details of the model assumptions can have a profound effect on 608 

the model outcomes. Therefore, additional studies, both theoretical and empirical, on the effect of 609 

lifespan on learning are needed. 610 
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It is generally accepted that learning is costly. The costs can be manifold, for example, energetic costs 611 

of growth and maintenance of the brain tissue, resource allocation trade-offs, or increased mortality due 612 

to suboptimal behaviour during the learning phase (see e.g. [6,45–47]). In many studies, the cost of 613 

learning is just one of the parameters included a priori in the model (see e.g. [10] and references therein). 614 

To avoid extra assumptions, the only cost of learning in our model stems from the limited lifespan and 615 

the trade-off between exploration (learning) and exploitation (foraging). To this end, our model assumes 616 

that an individual’s life is divided into two separate stages: learning and foraging. This is clearly a 617 

simplification, as animals can learn during their whole life. However, this simplification was used in 618 

models before (e.g. [48]) and it is to some extent justified by the observation that in many animals 619 

(including humans), early life (childhood) is characterised by much more intense learning than later life 620 

[49]. Separation of the learning and foraging phases allows for a better understanding of the evolved 621 

strategies under a time constraint. However, since learning also incurs other costs (see above) our model 622 

is a starting point for studying the minimal requirements for learning to evolve [50]. It would also be 623 

interesting to consider scenarios where the environment changes during an individual’s lifetime. In that 624 

case, it is not the best strategy to learn only at the beginning of life. Future models could implement life-625 

long learning and allow for learning while foraging. 626 

In our model, learning induces a change in the nervous system that usually leads to an improvement in 627 

performance. But this is not always the case, e.g. if the learning period is very short. This finding 628 

undermines the common assumption that, as long as the learning cues are reliable, learning will always 629 

improve performance or even lead to perfect behaviour (e.g. [10,35,51]). Mechanistic approaches like 630 

ours are required to elucidate whether and when such an assumption is justified. 631 

Neural network models are especially suited to answer evolutionary questions concerning behaviour as 632 

they explicitly incorporate the proximate stimulus-response aspect of behaviour. Optimisation 633 

approaches (tend to) neglect the proximate underpinning of adaptations. Neural networks are also suited 634 

for more complex problems than the ones that can be tackled with analytical methods [52]. Also, as 635 

mentioned earlier, they provide a great opportunity to study the coevolution of innate behaviours 636 

together with the evolution of learning mechanisms. In our model, learning affected only part of the 637 

network – this approach was inspired by reservoir computing in which also only the weights linked to 638 
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the output node change, yet the network can still learn complex tasks [23,24,53]. Such a learning 639 

mechanism seems very suitable for evolutionary studies as it is unlikely that in early animals a single 640 

learning event could affect all connections in the network as is usually assumed in AI applications. 641 

We draw inspiration from reservoir computing in the sense that learning affects only a small subset of 642 

network weights. However, our network and the task it needs to perform is much simpler than what is 643 

potentially possible with a reservoir computing approach and what biological brains can do [23,24,53]. 644 

Promising future projects could incorporate larger networks that not only pass information in one 645 

direction (feed-forward) but also include backward connections and feedback loops (allowing for 646 

longer-term memory). Such “reservoir” networks could dynamically store various types of inputs, 647 

making them available for a diversity of decision-making processes, such as making decisions in the 648 

context of foraging, predator avoidance, mating, and social behaviour. Each type of decision (which we 649 

henceforth will call a “domain”) would be governed by domain-specific output nodes, which are 650 

connected to the reservoir. Domain-specific learning could happen as in our model: based on simple 651 

mechanisms only affecting the connections to the domain-specific output nodes. Each output node may 652 

have its own domain-specific connections with the reservoir, allowing output nodes governing foraging 653 

behaviour to tap into different parts of the reservoir than output nodes linked with predator avoidance. 654 

By considering mutations that break or create connections from the output nodes to reservoir nodes, this 655 

part of the network architecture could evolve by domain-specific selection. Such partial restructuring of 656 

the network would likely make behaviour and learning more efficient [24,54], even though learning 657 

would affect only a small fraction of the connections. The domain-general reservoir could also be shaped 658 

by natural selection. Interestingly, the demands on the reservoir may not be stringent, provided that it is 659 

sufficiently complex: as shown in the literature on reservoir computing [23,24,53]. Reservoir-based 660 

learning can be very efficient even if the connections between the nodes of the reservoir are quite 661 

arbitrary (i.e., if the connection strengths are drawn at random). A network model as sketched above 662 

would allow using the same environmental information and network structure to perform different tasks, 663 

as is also seen in the animal brains [24] without making a priori assumptions on what environmental 664 

cues are important in different contexts.  665 
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In conclusion, we showed that a biologically inspired, yet relatively simple, learning mechanism can 666 

evolve to lead to an efficient adaptation in a changing environment. We hope that our model will serve 667 

as an inspiration for future work on more challenging research projects and ultimately to a better 668 

understanding of the evolution of learning.  669 
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