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Background: Aging involves intricate epigenetic changes, with histone modifications playing a pivotal role in

dynamically regulating gene expression. Our research comprehensively analyzes seven key histone modifications

across various tissues to understand their behavior during human aging and formulate age prediction models.

Results: These histone-centric prediction models exhibit remarkable accuracy and resilience against experimental

and artificial noise. They showcase comparable efficacy when compared with DNA methylation age predictors

through simulation experiments. Intriguingly, our gene set enrichment analysis pinpoints vital developmental

pathways crucial for age prediction. Unlike in DNA methylation age predictors, genes previously recognized in

animal studies as integral to aging are amongst the most important features of our models. We also introduce a

pan-histone-mark, pan-tissue age predictor that operates across multiple tissues and histone marks, reinforcing

that age-related epigenetic markers are not restricted to particular histone modifications.

Conclusion: Our findings underscore the potential of histone marks in crafting robust age predictors and shed

light on the intricate tapestry of epigenetic alterations in aging.
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Background1

Aging is marked by noticeable changes mainly at cellular and organismal levels, encompassing phenomena like2

epigenetic disturbances, genomic instability, proteostasis loss, nutrient-sensing deregulation, and dysbiosis [1, 2].3

This understanding has spawned a variety of omics age predictors in fields such as epigenetics, transcriptomics,4

proteomics, metabolomics, and microbiotics [3, 4]. Most studies focus on on blood chemistry, transcriptomics,5

and DNA methylation, revealing several aging biomarkers, including those based on DNA methylation, telomere6

length, and proteomics [3, 5]. Blood tests, facilitated by deep neural networks, offer notable accuracy with a7

median absolute error of about five to six years [6, 7]. RNA sequencing contributes rich transcriptomic data8

for age predictors, which tend to be cell type or tissue-specific [8–12]. Cytosine methylation have emerged as9

the most favored molecular measurement for crafting age predictors that apply to all human tissues, with pan-10

tissue predictors achieving a median absolute error nearing four years [13–16]. Single-cell pan-tissue predictors11

utilizing DNA methylation have also been realized [17]. Newly, pan-mammalian epigenetic clocks applicable to12

all mammalian species have been presented [18]. Reflecting upon the achievements of age predictors centered13

on cytosine methylation, it beckons whether other epigenetic shifts, notably those anchored in histone levels,14

could engender mammalian aging clocks of similar precision. Clocks informed by histone marks carry potential15

relevance, resonating well with the histone code. Despite studies delineating the nuanced relationship between16

aging and histone marks [19, 20], a multifaceted mammalian age predictor rooted in histone mark data remains17

to be formulated.18

To bridge this gap, we harness ENCODE data [21, 22] to analyze seven histone marks in human tissues19

and cells. We pinpoint a discernible shift from heterochromatin-linked modifications to those linked with20

euchromatin, corroborated by other studies [19, 23]. Furthermore, the variance in these histone modifications21

across genes escalates with age, hinting at an epigenetic regulatory decline. We introduce the first age predictors22

grounded in histone modification ChIP-Seq data. Impressively, their performance rivals that of DNA methylation23

age predictors, adjusted for training sample size. Our explorations divulge pivotal pathways and genes for24

age prediction. Developmental pathways and micro RNAs conspicuously dominate most histone modification25

age predictors. We also unearth that histone modifications can be broadly categorized as either activating26

or repressive for age predictor construction, irrespective of their unique roles. Interestingly, specific genes27

manifest consistent age-related trends across both these categories. Capitalizing on these insights, we present28

the inaugural pan-histone mark, pan-tissue age predictor.29

To encapsulate, our research underscores the potential of histone modification data in age prediction. We30

emphasize the pivotal role of epigenetic regulation in aging and spotlight the prospective utility of histone31
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modifications as aging biomarkers. Concurrently, we illuminate key pathways and genes pivotal to epigenetic32

aging.33

Results34

Dynamics of histone mark during aging35

In this study, we explore publicly available chromatin-immunoprecipitation sequencing (ChIP-Seq) human data36

from the ENCODE project [21, 22] (Figure 1). We focused on seven key histone modifications. Three, H3K4me3,37

H3K27ac, and H3K9ac, are broadly associated with euchromatin; another two, H3K9me3 and H3K27me3, are38

broadly associated with heterochromatin; one, H3K36me3, is associated with transcription elongation and39

heterochromatin; and one, H3K4me1, is associated with enhancers [24, 25].40

Before any attempt to create age predictors based on histone modifications, we first analyzed data derived41

from human tissue from the ENCODE project to understand age-related dynamics [21, 22]. We obtained a42

total of 1814 samples (n) from ChIP-Seq data for H3K4me3 (n = 359), H3K27ac (n = 359), H3K27me3 (n43

= 291), H3K4me1 (n = 264), H3K36me3 (n = 257), H3K9me3 (n = 248), and H3K9ac (n = 36). The44

samples represent 82 tissues with ages ranging from embryonic to 90-plus years (Supplementary Figure 2a) with45

a roughly equal number of males and females (48.2% males, 50.6% females, 1.2% not available). Cancerous46

tissue constituted 0.9% of observations (n = 17). The sequencing was performed with seven different Illumina47

instruments at four labs in universities across the United States. A summary of the relevant statistics can be48

found in Supplementary Figure 2 and attest to the breadth and diversity of the data collected.49

We used the processed ChIP-Seq data files that display the probability that a genomic region is enriched50

for a specific histone mark compared to the control of sequencing DNA without the immunoprecipitation step.51

Effectively, each sample has a p-value for each single nucleotide in the genome. The lower the p-value, the52

higher the confidence that the locus contains the histone mark of interest. Given the high dimensionality of the53

data (high number of features p compared to the number of observations n), with 3 billion nucleotides in the54

human genome, we decided to reduce the number of features by summarizing the values across genomic regions.55

We opted for averaging over the gene bodies of protein-coding and noncoding genes to facilitate interpretation56

unless stated otherwise (minimum, median, and maximum bin sizes of 7, 3897, and 2473538 bps respectively).57

The Homo Sapiens Ensembl annotation 105 provided the genomic locations [26]. To summarize the values58

in each gene as a single feature, we averaged the negative log10 of p-values and then arcsinh-transformed to59

stabilize the variance (see Methods). In the end, the number of features was reduced by nearly 50 thousand,60
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from roughly 3 billion to 62241 per sample.61

We plotted our data using uniform manifold approximation and projection (UMAP) to determine whether age62

was a major differentiating factor in our samples. As expected, each histone modification is generally separated63

from the others (Figure 2a). Interestingly, however, there are two main clusters, one with the activating marks64

H3K4me3, H3K27ac, and H3K9ac, and another with the repressive modifications H3K9me3, H3K27me3, and65

the elongation mark H3K36me3. H3K4me1, typically enriched in enhancers and neither clearly activating nor66

repressive, is located between the two clusters. Next, we colored the UMAP plot with age rather than histone67

marks (Figure 2b). While there is no apparent separation between young and middle-aged samples, old samples68

(>70 years) are relatively separated from the rest of the data. We confirmed this observation by replotting UMAP69

stratified by modification (Figure 2c). While it is much easier to differentiate a sample based on the type of70

histone mark, age is relevant enough — at least in old age — to contribute towards the UMAP projection. We71

also plotted the data with principal component analysis (PCA) to rule out any potential artifacts from UMAP,72

yielding similar results (Supplementary Figures 2d-f).73

After broadly analyzing the data through low-dimensional projections, we focused on uncovering age-related74

trends. It has been widely reported that aging is accompanied by loss of heterochromatin and activation of75

constitutively repressed genes [19, 23]. Indeed, the mean signal of all three repressive histone modifications has76

a negative Pearson’s correlation (r) with age (Figure 2d), with H3K9me3 (Pearson’s r = -0.35, p-value = 9.7e-9)77

and H3K27me3 (Pearson’s r = -0.24, p-value = 4.9e-5) reaching significance. Likewise, the mean signal of all78

three activating histone marks has a positive Pearson’s correlation with age, with H3K4me3 (Pearson’s r = 0.2,79

p-value = 1.7e-4) reaching significance. The mean signal of H3K4me1 barely changes with age, with Pearson’s80

r of only -0.01. Our results add to the evidence from several previous studies indicating loss of heterochromatin81

with aging.82

Another interesting metric to track across aging is how variable the histone modification signal becomes,83

as previous studies have reported an increase in entropy during aging in DNA methylation [27–29]. While the84

entropy calculation for an unbound histone mark enrichment is not as straightforward as for DNA methylation,85

the signal variance normalized by its mean can give insights into the increased variability during aging. Interest-86

ingly, Pearson’s correlation is indeed positive for all seven histone marks (Figure 2e), with H3K4me3 (Pearson’s87

r = 0.19, p-value = 2.4e-4), H3K4me1 (Pearson’s r = 0.18, p-value = 2.7e-3), H3K9me3 (Pearson’s r = 0.17,88

p-value = 6.1e-3), and H3K27me3 (Pearson’s r = 0.19, p-value = 9.1e-4) reaching significance. The broad89

increase in normalized signal variance with age suggests that any tight regulation to maintain histone marks to90

specific genomic regions becomes less effective with spillover to other loci.91
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While the data so far point towards robust age-related trends, we wanted to determine whether the genes’92

signals correlate with age. For each of the 62241 genes, we calculated the correlation coefficient with respect93

to age and plotted it on a histogram (Figure 2f). We chose Spearman’s r over Pearson’s r given that multiple94

age-related changes are non-linear, so a non-parametric coefficient is best suited to detect such correlations.95

As shown by the red shade, a surprisingly large proportion of genes significantly correlate with age (p-value <96

8.0x10-7, i.e., p-value < 0.05 with Bonferroni correction for the 62241 genes). As expected for the repressive97

histone marks, many more genes have a negative rather than positive coefficient. Surprisingly, however, the98

same is true for the three activating histone marks. Overall, given a large number of genes whose histone marks99

significantly correlated with age, it was likely that we could develop a histone mark age predictor from our data.100

Performance of pan-tissue histone mark age predictors101

Given the dynamics of histone modifications we observed during aging, we set out to create age predictors.102

Given the relatively small number of samples, we opted for a 10-fold nested cross-validation setup. Nine folds103

are used for internal 9-fold cross-validation to select the appropriate hyperparameters. Then, a predictor is104

trained on these nine folds with the best hyperparameter and is tested in the remaining external fold. This105

process is repeated ten times. It is worth emphasizing that samples originating from the same biosample were106

not split into different folds, as this may have artificially inflated the performance (Supplementary Figure 1).107

To create an apt age predictor, we had three requirements: (1) the approach can suitably handle data108

with high dimensionality (p features >> n samples), (2) the approach is robust to technical variation and109

experimental noise, and (3) the approach is easily interpretable. We introduced a feature-reduction step to110

fulfill the first requirement by training an ElasticNet model and selecting features with non-zero coefficients (p′)111

[30]. This is the only step in the overall age predictor with a hyperparameter (λ), representing the strength112

of regularization. Moreover, having an initial set of reduced features allow us to easily interpret the most113

important genes and pathways through gene set enrichment analysis. For the second requirement, it has been114

shown that PCA can vastly improve the reliability of DNA methylation epigenetic age predictors by removing115

technical noise [31]. Therefore, we transformed the data using PCA calculated with a truncated support vector116

decomposition, generating (p′−1) principal components. Finally, we used an automatic relevance determination117

regression (ARD), a form of regularized Bayesian regression, for the last requirement. It can easily be interpreted118

as, similarly to linear regression, each feature has a coefficient representing the model’s weight. In addition, it119

provides an uncertainty value for each prediction. Choosing a different model to ElasticNet after feature selection120

and noise reduction also avoids the issue of double dipping. While we and others have previously shown that121
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deep learning can improve the performance and interpretation of pan-tissue DNA methylation epigenetic age122

predictors [14, 32], we opted for the aforementioned machine learning approach given the low number of samples.123

For more details of our modeling approach, see Methods.124

Since chromatin immunoprecipitation is noisy and highly dependent upon the quality of the antibody [33],125

we expected a good but not impressive performance. We measured the performance of the age predictors using126

the following metrics: Pearson’s correlation coefficient (r), median absolute error (MAE), and root-mean-square127

error (RMSE). Surprisingly, all performed exceedingly well (Figure 3a), except for the H3K9ac age predictor -128

likely given the small sample size of 36. The H3K4me3 age predictor, in particular, was the best performer,129

with r=0.94, MAE= 4.31, and RMSE=8.74. Though the setup is not directly comparable, it is remarkable130

that this pan-tissue histone mark age predictor has similar reported performance compared to some of the most131

used DNA methylation age predictors [13, 27]. In summary, histone mark age predictors have remarkably low132

prediction errors.133

It seems that the sample size is a significant determinant of the performance (Figure 3c), as it is highly134

negatively correlated with RMSE (r = -0.74, p = 0.059). It is possible that a larger sample size would make135

histone modification age predictors match or even exceed the performance of DNA methylation age predictors.136

Therefore, we downloaded all human tissue ChIP-seq samples imputed with Avocado [34]. The original 1814137

samples plus 1379 imputed samples were added to 3193 samples. We reran the nested cross-validation adding138

the imputed samples to the training sets. It has been suggested that the imputed signals contain enough139

biological information to be useful in several downstream analyses [35]. However, the performance was overall140

very similar for our age prediction tasks (Supplementary Figure 3g-l). This might suggest that imputed samples141

are unlikely to help our age predictors; perhaps the performance might be already saturated or the age-related142

changes are too subtle for Avocado to reconstruct.143

In addition to testing the performance on data using features based on the average signal value over144

gene bodies, we also explored binning the ChIP-Seq data into (1) solely intergenic regions, (2) genes and145

intergenic regions (whole genome), (3) 20318 CpG dinucleotides common to the Illumina Methylation arrays146

27k, 450k, and EPIC, and (4) Horvath’s 353 CpG sites from his pan-tissue DNA methylation age predictor [13].147

Despite the different lengths of the genomic loci, that should have not biased our data transformation since148

we average the signal over the entire bin. Given that heterochromatin is present mainly in noncoding genomic149

regions, we expected a better performance for the histone modification age predictors based on repressive histone150

modifications. This is observed — albeit with a minor improvement — for the H3K9me3 age predictor (r =151

0.78 vs. 0.74, MAE = 8.67 vs. 8.20, RMSE = 14.52 vs. 15.44) and the H3K36me3 age predictor (r = 0.84 vs.152

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2023. ; https://doi.org/10.1101/2023.08.21.554165doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.554165
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.80, MAE = 7.17 vs. 7.86, RMSE = 12.32 vs. 13.48) (Supplementary Figure 3a). The performance is virtually153

identical for the whole genome setting (Supplementary Figure 3a). The performance of the 20138 CpG sites154

is similar but slightly worse (Supplementary Figure 3c). Interestingly, it is particularly so for the age predictors155

of the repressive marks H3K9me3 (r = 0.66 vs. 0.74, MAE = 11.02 vs. 8.20, RMSE = 17.06 vs. 15.44),156

H3K27me3 (r = 0.90 vs. 0.92, MAE = 7.49 vs. 6.20, RMSE = 12.22 vs. 11.10), and H3K36me3 (r = 0.69157

vs. 0.80, MAE = 9.48 vs. 7.86, RMSE = 16.46 vs. 13.48). A similar trend is observed for the age predictors158

using the histone modification signal from Horvath’s 353 CpG sites, though with overall poorer performance159

(Supplementary Figure 3d). The methylation status of these CpG sites may interfere with how much epigenetic160

information can be gained from that particular locus — for instance, if there is high histone acetylation, the161

gene is almost certainly active. Still, lack of histone mark repression does not mean the gene is active as it162

might be methylated (though CpG methylation and histone repression typically are well correlated). By binning163

at different places in the genome, we can see that age-related information is degenerate throughout the genome,164

as age predictors using inputs from completely different loci perform well. Nonetheless, there are specificities165

for the performance of histone mark age predictors given the function of the modifications, i.e., some marks166

perform slightly better or worse than others depending on the loci of the bins.167

While it is impossible to directly compare the performance of DNA methylation epigenetic age predictor168

versus histone mark age predictors without paired data from the same sample, we attempted to make a rough169

comparison. For such, we ran 100 simulations by randomly drawing the same number of samples of each170

histone mark from the pan-tissue DNA methylation data set used to create AltumAge [14]. We subjected171

this random pool to the same nested cross-validation setup using the same machine-learning approach. In the172

end, we had performance metrics for 100 simulations of each sample size for DNA methylation age predictors.173

With these results, we compared how well each histone mark age predictor fell into the distribution of DNA174

methylation age predictors (Figure 3b). If a histone mark age predictor performs well, say over 90th percentile,175

it means that the reported metric was better than 90 out of the 100 simulations of a DNA methylation age176

predictor with the same number of samples. Overall, while the H3K9me3 and H3K36me3 age predictors are177

in the 0th percentile for RMSE, the H3K4me3, H3K9ac, and H3K27ac ones are in the 93rd, 92nd, and 67th178

percentile, respectively. Similar results were found for Pearson’s correlation and MAE (Supplementary Figure179

3e,f). It is worth emphasizing that the AltumAge data was highly skewed towards younger ages, in which DNA180

methylation age predictors perform better, in contrast to our histone mark data’s more uniform age distribution181

(Supplementary Figure 2a). Overall, the performance of the histone mark age predictors was approximately182

in line with the DNA methylation age predictors, with activating histone marks outperforming and repressive183
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histone marks underperforming.184

Moreover, we assessed how robust and reliable our histone mark age predictors are. Our data contained185

samples with biological triplicates, which allowed us to analyze how reliable each histone mark age predictor is186

to experimental noise. Except for H3K4me1 and H3K36me3, all other histone mark age predictors showed an187

intraclass correlation coefficient above 0.9 (Figure 3e). In addition to assessing the reliability of the models to188

experimental variation, we wanted to test how they performed under the addition of artificial noise. For each189

test fold in the nested cross-validation, we added random Gaussian noise to the test data with up to 1.5 standard190

deviations in 0.3 standard deviation increments. Even in the most extreme scenario with 1.5 standard deviations,191

most models’ performance remained similar, except for the H3K4me3 age predictor (Figure 3f). These results192

show that the age predictors are robust and reliable to experimental and artificial noise.193

Lastly, we hypothesized that our choice of the uncertainty-aware ARD regression would give us insights into194

the epigenetic drift that occurs over time (Supplementary Figure 3g). We expected to see an increased model195

uncertainty with the sample’s age. Though relatively weak correlations, we did notice a statistically significant196

relationship for the following age predictors: H3K36me3 (r = 0.14, p = 0.025), H3K4me3 (r = 0.11, p =197

0.033), and H3K9me3 (r = 0.14, p = 0.029). Despite the weak correlations, these findings show that the age198

predictors might be learning the well-described phenomenon of epigenetic drift.199

Inference of pan-tissue histone mark age predictors200

While DNA methylation age predictors have been the most used tools to measure age, the insights gained from201

them into what constitutes epigenetic aging are limited. The most important genes based on the location of202

the relevant CpG sites are often difficult to relate to the rest of the aging literature. Therefore, we sought to203

carefully analyze the genes that comprise our histone mark age predictors, i.e., the genes selected after the first204

step with ElasticNet. In the previous nested cross-validation setup, we trained 10 models in total. However,205

to be able to interpret the findings more clearly, we ran a single 10-fold cross-validation to choose the best206

hyperparameter λ and trained a single histone modification age predictor with the entirety of the data for each207

histone.208

First, we began by visualizing an upset plot with all histone mark age predictors except for H3K9ac, given its209

low sample size and poor performance (Figure 4a). The models selected a subset from 341 genes for H3K9me3210

up to 1275 for H3K27ac. As expected, the selected genes were often shared across similar histone marks.211

For instance, the two marks with the most genes in common were H3K27ac and H3K4me3, and the three212

marks with the most genes in common were H3K27ac, H3K4me3, and H3K4me1. Surprisingly, though few,213
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some selected genes were common across both activating and repressive histone mark age predictors. For the214

principal components derived from the age predictor genes, the ARD regression decreased the coefficients of215

only a small subset of genes (about 5%) to zero (Supplementary Figure 4b). This indicates that only a tiny216

fraction of the 62241 features is sufficient to predict age.217

Next, we investigated which pathways were important for the histone mark age prediction. Gene set enrich-218

ment analysis (GSEA) can reveal important gene ontology processes which are either over or underrepresented219

in a set of genes. Using Panther DB [36], we ran seven GSEAs, one for each set of selected genes from the220

histone mark age predictors (Figure 4b-h). Several developmental pathways are overrepresented in the top 10221

GO biological processes. Some examples are regionalization (H3K4me3, H3K27ac, H3K9ac, H3K27me3), pat-222

tern specification process (H3K4me3, H3K9ac, H3K27me3), anterior/posterior pattern specification (H3K4me3,223

H3K27ac, H3K27me3), anatomical structure morphogenesis (H3K27ac, H3K36me3). This brings further ev-224

idence to the fact that aging is simply a maladaptive continuation of development, which are fundamental225

for fitness early in life but whose continuation result in organismal decay. For H3K4me1, processes related to226

telomere organization, muscle regeneration, and immune response are heavily overrepresented. For H3K9me3,227

processes related to H3K27me3 regulation and fat proliferation are the most important.228

Complementary to the GSEA, we also looked into which ENSEMBL gene biotypes were over or underrep-229

resented in each model (Supplementary Figure 4a). For such, we used Fisher’s exact test with a Bonferroni230

correction for the number of gene biotypes (n = 39). Some general trends emerge, with an overrepresenta-231

tion of micro RNAs (all histone marks), small nuclear RNAs (H3K9me3, H3K27me3, H3K4me1, H3K36me3,232

H3K27ac), small nucleolar RNAs (H3K9me3, H3K4me3, H3K4me1, H3K36me3, H3K27ac), and miscellaneous233

RNAs (H3K9me3, H3K4me1, H3K36me3, and H3K27me3). Micro, small nucleolar, and small nuclear RNAs234

have been linked to several age-related phenomena [19, 23]. Protein-coding genes are vastly underrepresented235

in the age predictors for all histone modifications besides H3K9ac.236

Following the gene set analysis, we looked into the importance of individual genes. We focused on the top237

three protein-coding genes with the highest positive and negative contributions toward the final age prediction for238

each age predictor (Figure 4i). Calculating the individual gene importance is possible by inverse-transforming239

the coefficients of principal components from the ARD regression back into coefficients for the genes. The240

overarching theme was the importance of histone-coding genes. Amongst those are H1-1, H2AC15, H2BC8,241

H3C7, H3C11. For activating histone marks, histone genes had a negative coefficient (more histone enrichment242

translates to lower predicted age), whereas, for the repressive histone modifications, the opposite was true.243

These genes represent the components of the nucleosome histones H2A, H2B, and H3, and linker histone H1,244
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all of which have been linked to aging [19, 23, 37]. Other relevant age-related genes which contribute towards245

our histone mark age predictors are NOG, which plays an important role in early development in all germ layers;246

HOXD8, important in body patterning; TXNIP, whose inhibition can protect against age-related Alzheimer’s247

disease in mice and whose upregulation causes oxidative stress [38, 39]; PER1 and PER3, circadian-clock genes248

that are known to be involved in aging [40, 41]; TBX3, which is highly expressed in embryonic stem cells249

and facilitates cellular reprogramming [42]; TNFSF9, which skews hematopoiesis during aging [43]; BTG2,250

which drives senescence [44]; CH25H, whose upregulation contributes to the development of osteoarthritis and251

inflammation in obesity and diabetes [45, 46]. In contrast to several DNA methylation age predictors, histone252

mark age predictors are enriched in factors that are known to play a role in aging.253

Creation of a pan-histone-mark pan-tissue age predictor254

With the results, we had some indications that age predictors trained with similar histone marks behave alike.255

UMAP clusters activating and repressive marks together (Figure 2a); there is a remarkable correlation between256

the performance of the age predictors with the number of training samples (Figure 3c); some genes are used by257

the same models (Figure 4b), and so are similar pathways (Figure 4c-h); the age predictors are generally enriched258

in similar gene biotypes (Supplementary Figure 4a). Thus, we set out to test whether a pan-histone-mark age259

predictor with reasonable performance was viable.260

First, we made a grid plot contrasting the distribution of Spearman’s correlation between age and each gene261

for every two histone marks (Figure 5a). As expected, there is usually a positive correlation between activating262

histone marks and, similarly, between repressive ones. The opposite is true when comparing an activating to263

a repressive mark. Nevertheless, looking at the density plots, some genes appear to have similar Spearman’s264

correlation even when contrasting activating and repressive histone modifications. Second, we sorted the protein-265

coding genes by the highest positive and negative overall Spearman’s correlation with age (Supplementary Figure266

5b). Indeed, several histone marks display the same age-related trends. This is because of the generality of the267

trend in some genes, despite the mainstream assumption that activating and repressive histone marks change268

in opposite directions. This further supports the hypothesis that a histone mark age predictor trained on one269

type of histone modification could plausibly predict age with another histone mark as input.270

Next, we reran our nested cross-validation but rather than only predicting the histone mark’s test fold271

of interest, we instead predicted the test fold of all histone marks. As expected, each histone mark age272

predictor performs the best when predicting the age of the histone mark with which it was trained (Figure273

5b). Interestingly, however, several histone mark age predictors can use other similar histone marks as input274
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with decent performance. For instance, the age predictor trained on H3K27ac performs well (r > 0.75) when275

presented with H3K4me3 and H3K9ac data. The age predictor trained on H3K4me3 performs similarly well276

when presented with H3K27ac and H3K9ac data. Conversely, the age predictor trained on H3K27me3 has highly277

negative correlations when predicting the age with the three activating marks.278

To test whether the models simply capture “on” or “off” information of a gene rather than a histone-specific279

signature, we reran the nested cross-validation, flipping the input sign to the ARD regressor. If that was the case,280

then an age predictor trained on an activating histone mark could theoretically predict the age for a repressive281

histone mark with the negative of the input signal and vice-versa. This is true despite less significant correlation282

values across the board (Supplementary Figure 5a). For instance, the flipped H3K4me3 age predictor can predict283

on H3K27me3 data (r > 0.6), and the flipped H3K27me3 age predictor can predict on H3K27ac (r > 0.6) and284

H3K4me3 (r > 0.35). This shows that the ChIP-seq signal can be viewed as a sliding scale from repression to285

activation for some age predictors. This led us to rerun the nested cross-validation, using for training either all286

activating or all repressive marks plus H3K36me3 — as it is also associated with heterochromatin [47]. Indeed,287

activating and repressive histone age predictors perform exceedingly well (r > 0.8) on activating and repressive288

histone marks, respectively.289

However, one of the most striking observations is that some histone mark age predictors — H3K4me1 and290

H3K9ac — have positive correlations for six of the seven histone marks. This led us to believe that while291

some genes contribute towards age prediction based on information akin to a sliding scale of activation and292

repression, others must supply information differently. Likely, it would be based on age-related cross-histone293

epigenetic information, which would make creating a pan-histone pan-tissue histone modification age predictor294

viable. Therefore, we reran the nested cross-validation, using all seven types of histone mark for training or295

testing, again separating the folds by biosample. The performance for all seven histone marks roughly matches296

the one from the histone mark-specific age predictor, if not slightly better (Figure 5c). The pan-histone age297

predictor has a Pearson’s r of 0.87, MAE of 6.65 years, and RMSE of 12.09 years). To further test the298

generalizability of our pan-histone age predictor, we tested it in untouched data thus far from 568 primary cells299

spanning 12 histone marks taken from the ENCODE project (Figure 5d). The performance of an age predictor300

trained on tissues is expected to drop given that the in vitro milieu and passaging can induce changes akin to301

aging [48]. The model’s performance on these cultured cells is still significant (r = 0.53, MAE = 12.57, RMSE302

= 19.01), as the performance of well-known DNA methylation age predictors is modified by several in vitro303

variables [49].304

Next, we looked into some critical pathways and genes for the pan-histone age predictor. Moreover, using305
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Panther DB [36], we analyzed the gene ontology biological processes which were either over or underrepresented306

in the set of genes selected with the ElasticNet step (Figure 5f). Most gene ontology terms are related to de-307

velopmental and transcriptional processes. Like histone-specific age predictors, the gene set is underrepresented308

in protein-coding genes and overrepresented in micro, miscellaneous, small nuclear, and small nucleolar RNA309

(p-adjusted < 0.0001, Figure 5g). Similar genes appear in the histone-specific age predictors when looking at310

the protein-coding genes with the highest positive and negative contribution to the pan-histone age predictor311

(Figure 5h). Amongst those are H4C7, a component of nucleosomes; HOXD4, important in body patterning;312

NR1D1 and PER3, involved in regulating circadian rhythms. Curiously, several olfactory receptor genes also313

appeared important for age prediction. Recently, this sense has been implicated in lifespan regulation in worms314

[50].315

Discussion316

The allure of DNA methylation age predictors, given their remarkable precision, has significantly redirected317

the focus in aging research towards epigenetics. Previously, the foundation for epigenetic age predictors pre-318

dominantly rested on DNA methylation. However, recent advancements have led to the inception of a model319

grounded in chromatin accessibility, which has shown promising results [51]. Until this study, a predictor based320

on histone marks was a void in the research domain. Our work elucidates that ChIP-Seq data, derived from seven321

histone marks, can underpin the formulation of highly precise age predictors. A simulated analysis indicates that322

histone mark age predictors, given comparable sample sizes, could potentially surpass their DNA methylation323

counterparts in terms of accuracy, especially concerning activating histone marks. Fundamentally, our findings324

champion the age-associated dynamics of histone modifications as potent aging biomarkers, integral for devising325

resilient age predictors.326

While DNA methylation age predictors are commendable in performance, their interpretability often remains327

obscure. Crucial CpG sites integral to these models often pertain to genes of elusive function or ones whose328

aging impact is dubious. For instance, a recent endeavor to construct a lifespan DNA methylation predictor329

highlights a CpG site near BCL11B as vital [52]. However, its attenuation scarcely affects the epigenetic age330

in mice. Another CpG site related to the ELOV2 gene, crucial in fatty acid metabolism, while having potential331

health implications, bears a tenuous link with aging. In contrast, our histone mark age predictors teem with well-332

established aging biology. These models underscore pivotal genes associated with development, inflammation,333

senescence, and stem cell sustenance, among others. Interestingly, some pathways enriched in our predictors334

mirror those in a recent accelerated aging mouse model [53].335
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Moreover, our results pave the way for formulating intriguing longevity interventions. Although the signifi-336

cance of genes in our models is inherently correlative, it would be fascinating to explore interventions targeting337

these gene modifications. For example, yeast lifespan has been shown to extend upon overexpressing certain his-338

tone proteins [54]. Additionally, medications influencing histone modifications have demonstrated their potential339

in governing health and lifespan in specific organisms. Examples include NAD+ precursor supplementation im-340

pacting sirtuin enzymes [55, 56] and the effects of alpha-ketoglutarate on certain histone demethylases [57–59].341

Recent revelations suggest that compounds influencing histone modifications can rejuvenate cells in vitro [60,342

61]. Thus, our models’ top hits and interventions affecting histone modifications might chart innovative paths343

in aging research.344

One of this paper’s pivotal contributions is the demonstration that a unified age predictor can adeptly345

decipher age from various epigenetic data types. Merging different data modalities for a unified model has346

precedent [51]. Yet, our results suggest distinct histone marks encapsulate consistent age-related data. A case347

in point is the effectiveness of a predictor trained on H3K4me3 data when applied to H3K27ac data. We have348

crafted a pan-histone, pan-tissue age predictor compatible across numerous histone marks both in tissue and in349

vitro primary cells. Remarkably, this predictor can seamlessly assimilate multiple data types without necessitating350

model weight adjustments, underlining the significance of age-related patterns over specific genomic locus351

changes.352

Conclusion353

In summary, this study presents a holistic inspection of age-related changes in histone marks. We introduce354

innovative age predictors, underscoring the potential to utilize a solitary model capable of handling varied355

data modalities for age prediction. A limitation to consider is the dearth of quality ChIP-Seq data beyond356

the ENCODE project. High-quality ChIP-Seq data is scarce compared to DNA methylation and is needed for357

the appropriate processing of the bigWig files necessary for our models. Optimally, our predictors would be358

cross-validated using samples adhering to ENCODE guidelines. Nonetheless, the prohibitive cost of ChIP-Seq,359

compared to the prevalent methylation arrays, has constrained the creation of expansive datasets at this study’s360

juncture. We are optimistic about future experiments building upon the insights this paper offers.361
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Methods362

Data363

To generate and interpret the age predictors, we collected 1814 human tissue ChIP-Seq samples from the364

ENCODE project in the bigWig format [21, 22] for the histone modifications H3K4me3 (n = 359), H3K27ac (n =365

359), H3K27me3 (n = 291), H3K4me1 (n = 264), H3K36me3 (n = 257), H3K9me3 (n = 248), and H3K9ac (n366

= 36). The data was generated from Bradley Bernstein’s lab at the Broad Institute, John Stamatoyannopoulos’s367

lab at UW, Joseph Costello’s lab at UCSF, and Bing Reng’s lab at UCSD.368

We generated a feature matrix by averaging the negative log10 of p-values signal across all nucleotides per369

gene body according to the Homo Sapiens Ensembl annotation 105 [26]. Of note, the p-values are already370

-log10-transformed in the ENCODE bigWigs. Then, these averages were arcsinh-transformed. The summary of371

the transformation is as follows:372

Histone mark enrichment at locus A = sinh−1

 1

len(locus A)

i+len(locus A)∑
j=i

− log10(p-valuesj)


Samples in which more than 10% of the features were unavailable were discarded. Then, missing values for373

features were encoded as 0. In Section 2 specifically, we also tested averaging the negative log of p-values signal374

across intergenic regions, genes, and intergenic regions (whole genome), 20318 CpG dinucleotides common to375

the Illumina Methylation arrays 27k, 450k, and EPIC, and Horvath’s 353 CpG sites from his pan-tissue DNA376

methylation age predictor [13].377

Embryonic samples had their age encoded as 7×(w−40)
365 , where w is the gestational week, and 40 is the378

number of weeks of a normal gestation [62]. Therefore, some samples had negative ages. Some samples whose379

age was described as 90-plus by the ENCODE project, likely for anonymity reasons, were encoded as 90 years.380

The distribution of the data is represented in Supplementary Figure 2.381

Moreover, to test the performance in vitro of our pan-histone pan-tissue age predictor, we gathered another382

568 samples of primary cells spanning 12 histone marks (H2AFZ, H3K4me1, H3K4me2, H3K4me3, H3K9ac,383

H3K9me1, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2, H4K20me1) taken from the ENCODE384

project [21, 22].385

Lastly, to assess the tentative increase in performance that could arise from increasing the sample size386

through imputation, we further downloaded all available Avocado-imputed samples from ENCODE for the387

seven prominent histone marks we analyzed in the paper, 197 of each, totaling 1379 samples.388
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Age predictor performance evaluation389

For all experiments assessing the performance of the age predictors, the setup consisted of 10-fold nested cross-390

validation with observations from the same biosample remaining in the same folds to not artificially boost the391

performance. Nine folds are used for internal 9-fold cross-validation to select the appropriate hyperparameter.392

The nine folds are used for training the model, which is tested in the remaining external fold. Cancer samples393

were always removed.394

Our age predictors consist of three steps. The feature selection method employs an ElasticNet model with a395

0.9 L1 to L2 proportion to choose p features whose absolute coefficient is above zero. The only hyperparameter396

λ in the age predictors is the strength of regularization of the feature-selection ElasticNet, which controls397

how many variables are chosen. The tested hyperparameter values were λ ∈ {0.1, 0.05, 0.01, 0.005, 0.001}.398

Secondly, to improve the robustness of the age predictor, we applied PCA calculated with a truncated support399

vector decomposition to generate (p′ − 1) principal components. Finally, we used an automatic relevance400

determination regression [63], a form of regularized Bayesian regression, to predict age. All of the steps above401

were created with sklearn library in Python. If not mentioned otherwise, all other hyperparameters were the402

standard ones in the package.403

To roughly compare the performance of using histone mark data to DNA methylation data [14], we used404

AltumAge’s pan-tissue dataset and pooled 100 random samples of the same size as the sample size for each405

histone modification. Then, we ran the same three steps we used to create our histone modification age406

predictors and ended up with 100 values for each performance metric. With this information, we compared407

where the performance of the histone mark age predictors fell within the distribution for the DNA methylation408

age predictors taking sample size into account. However, it must be emphasized that the ENCODE ChIP-seq409

dataset does not have the same age and tissue distribution as AltumAge’s DNA methylation dataset.410

In the setup to assess the performance of our models with the addition of the Avocado-imputed samples,411

whenever a model was trained on a particular histone mark, the imputed samples were added to the training412

set (with tumors removed) for both each inner fold of the nested cross-validation and when training the model413

to predict each test set of the cross-validation. The imputed samples were only added to try to improve the414

performance of predicting the age of actual samples rather than attempting to predict the age of imputed415

samples.416
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Age predictor interpretation417

To interpret a particular age predictor, we ran a 10-fold cross-validation to select the best regularization hyper-418

parameter in the ElasticNet feature selection step. Then, we trained the age predictor using the entirety of the419

data in each setting. For the gene set enrichment analysis, we selected the genes that passed feature selection:420

H3K4me3 (p′ = 1240), H3K27ac (p′ = 1275), H3K27me3 (p′ = 922), H3K4me1 (p′ = 892), H3K36me3 (p′421

= 870), H3K9me3 (p′ = 341), H3K9ac (p′ = 102), and pan-histone (p′ = 3739). To determine the individual422

contribution of each feature towards the final age prediction, we inverse-transformed the coefficients of principal423

components from the automatic relevance determination regression back into coefficients for the genes.424

Statistical Analysis425

The p-values associated with Pearson’s and Spearman’s correlation coefficients were obtained using the functions426

pearsonr and spearmanr from the python package scipy.427

To create the UMAP and PCA plots in Figure 2 and Supplementary Figure 2, we ran Python’s dynamo428

package function dyn.tl.reduceDimension with either UMAP or PCA as the basis with standard parameters.429

The intraclass correlation coefficient measures how well multiple measurements agree with one another and430

is used to assess model reliability. To calculate the intraclass correlation coefficient, we used Python’s pingouin431

package with a single-rater, absolute-agreement, two-way random-effects model per [64] guidelines and similarly432

to [31].433

Notebooks with the analyses and a complete list of the python package versions are also available on our434

GitHub (URLXXXX).435
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Figure Legends459

Figure 1: Schematic showing the main steps of creating the histone mark age predictors. First, bigWig files containing the
enrichment p-values per nucleotide of chromatin immunoprecipitation samples were gathered from the ENCODE project. Then,
the dimensionality of the data is reduced by summarizing the p-values into bins that represent the signal. Then, modeling is done
through the application of an ElasticNet for feature selection followed by Automatic Relevance Determination regression to predict
age. Image created with BioRender.

Figure 2: Age-related changes in seven histone modifications across human tissues. (a, b) Uniform manifold approximation and
projection (UMAP) of the dataset containing the average signal of 62241 genes for 1814 samples grouped by histone modification
(a) and age (b). (c) UMAP colored by age for each histone modification. (d, e) Linear regression plot with 95% confidence interval
based on 1000 bootstraps for the signal mean (d) and signal variance (e) normalized by signal mean over age for each histone
modification. (f) Histogram of Spearman’s correlation for each 62241 features across age per histone modification. Bins shaded in
red represent statistically significant correlations (p < 0.05 with Bonferroni’s correction).

Figure 3: Performance of pan-tissue histone mark age predictors. (a) Scatter plot of the predicted age versus real age of each
histone mark age predictor using genes as features. Each of the 10 test folds of the nested cross-validation is shown in a different
color. A dotted black line representing x=y is shown alongside a colored, solid regression line with its 95% confidence interval
based on 1000 bootstraps. (b) Histogram of the root-mean-square error (RMSE) for age predictors trained on 100 random samples
pooled from AltumAge’s DNA methylation dataset with the same number of samples as each histone mark. A colored, vertical
line shows where in the RMSE distribution the age predictor trained with the histone mark data would lie. (c) Scatter plot of the
RMSE of each histone mark age predictor against sample size with a regression line with its 95% confidence interval based on 1000
bootstraps. (d) Three-dimensional scatter plots for samples that were done in triplicates. A dotted black line representing x=y=z is
shown alongside a colored, solid regression line with its 95% confidence interval based on 1000 bootstraps. (e) Bar plot showing the
intraclass correlation coefficient with error bars representing 95% confidence interval for each histone mark. (f) Point plot with 95%
confidence interval based on 1000 bootstraps of the mean absolute error of each histone mark age predictor under added artificial
Gaussian noise.

Figure 4: Inference of pan-tissue histone mark age predictors. (a) Upset plot for the subset of genes selected for six of the seven
histone modification age predictors. Top 10 gene ontology biological processes from gene set enrichment analysis from Panther
DB of H3K4me3 (b), H3K27ac (c), H3K9ac (d), H3K4me1 (e), H3K36me3 (f), H3K27me3 (g), and H3K9me3 (h). (i) Top 3
protein-coding genes for each histone mark age predictor with positive and negative coefficients.

Figure 5: Creation of a pan-histone-mark pan-tissue age predictor. (a) Grid plot with Spearman’s correlation of the histone
modification signal for a particular gene over age. Density plots, histograms, and regression lines show the direction of the correlation.
(b) Bubble plot of Pearson’s correlation coefficient when age predictors are trained on different histone marks from the ones they
aim to predict. Scatter plot of the predicted age of the pan-histone-mark age predictor versus real age using genes as features
stratified by histone modification (c) or grouped together (d). Each of the 10 test folds of the nested cross-validation is shown in
a different color. A dotted black line representing x=y is shown alongside a colored, solid regression line with its 95% confidence
interval based on 1000 bootstraps. (e) Similarly, a scatter plot of the pan-histone-mark age predictor trained using all of the tissue
sample data to predict the age of primary cells from 11 different histone marks. Each color represents a distinct histone modification.
(f) Top 20 gene ontology biological processes from gene set enrichment analysis from Panther DB for the selected genes from the
pan-histone-mark predictor. (g) Bar plot with the proportion of ENSEMBL’s gene biotype for the selected genes in each histone
mark age predictor. P-values were rectified with Bonferroni’s correction (*, p < 0.01; **, p < 0.001; ***, p < 0.0001;). (h) Top
10 protein-coding genes for the pan-histone-mark age predictor with positive and negative coefficients.
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Supplementary Figure 1: Setup for the nested cross-validation of the different histone mark age predictors. First, the data
is split into ten folds. Each fold is divided into training and validation (9/10 of the data) and test (1/10 of the data), always
maintaining observations from the same biosample. There is another 9-fold cross-validation using the training and validation part
of the data for hyperparameter tuning. When the best hyperparameter is found, the age predictor is trained on the entire training
and validation data and used to predict the remaining test set. After this is done for all ten folds, there is a prediction for each
observation in the entire data set. Therefore, performance metrics can be calculated. Image created with BioRender.

Supplementary Figure 2: (a) Histogram of the number of samples per histone modification over age. (b) Histogram of the
density of transformed signal values per gene. (c) Pie plots with the distribution of the 1814 ChIP-Seq samples by platform, run
end, tissue, histone, mapped read length, sex, lab, project, disease status, cancer status, fragmentation method, and library size.
(d, e) Principal component analysis (PCA) plot of the dataset grouped by histone modification (d) and age (e) showing the first
and second principal components (9.3% and 6.1% of the explained variance, respectively). (f) PCA colored by age for each histone
modification.

Supplementary Figure 3: Scatter plot of the predicted age versus real age of each histone mark age predictor using (a) intergenic
regions, (b) genes and intergenic regions (whole genome), (c) 20318 CpG dinucleotides common to the Illumina Methylation arrays
27k, 450k, and EPIC, and (d) Horvath’s 353 CpG sites from his pan-tissue DNA methylation age predictor [13] as features. Each of
the 10 test folds of the nested cross-validation is shown in a different color. A dotted black line representing x=y is shown alongside
a colored, solid regression line with its 95% confidence interval based on 1000 bootstraps. Histogram of Pearson’s correlation (e)
and median absolute error (MAE) (f) for age predictors trained on 100 random samples pooled from AltumAge’s DNA methylation
dataset with the same number of samples as of each histone mark. A colored, vertical line shows where in the RMSE distribution
the age predictor trained with the histone mark data would lie. (g) Scatter plot of the predicted standard deviation versus real
age of each histone mark age predictor using genes as features. Each of the 10 test folds of the nested cross-validation is shown
in a different color. A colored, solid regression line with its 95% confidence interval based on 1000 bootstraps. Scatter plot of
the predicted age versus real age of each histone mark age predictor trained in addition with Avocado-imputed samples [34] using
(h) gene bodies, (i) intergenic regions, (j) genes and intergenic regions (whole genome), (k) 20318 CpG dinucleotides common to
the Illumina Methylation arrays 27k, 450k, and EPIC, and (l) Horvath’s 353 CpG sites from his pan-tissue DNA methylation age
predictor [13] as features. Each of the 10 test folds of the nested cross-validation is shown in a different color. A dotted black line
representing x=y is shown alongside a colored, solid regression line with its 95% confidence interval based on 1000 bootstraps.

Supplementary Figure 4: (a) Bar plot with the proportion of ENSEMBL’s gene biotype for the selected genes in each histone
mark age predictor. P-values were rectified with Bonferroni’s correction (*, p < 0.01; **, p < 0.001; ***, p < 0.0001;). (b)
Doughnut plots for each histone modification age predictor. On the left, the proportion of principal components whose coefficients
were positive (yellow), zero (gray), or negative (blue) is displayed; on the right, the weight of each gene to the total prediction is
shown, with positive genes with positive coefficient in yellow and negative in blue.

Supplementary Figure 5: (a) Bubble plot of Pearson’s correlation coefficient when age predictors are trained on certain histone
marks and attempt to predict others but with the negative value of the input to the ARD regression part of the age predictor model.
(b-g) Regression plots of age versus histone mark signal values for six genes generally go up or down with age. Shaded is the 95%
regression confidence interval based on 1000 bootstraps.
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