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SUMMARY 13 

Personal names are a universal feature of human language, yet few analogs exist in other species. 14 

While dolphins and parrots address conspecifics by imitating the calls of the addressee 1,2, human 15 

names are not imitations of the sounds typically made by the name’s owner 3. Labeling objects or 16 

individuals without relying on imitation of the sounds made by that object or individual is key to 17 

the expressive power of language. Thus, if non-imitative name analogs were found in other 18 

species, this could have important implications for our understanding of language evolution. 19 

Here, we show that wild African elephants address one another with individually specific calls 20 

without any evidence of imitating the receiver’s vocalizations. A random forest model correctly 21 

predicted receiver identity from call structure better than expected by chance, regardless of 22 

whether the calls were more or less similar to the receiver’s calls than typical for that caller. 23 
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Moreover, elephants differentially responded to playbacks of calls originally addressed to them 24 

relative to calls addressed to a different individual, indicating that they can determine from a 25 

call’s structure if it was addressed to them. Our findings offer the first evidence for a non-human 26 

species individually addressing conspecifics without imitating the receiver. 27 

MAIN TEXT 28 

One of the hallmarks of spoken human language is the use of vocal labels, in which a 29 

learned sound refers to an object or individual (the “referent”) 4. Many species produce 30 

functionally referential calls for food and predators 5,6, but the production of these calls is 31 

typically innate 7. Learned vocal labels allow for much more flexible communication than innate 32 

calls by making it possible to develop new labels for new referents. Thus, they are central to 33 

humans’ ability to articulate symbolic thought and coordinate unusually sophisticated levels of 34 

cooperation 8. However, few examples of learned vocal labeling are known in other species. 35 

Personal names are a type of vocal label that refer to another individual. Names must involve 36 

vocal learning, as an individual cannot be born knowing the names for all its future social 37 

affiliates. Thus, potential nonhuman analogs of personal names are highly relevant to 38 

understanding the evolution of language, and by extension, complex cognition and social 39 

behavior. 40 

Most human words, including personal names, are arbitrary in structure; that is, they are 41 

not imitations of sounds typically made by the referent or tied to the physical properties of the 42 

referent 3. Arbitrariness is crucial to language because it enables communication about objects 43 

and ideas that do not make any imitable sound. However, clear evidence for arbitrary analogs of 44 

names in other species is lacking. Bottlenose dolphins (Tursiops truncatus) and some parrots 45 

(Psittacidae) address individual conspecifics by imitating the receiver’s “signature” call, a sound 46 
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that is most commonly produced by the receiver to signal individual identity 1,2,9. When 47 

functioning as self-identification signals, these signature calls are indeed arbitrary 10. However, 48 

when other individuals copy a conspecific’s signature call to address them, it may be argued that 49 

the copied signature call is an iconic (non-arbitrary) label, since it is an imitation of a sound 50 

typically produced by the individual to whom the call refers. Non-imitative learned vocal 51 

labeling could allow communication about a wider range of referents than imitative labeling, but 52 

it may be more cognitively demanding, as it requires individuals to make an abstract connection 53 

between a sound and referent. Thus, if any non-human species were found to address individual 54 

conspecifics using labels that are not imitative of the receiver’s own calls, this would indicate a 55 

novel and perhaps uniquely complex form of communication with important implications for our 56 

understanding of language evolution and cognition. 57 

Elephants are among the few mammals capable of mimicking novel sounds, although the 58 

function of this vocal learning ability is unknown 11,12. The most common call type produced by 59 

elephants is the rumble, a harmonically rich, low-frequency sound which is individually distinct 60 

13,14, distinguishable, 15 and produced across most behavioral contexts 16. Contact rumbles 61 

(Supplementary Audio File S1) are long-distance calls produced when the caller is visually 62 

separated from one or more social affiliates and attempting to reinitiate contact, and greeting 63 

rumbles (Supplementary Audio File S2) are close-distance calls produced when one individual 64 

approaches another after a period of separation 16.  65 

We analyzed contact and greeting rumbles from female-offspring groups of wild African 66 

savannah elephants to assess whether they contain individual vocal labels. We only used calls for 67 

which we were able to identify the caller and apparent intended receiver (527 calls from the 68 

greater Samburu ecosystem, northern Kenya, 98 from Amboseli National Park, southern Kenya). 69 
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Receivers were identified as the individual who responded to the call by vocalizing or 70 

approaching the caller, the only adult member of the family group separated (>50m) from the 71 

caller when the caller produced a contact call, or the individual who approached/was approached 72 

by the caller when the caller produced a greeting call. We were able to determine which 73 

individuals were separated from the group at a given time by knowing the composition of each 74 

family group and by following the elephants for several hours each day and observing short-term 75 

fission and fusion events where some individuals split off from, lagged behind, and/or rejoined 76 

the rest of the group. Calls for which the receiver could not be identified or that appeared to be 77 

directed to multiple receivers (e.g., caller produced a contact call while separated from the whole 78 

family group) were excluded from analysis. We investigated (1) if elephants address conspecifics 79 

using receiver-specific vocal labels, (2) if the labels are imitative of the receiver’s calls or 80 

arbitrary, and (3) if different callers share the same label for the same receiver (Extended Data 81 

Table 1).  82 

Our dataset consisted of 114 unique callers and 119 unique receivers, with 1-46 83 

(median=2) calls per caller, 1-48 (median=2) calls per receiver, 1-9 (median=2) receivers per 84 

caller, and 1-10 (median=2) callers per receiver (Extended Data Fig. 1). For 597 of 625 calls, the 85 

caller and receiver belonged to the same family group. We measured two sets of acoustic 86 

features for each call (spectral and cepstral, see Supplementary Information; Extended Data Fig. 87 

2) and ran all statistical models separately for each set of features. Results reported in the text 88 

and figures are for the spectral features only (see tables for results with cepstral features, which 89 

were similar). 90 

Calls were specific to individual receivers 91 
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We ran a random forest 17 with 6-fold cross-validation to predict the receiver of each of 92 

the 625 rumbles as a function of the acoustic features and compared the classification accuracy 93 

to a null distribution generated from 10,000 iterations of the same model with the acoustic 94 

features randomly permuted. We expected vocal labeling to only occur in contextually relevant 95 

calls, as humans and dolphins only use names or copied signature whistles in a minority of 96 

utterances 18. However, we used all 625 rumbles for analysis as there was no way to determine a 97 

priori which calls (or what proportion of calls) might contain a vocal label. Call structure varied 98 

clearly with the identity of the targeted receiver (Extended Data Fig. 3) as would be expected if 99 

elephants use vocal labels for other individuals. Our model correctly identified the receiver for 100 

20.3% of calls analyzed, a significantly greater proportion than that of null models (permutation 101 

test, null models mean accuracy = 7.6 ± 0.75% correct, P<0.0001) (Fig. 1, Table 1), indicating 102 

receivers of calls could be correctly identified from call structure statistically significantly better 103 

than chance.  104 

To determine if this could be an artifact of the correlation between caller ID and receiver 105 

ID in our dataset, we controlled for caller ID by comparing the mean similarity of pairs of calls 106 

with the same caller and receiver to the mean similarity of pairs of calls with the same caller and 107 

different receivers, using proximity scores derived from the random forest as a metric of call 108 

similarity 19. To control for the possibility that calls were specific to the type of relationship 109 

between the caller and receiver rather than to the individual receiver per se, we categorized social 110 

relationship based on relatedness and age (a proxy for dominance) (Extended Data Table 3), and 111 

only considered pairs of calls with the same type of relationship between caller and receiver. 112 

Calls with the same caller and same receiver were significantly more similar than calls with the 113 

same caller and different receivers, even after controlling for social relationship, behavioral 114 
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context, and recording date, further supporting the hypothesis that rumbles are specific to 115 

individual receivers (ANOVA, F1=94.61, P<0.0001, Cohen’s D=0.412) (Fig. 1, Extended Data 116 

Table 4). As calls in our dataset were predominantly between individuals in the same family 117 

group, our results only provide evidence for vocal labeling within family groups. 118 

Vocal labelling likely does not rely on imitation of receiver 119 

If calls are imitative of the receiver’s calls, then callers should sound more like a given 120 

receiver when addressing her than when addressing other individuals. Pairs of calls in which the 121 

receiver of one call was the caller of the other call were slightly but significantly more similar on 122 

average than pairs in which this was not the case, suggesting possible imitation of the receiver’s 123 

calls (ANOVA, F1=11.70, P=0.0006, Cohen’s D=0.0037) (Extended Data Table 5). However, 124 

given the exceedingly small effect size (0.78% of SD) and large sample size of call pairs 125 

(n=11,309), this significant difference may not be biologically meaningful. Moreover, among the 126 

calls for which we had recordings of the receiver and recordings of the caller addressing other 127 

individuals (n=494), 60.5% were divergent from the receiver’s calls; that is, less similar to the 128 

receiver’s calls than typical for that caller (see Supplementary Information). The classificatory 129 

model performed significantly better than the null model for both convergent and divergent calls 130 

(convergent calls: 17.2% correct, null models mean accuracy = 4.9 ± 1.1%, P<0.0001; divergent 131 

calls: 32.4% correct, null models mean accuracy = 13.1 ± 1.4%, P<0.0001) (Fig. 2, Table 1). 132 

Finally, among both convergent and divergent calls, calls with the same caller and same receiver 133 

were more similar than calls with the same caller and different receivers (ANOVA; convergent 134 

calls: F1=15.30, P=0.0001, Cohen’s D=0.411; divergent calls: F1=8.67, P=0.0033, Cohen’s 135 

D=0.262) (Fig. 2, Extended Data Table 4). This suggests that vocal labeling in elephants likely 136 

does not rely on imitation of the receiver’s calls. While we cannot rule out the possibility that 137 
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elephants imitated calls made by the receiver that were not included in our dataset, elephants are 138 

not known to produce discrete “signature” calls like dolphins and parrots; instead, the caller-139 

specificity of elephant rumbles is likely a product of voice characteristics that are present across 140 

calls 13,14.  141 

Mixed evidence for convergence among callers addressing same receiver 142 

In humans and bottlenose dolphins, different callers generally use the same label for a 143 

given receiver. To determine if different callers use similar labels to address the same receiver in 144 

elephants, we ran a random forest structured to predict receiver ID from different callers than the 145 

model was trained on. This model correctly classified 1.4% of calls, no better than the 146 

corresponding null models (permutation test, mean accuracy of null models=1.4 ± 0.40% correct, 147 

P=0.453) (Fig. 3, Table 1). However, calls from different callers to the same receiver were 148 

significantly more similar on average than calls from different callers to different receivers 149 

(ANOVA, P<0.0001, Cohen’s D=0.134) (Fig. 3, Extended Data Table 6).  These mixed results 150 

may be due to the fact that rumbles simultaneously encode multiple messages 13,16,20,21. If vocal 151 

labels account for only a small portion of the variation in rumbles, the random forest may have 152 

been influenced by context or caller-specific features, thus reducing its ability to predict receiver 153 

ID across callers, even if different callers address the same receiver with the same label. Further 154 

work to identify how vocal labels are encoded in elephant calls will be necessary to definitively 155 

determine if different callers use the same label for the same receiver. 156 

Elephants responded more strongly to playback of calls originally addressed to them 157 

To determine if elephants perceive and respond to the vocal labels in calls addressed to 158 

them, we compared reactions of 17 wild elephants to playback of a call that was originally 159 

addressed to them (test) relative to playback of a call from the same caller that was originally 160 
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addressed to a different individual (control). By using test and control stimuli from the same 161 

caller, we controlled for the possibility of the caller’s relationship to the subject influencing the 162 

results. To control for the possibility that calls are specific to the type of relationship between the 163 

caller and receiver rather than to the individual receiver per se, we included the type of 164 

relationship between the caller and the original receiver of the call as a factor in the analysis. 165 

Further supporting the existence of vocal labels, subjects approached the speaker more quickly 166 

(Cox regression, χ2=6.8, P=0.009) and vocalized more quickly (Cox regression, χ2=7.9, 167 

P=0.005) in response to test playbacks than control playbacks (Fig. 4, Table 2). They also 168 

produced more vocalizations in response to test playbacks, although this model failed to 169 

converge (Poisson regression, χ2=6.2, P=0.013) (Fig. 4, Table 2). There was no significant 170 

difference between test and control trials in latency to vigilance (Cox regression, χ2=3.1, 171 

P=0.08) or in the change in vigilance duration before and after the playback (linear regression, 172 

χ2=0.06, P=0.81), although there was a nonsignificant trend toward faster onset of vigilance in 173 

test trials (Table 2). 174 

Discussion 175 

To our knowledge, this study presents the first evidence for vocal addressing of 176 

conspecifics without imitation of the receiver’s calls in nonhuman animals. Very few species are 177 

known to address conspecifics with vocal labels of any kind. Where evidence for vocal labels has 178 

been found, they are either clearly imitative 1,2,9 or of unknown structure 22,23. Our data suggest 179 

that elephants label conspecifics without relying on imitation of the receiver’s calls, a 180 

phenomenon previously known to occur only in human language. 181 

The social behavior and ecology of elephants create an environment in which individual 182 

vocal labeling may be particularly advantageous. Due to their fission-fusion social dynamics, 183 
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elephants are often out of sight of their closely bonded social partners and produce contact 184 

rumbles to communicate over long distances 16,24. Characteristic fission-fusion dynamics in 185 

elephants include coordinated movement to and from resources while proximately diffusing to 186 

avoid foraging competition 25,26. Vocal labels could enhance coordinating ability when out of 187 

sight of one another. In contact calling scenarios, vocal labeling could allow callers to attract the 188 

attention of a specific intended receiver. While greeting rumbles are produced in close proximity 189 

when the caller and receiver typically have visual contact 16, vocal labeling in greeting rumbles 190 

could possibly strengthen social bonds with specific individuals. Humans experience a positive 191 

affective response and increased willingness to comply with requests when someone remembers 192 

their name 27. 193 

Nonetheless, the fact that our random forest model correctly predicted receiver ID for 194 

only around a fifth of calls (albeit significantly better than random) suggests that vocal labels 195 

only occur in a minority of rumbles and thus are likely not necessary in all or even most 196 

contexts. For example, contact and greeting calls may occur in vocal sequences where labeling 197 

the receiver in each call would be redundant 16, and in the dry season, when elephant families 198 

fission into smaller groups, there may be less ambiguity about the intended receiver in many 199 

scenarios 26. Indeed, both humans and bottlenose dolphins only use individual vocal labels (i.e., 200 

names or imitated signature whistles) in a small percentage of utterances 18. 201 

When vocal labels do occur, they are likely only one component among many in the call. 202 

Rumbles are recognized to simultaneously encode multiple messages, including but not limited 203 

to caller identity, age, sex, emotional state, and behavioral context 13,16,20,21. Moreover, the top 204 

acoustic features for predicting receiver ID were not those that explained the most variation in 205 

the calls (see Supplementary Information), suggesting that vocal labels account for only a small 206 
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fraction of the total variation in rumbles. Rather than comprising a whole stand-alone call, 207 

elephant vocal labels may be embedded within a call that simultaneously conveys multiple 208 

additional messages. The richness in the information content of elephant vocalizations makes it 209 

difficult to identify the specific acoustic parameters that encode receiver ID. Unlike dolphin 210 

signature whistles 18, elephant vocal labels cannot be discerned by visual inspection of the 211 

spectrogram and are likely encoded by a complex and subtle interaction among many acoustic 212 

parameters. As a result, we employed machine learning in this analysis, but innovative 213 

approaches in signal processing may be necessary to isolate the vocal labels within rumbles. 214 

Both African and Asian elephants have a demonstrated capacity for vocal mimicry in 215 

captivity, but no prior study has documented a function of this ability in the wild 11,12. We 216 

speculate that vocal labeling may be one, if not the primary, function of vocal production 217 

learning in wild elephants. Dolphins and parrots, which show evidence for individual vocal 218 

labeling via imitation of the receiver, are adept vocal learners. Another vocal learner, the 219 

Egyptian fruit bat (Rousettus aegyptiacus), produces calls that are specific to individual receivers 220 

and may be vocal labels as well, although it is currently unknown if the bats perceive this 221 

information 23. Taken together, this raises the possibility that social selection pressures creating a 222 

need to address individual conspecifics may have led to multiple independent origins of vocal 223 

production learning.  224 

The use of learned arbitrary labels is part of what gives human language its uniquely 225 

broad range of expression 3. Our results suggesting that wild elephants also use arbitrary vocal 226 

labels for individual conspecifics provide an opportunity to investigate the selection pressures 227 

that may have led to the evolution of this rare ability in two divergent lineages. Moreover, these 228 
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findings raise intriguing questions about the complexity of elephant social cognition, considering 229 

the potential relevance of symbolic communication to their social decision making.  230 
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We collected audio recordings of wild female-calf groups in Amboseli National Park, 297 

Kenya in 1986-1990 and 1997-2006 and Samburu and Buffalo Springs National Reserves 298 

(hereafter, Samburu), Kenya in Nov 2019-Mar 2020 and Jun 2021-Apr 2022. Both populations 299 

have been continuously monitored for decades and all individuals can be individually identified 300 

by external ear morphology 26,28. We recorded calls from a vehicle during daylight hours with 301 

all-occurrence sampling 29 using an Earthworks QTC1 microphone (4 Hz-40 kHz ± 1 dB) with a 302 

Nagra IV-SJ reel-to-reel tape recorder or an HHB PDR 1000 DAT recorder in Amboseli, and an 303 

Earthworks QTC40 microphone (3 Hz-40kHz ± 1 dB) with a Sound Devices MixPre3 or 304 

MixPre3-II digital recorder in Samburu. Recordings were recorded at a 48 kHz sampling rate 305 

with 16 bits of amplitude resolution and stored at 2 kHz in Amboseli and recorded and stored at 306 

44.1 kHz with 24 or 32 bits of amplitude resolution in Samburu.  307 

When possible, we recorded for each call the identity of the caller, the behavioral context, 308 

and the identity of the receiver (criteria for identifying receiver defined in Main Text). The caller 309 

was identified using behavioral and contextual cues, such as an open mouth, flapping ears, or 310 

being the only individual of the right age class in the immediate vicinity 16. We scored behavioral 311 

context according to a published methodology 16. For each call, we recorded the certainty with 312 

which we knew the caller ID, behavioral context, and receiver ID as a number between 0 and 1 313 

(see Supplementary Information). In all statistical analyses, we weighted each call by the 314 

certainty of receiver ID, so calls with greater certainty about the identity of the receiver would 315 

have a proportionally greater impact on the model. 316 

Acoustic analysis 317 

We only included in analysis contact and greeting rumbles with certainty of caller ID, 318 

receiver ID, and behavioral context greater than 0, with no significant overlap with other calls or 319 
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other loud sounds in the same frequency range, and that were recorded close enough to the 320 

microphone for the first two formants to be clearly visible in the spectrogram (98 rumbles from 321 

Amboseli, 527 from Samburu). We performed all acoustic and statistical analyses in R version 322 

4.1.3 30. We automatically detected the onset and offset of each call from the amplitude envelope 323 

using the function segment() in the package soundgen 31, manually adjusting the detected times 324 

when necessary. We then measured two alternative sets of features: spectral and cepstral (see 325 

Supplementary Information). The spectral features consisted of the smoothed Hilbert amplitude 326 

envelope (350 ms moving average window, 90% overlap), the vectors of energy values in 26 327 

mel-frequency bands between 0-500 Hz (measured at 35 ms intervals), and the vectors of delta 328 

and delta-delta coefficients for the mel-frequency bands (79 vectors total) (Extended Data Fig. 329 

2). The cepstral features consisted of the amplitude envelope, the vectors of the first 12 mel-330 

frequency cepstral coefficients measured at 35 ms intervals, and the vectors of delta and delta-331 

delta coefficients for the cepstral coefficients. 332 

As the raw acoustic vectors (mel spectral bands, MFCCs, and their delta and delta-delta 333 

values) represented a matrix of values for each call, it was necessary to calculate lower-334 

dimensional derived features from these matrices as input variables for statistical models. We 335 

calculated derived features separately for the spectral and cepstral features. In brief, we scaled 336 

the acoustic vectors and decorrelated them with a robust principal components analysis using the 337 

rpca package in R, which decomposes the data into a robust matrix and a sparse matrix 338 

containing the outlier values (λ=0.00996) 32. The final derived features we calculated were the 339 

median, robust skewness, minimum extent, and equivalent statistical extent of the sparse matrix, 340 

the means of the first n low-rank principal components required to explain 99.9% of the variation 341 

(74 for spectral features, 12 for cepstral features), and 8 measures of the spectral properties of the 342 
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low-rank principal components, calculated by treating each principal component as if it were a 343 

waveform (see Supplementary Information) (Extended Data Table 2). 344 

Statistical analysis of acoustic data 345 

Are calls specific to individual receivers (hypothesis 1)? 346 

We ran a 6-fold cross-validated random forest model in the R package ranger 33 to predict 347 

the identity of the receiver of each call (receiver ID) as a function of the acoustic features. We 348 

stratified the cross-validation folds by caller ID and receiver ID to ensure as even a distribution 349 

as possible of all caller-receiver dyads across all folds. Thus, if calls contain acoustic cues to 350 

receiver ID, this model was expected to predict receiver ID better than chance regardless of 351 

whether the label for a given receiver is shared across callers (Extended Data Table 1, hypothesis 352 

1, prediction 1). The model used 625 observations, 500 trees, 6 variables per node, 60% of 353 

observations per tree, a minimum node size of 1, and no maximum tree depth, and observations 354 

were weighted by certainty of receiver ID. To increase the stability of the model’s classification 355 

accuracy, we ran the model 2000 times and used the mean classification accuracy across the 356 

2000 runs. To determine if the model predicted receiver ID better than expected by chance, we 357 

ran the model 10,000 times with the acoustic features randomly permuted and compared the 358 

classification accuracy of the original model (averaged across 2000 runs) to the null distribution 359 

of classification accuracies generated by the 10,000 models with randomized acoustic features.  360 

As caller ID and receiver ID were partially aliased in our dataset (Extended Data Fig. 1), 361 

the random forest could theoretically use acoustic cues to caller ID 16 to predict receiver ID, even 362 

if the calls did not contain any vocal label identifying the intended receiver. To disentangle the 363 

effects of caller ID and receiver ID on call structure, we compared the mean pairwise similarities 364 

between pairs of calls with the same caller and receiver and pairs with the same caller and 365 
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different receivers (Same Caller Pair Type). As a metric of call similarity, we extracted a 366 

proximity score for each pairwise combination of calls from a random forest trained to predict 367 

receiver ID as a function of the acoustic features on the full dataset (625 training observations, 368 

8000 trees, other hyperparameters and weighting same as above). The proximity score for a 369 

given pair of calls was the proportion of trees in which both calls were classified in the same 370 

terminal node, corrected for the size of each node, and represented the degree of similarity 371 

between the two calls in terms of the acoustic features most relevant to predicting receiver ID 19. 372 

If calls are specific to individual receivers within a given caller, then pairs of calls with the same 373 

caller and same receiver should be more similar (have higher proximity scores) than pairs of 374 

calls with the same caller and different receivers (Extended Data Table 1, hypothesis 1, 375 

prediction 2).  376 

Previous work has shown that elephants vary the structure of their rumbles when 377 

interacting with more dominant vs. more subordinate conspecifics 13. To rule out the possibility 378 

that calls were specific to the type of relationship between caller and receiver rather than to 379 

individual receivers per se, we restricted the analysis of Same Caller Pair Type to pairs of calls 380 

that had the same type of relationship between caller and receiver. We defined caller-receiver 381 

relationship using 12 categories based on sex, family group membership, relative age, and 382 

mother-offspring relationship, reflecting the fact that dominance in elephants is primarily 383 

determined by age 34,35 and that mother-calf bonds are the strongest social bonds in elephants 26,36 384 

(Extended Data Table 3). We also excluded pairs of calls that were recorded on the same date, as 385 

preliminary analyses indicated that calls recorded on the same day were more similar than calls 386 

recorded on different days, likely due to similarities in ambient conditions and/or autocorrelation 387 

within a calling bout (final sample size = 2391 call pairs). As calls from different behavioral 388 
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contexts differ in acoustic structure 16, we categorized each pair of calls according to whether the 389 

two calls had the same or different behavioral contexts (“Same Context”) and included this 390 

variable as a factor in the analysis. 391 

The proximity scores were highly skewed to the right, so we rank-transformed them and 392 

ran a Type III ANOVA with rank-transformed proximity score as the response variable and 393 

Same Caller Pair Type and Same Context as the factors. We weighted each observation (pair of 394 

calls) in the model by the minimum value of the certainty of caller ID and certainty of receiver 395 

ID for the two calls in the pair. 396 

Are vocal labels based on imitation of the receiver’s calls (hypothesis 2)? 397 

If elephants imitate the calls of the receiver that they are addressing, then callers should 398 

sound more like a given conspecific when they are addressing her than when they are addressing 399 

someone else (Extended Data Table 1, hypothesis 2, prediction 1). To assess whether this was 400 

the case, we classified each pair of calls into one of two types (hereafter, “Imitation Pair Type”): 401 

pairs in which the receiver of one call was the caller of the other call, and pairs in which this was 402 

not the case. We separately classified each call pair according to whether the two calls had the 403 

same relationship between caller and receiver (hereafter, “Same Relationship”). We also created 404 

a categorical variable Caller Dyad ID, which was an identifier for each unique combination of 405 

callers that comprised a call pair. We ran a Type III ANOVA with rank-transformed proximity 406 

score as the response variable and Imitation Pair Type, Same Relationship, Same Context, and 407 

Caller Dyad ID as factors. We weighted each observation (pair of calls) in the model by the 408 

minimum value of the certainty of caller ID and certainty of receiver ID for the two calls in the 409 

pair. By controlling for Caller Dyad ID in the model we assessed the effect of Imitation Pair 410 

Type within a given pair of callers; that is, whether calls from caller A to receiver B were more 411 
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similar to the receiver B’s calls than calls from the caller A addressed to other receivers were to 412 

receiver B’s calls. Pairs of calls that had the same caller or receiver, were recorded on the same 413 

day, were recorded from different family groups, or for which Caller Dyad ID did not occur with 414 

both levels of Imitation Pair Type were excluded from analysis (final sample size = 11,309 call 415 

pairs). Pairs of calls from different family groups were excluded because they comprised a small 416 

percentage of pairs where the receiver of one call was the caller of the other, and because it is 417 

possible that different families have different “dialects” which would influence call similarity. 418 

If vocal imitation of the receiver occurs, it might or might not be the mechanism behind 419 

individual vocal labeling. To assess whether imitation of the receiver’s calls was necessary for 420 

vocal labeling, we examined the calls in the dataset for which we had at least one recording of 421 

the receiver’s calls and at least one recording of the caller addressing someone other than the 422 

receiver (n=494). For each of these calls, we calculated the mean proximity score between the 423 

focal call and all the calls made by the receiver (Mean Proximity to Focal Receiver When 424 

Targeting Focal Receiver) as well as the mean proximity score between each of the calls made 425 

by the focal caller to an individual other than the focal receiver and each of the calls made by the 426 

focal receiver (Mean Proximity to Focal Receiver When Targeting Others). Calls in which the 427 

Mean Proximity to Focal Receiver When Targeting Focal Receiver was greater than the Mean 428 

Proximity to Focal Receiver When Targeting Others were classified as “convergent” (n=195) 429 

and divergent otherwise (n=299). We then examined the proportion of convergent and divergent 430 

calls that were classified correctly by the random forest model with receiver ID and the acoustic 431 

features as input variables, and cross-validation folds stratified by caller ID and receiver ID. If 432 

vocal labeling relies on imitation of the receiver’s calls, we expected only the convergent calls to 433 

be classified correctly more often than by the null model, but if imitation is not necessary for 434 
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vocal labeling, we expected both convergent and divergent calls to be classified correctly more 435 

often than by the null model (Extended Data Table 1, hypothesis 2, prediction 2). We also ran 436 

separate ANOVAs for the convergent calls and divergent calls, with rank-transformed proximity 437 

score as the response and Same Caller Pair Type and Same Context as the factors (excluding 438 

pairs of calls recorded on the same day). If vocal labeling relies on imitation of the receiver, we 439 

expected that there would only be an effect of Same Caller Pair Type among the convergent 440 

calls, but if imitation is not necessary for vocal labeling, we expected to observe an effect of 441 

Same Caller Pair Type among both sets of calls (Extended Data Table 1, hypothesis 2, prediction 442 

3).   443 

Do different callers use the same label for the same receiver (hypothesis 3)? 444 

To determine if different callers use the same label for the same receiver, we ran another 445 

6-fold cross-validated random forest model to predict receiver ID as a function of the acoustic 446 

features but partitioned the cross-validation folds such that all calls with the same caller and 447 

receiver were always allocated to the same fold (hyperparameters and weighting same as first 448 

model). This model tested whether receiver ID could be predicted independently of caller ID, 449 

which should only be possible if different callers use similar labels for a given receiver 450 

(Extended Data Table 1, hypothesis 3, prediction 1). We averaged the classification accuracy of 451 

the model across 2000 runs and compared this value to the distribution of classification 452 

accuracies generated by 10,000 iterations of the same model with the acoustic features randomly 453 

permuted.  454 

If different callers use similar labels for the same receiver, then pairs of calls with 455 

different callers and the same receivers should be more similar than pairs of calls with different 456 

callers and different receivers (Extended Data Table 1, hypothesis 3, prediction 2). To test 457 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2023. ; https://doi.org/10.1101/2023.08.25.554872doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.25.554872
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

whether this was the case, we ran another Type III ANOVA with rank-transformed proximity 458 

score as the response variable and Different Caller Pair Type (different callers/same receiver or 459 

different callers/same receiver), Same Relationship, and Same Context as the factors. As before, 460 

we excluded pairs of calls recorded on the same date or from different family groups (final 461 

sample size = 20,235 call pairs). 462 

How are labels encoded in calls? 463 

 To investigate which acoustic features encode receiver ID and caller ID we extracted 464 

variable importance scores (Supplementary Table S1) from a conditional inference random forest 465 

model in the R package “party” 37 trained on the full dataset to predict the response variable in 466 

question (receiver ID or caller ID) as a function of the acoustic features and weighted by the 467 

certainty of the response variable (625 training observations, 8000 trees, all other 468 

hyperparameters same as other random forests). We used a conditional inference forest because 469 

unlike traditional random forest, it is not biased towards correlated variables 37. We only 470 

calculated variable importance scores for the spectral features, as cepstral coefficients are 471 

difficult to interpret intuitively. To assess the relative importance of the original acoustic 472 

contours, we weighted the loadings of the acoustic contours on each principal component by the 473 

variable importance score of the mean of the principal component in question, and then 474 

calculated the sum of the absolute values of these weighted loadings for each acoustic contour 475 

(Supplementary Table S2). Acoustic contours with a higher sum of the absolute values of the 476 

weighted loadings were deemed more important. This weighting process only considered the 477 

means of low-rank principal components, as it was not clear how to relate the other features back 478 

to the original acoustic contours. However, means of low-rank principal components accounted 479 

for the top 19 variables for the receiver ID model and top 33 variables for the caller ID model. 480 
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Playback experimental design 481 

 To determine if elephants respond more strongly to calls addressed to them (Extended 482 

Data Table 1, hypothesis 1, prediction 3), we played back rumbles with known adult female 483 

callers and known receivers to 17 elephants (15 adult females, one 9yo female, one 9-10yo male) 484 

in the Samburu study area. Fourteen subjects received one “test” playback of a call that was 485 

originally addressed to them and one “control” playback of a call from the same caller that was 486 

originally addressed to another individual. One subject received two sets of test and control 487 

playbacks from two different callers, one received only a test playback, and one received only a 488 

control playback (Extended Data Table 7). Most stimuli functioned as the test stimulus for one 489 

subject and the control stimulus for another, but no stimulus was used as the same experimental 490 

condition for more than one subject. Order of presentation was balanced across subjects, and we 491 

waited at least 7 days (mean = 29.5 ± 27.1 days) between successive playbacks to the same 492 

subject. 493 

Playback stimuli 494 

Playback stimuli were recorded in Samburu and Buffalo Springs between January 2020 495 

and March 2022 from adult female callers. In all but two cases, the playback stimuli were contact 496 

calls. In one case we used a loud greeting call because we were unable to record a contact call 497 

from the caller in question, and in one case we used a call that was produced in a similar context 498 

to contact calls (caller and receiver >100 m apart and out of sight of each other), but was lower in 499 

amplitude than a typical contact call and was part of a lengthy antiphonal exchange between two 500 

individuals, and therefore was likely a “cadenced rumble” 16. Three playback stimuli were 501 

elicited by another playback, and we assumed that the individual whose call was broadcast from 502 

the speaker was the intended receiver of the call that was produced in response to that playback. 503 
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We identified the receiver of natural calls as the only adult member of the family group who was 504 

separated from the caller during the call or the only individual who responded to the call. In one 505 

case, there were two adult females separated from the caller, and we assumed the receiver was 506 

the older of the two females who was in the lead and who rejoined the caller first (see Table 507 

S10). We prepared all playback stimuli in Audacity 3.0.2. Each stimulus consisted of a single 508 

rumble preceded by one second of background noise with a fade-in and followed by one second 509 

of background noise with a fade-out. In three cases, we applied a high-pass (5 Hz cutoff, 6 dB 510 

roll-off) or low-pass filter (1000 Hz cutoff, 6 dB roll-off) to remove excessive noise.  511 

Playback trial protocol 512 

 The stimuli were played back as .wav files (uncompressed audio) from an iPhone SE 513 

(Apple Inc., Cupertino, CA) attached to QLXD1 wireless bodypack transmitter (Shure, Niles, IL) 514 

transmitting to a custom-built loudspeaker (Bag End Loudspeakers, Algonguin, IL) (see 515 

Supplementary Information). We placed the speaker 40.2-59.0 m from the subject (mean 49.1 ± 516 

4.2 m), either on the ground in front of a tree or shrub and covered by camouflage netting or on 517 

the edge of the rear seat of a Toyota double cab Landcruiser facing the door with all four doors 518 

and windows and both roof hatches open. Re-recordings at 50 m revealed no obvious difference 519 

between sounds played with the speaker on the ground or inside the vehicle. We only conducted 520 

playbacks when the original caller and “alternate receiver” (the other subject receiving playbacks 521 

from the same caller) were >180 m from and out of sight of the subject (>270 m from the 522 

alternate receiver if she had not yet received all her playbacks). When the original caller’s 523 

location was known (19/34 trials) the speaker was placed in approximately the same direction 524 

relative to the subject as the original caller. In the remaining trials the caller could not be located 525 

after searching a ~300 m radius around the subject. Trials were redone after at least 7 days if the 526 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2023. ; https://doi.org/10.1101/2023.08.25.554872doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.25.554872
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

speaker malfunctioned, the subject moved her head out of sight right before the playback started, 527 

or we discovered after the playback that the speaker was not in the correct location relative to the 528 

subject and the original caller. During each trial we filmed the subject from inside the vehicle for 529 

at least 1 min, then played the stimulus once, and continued filming for at least another 10 min. 530 

We also recorded audio with an Earthworks QTC40 microphone and Sound Devices MixPre3-II 531 

recorder. The observers were blind to the playback condition (test or control) until all trials were 532 

complete and all videos and audio recordings were scored. 533 

Statistical analysis of playback data 534 

 From the video and audio recordings of each playback trial we measured the subject’s 535 

Latency to Approach the speaker, Latency to Vocalize, Number of Vocalizations produced 536 

within 10 min following the playback, Latency to Vigilance, and Change in Vigilance Duration 537 

in the minute following the playback compared to the minute preceding the playback. Latencies 538 

were defined as the time from the start of the playback until the behavior of interest occurred and 539 

were censored when the subject moved out of sight or at 10 min, whichever came first. Vigilance 540 

was defined as lifting head above shoulder level, moving head from side to side, holding ears 541 

away from body without flapping, or lifting trunk while sniffing toward speaker. We ran a 542 

separate model for each response variable with Subject ID as a random effect and Treatment and 543 

the following covariates/factors as fixed effects: Caller-Original Receiver Relationship 544 

(relationship between the caller and the original receiver of the call; Extended Data Table 3), 545 

Distance (distance in meters between the speaker and the subject), dBC (amplitude of the 546 

playback stimulus in dBC at 1 m), Other Adults (whether other adults were within 50 m of 547 

subject during playback), Speaker Location (whether speaker was on ground or in vehicle), and 548 

Cumulative Playback Exposure (cumulative number of playbacks to which subject was exposed 549 
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at distance of 300 m or less, including trials that were redone and playbacks to other subjects). 550 

We used Cox proportional hazards regression in the coxme package 38 for the latency variables, a 551 

generalized linear model with a Poisson error distribution in the lme4 package 39 for Number of 552 

Vocalizations, and a linear model for Change in Vigilance Duration. 553 
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 603 

Figure 1. Evidence that calls are specific to individual receivers within a caller. Left: 604 

classification accuracy of random forest predicting receiver ID from acoustic features (red line) 605 

was significantly higher than classification accuracies of 10,000 null models predicting receiver 606 

ID from randomized acoustic features (gray histogram). Cross-validation folds were stratified so 607 

that model was trained and test on same combinations of caller and receiver; thus, classification 608 

accuracy represents receiver specificity of calls within a caller. Right: calls with the same caller 609 

and same receiver were significantly more similar (higher proximity score) than calls with the 610 

same caller and different receivers (ANOVA on ranks). Error bars represent standard errors of 611 

the mean.612 
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 613 

Figure 2. Evidence that vocal labeling likely did not rely on imitation of the receiver’s calls. 614 

Random forest predicted receiver ID significantly better than null models both among calls that 615 

were identified as convergent to receiver’s calls (top left) and divergent from receiver’s calls 616 

(top right). Pairs of calls with the same caller and same receiver were more similar (higher 617 

proximity score) than pairs of calls with the same caller and different receivers, both among calls 618 

that were convergent to receiver’s calls (bottom left) and calls that were divergent from 619 

receiver’s calls (bottom right) (ANOVA on ranks). In top row, red lines represent classification 620 

accuracy of original random forest model and gray histograms represent distribution of 621 

classification accuracies of null models with randomized acoustic features. In bottom row, error 622 

bars represent standard errors of the mean. 623 
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 624 

Figure 3. Mixed evidence that different callers use similar labels for the same receiver. 625 

Left: Classification accuracy (red line) of random forest designed to predict receiver ID from 626 

acoustic features independently of caller ID (all calls with the same caller and receiver allocated 627 

to the same cross-validation fold) was not significantly different from classification accuracies of 628 

null models with randomized acoustic features (gray histogram). Right: Pairs of calls with 629 

different callers and the same receiver were significantly more similar (higher proximity score) 630 

than pairs of calls with different callers and different receivers (ANOVA on ranks). Error bars 631 

represent standard errors of the mean.  632 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2023. ; https://doi.org/10.1101/2023.08.25.554872doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.25.554872
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

 633 

 634 

Figure 4. Response to playbacks of test stimuli (calls originally addressed to the subject) vs. 635 

control stimuli (calls from the same caller originally addressed to a different individual). 636 

Subjects approached the speaker more quickly (left; Cox regression), vocalized more quickly 637 

(center; Cox regression), and produced more vocalizations (right; Poisson GLM) in response to 638 

test playbacks than controls (note the model for number of vocalizations failed to converge). 639 

Error bars in rightmost panel represent standard errors of the mean. 640 

  641 
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Table 1. Results of random forest models predicting receiver ID as a function of the 642 

acoustic features 643 

Hypothesis 

tested 

Observations 

used 

Data 

partitioning 

Classification 

accuracy 

Mean ± SD 

accuracy for 

null models 

Permutation 

test P-value 

Spectral acoustic features 

H1: calls are 

receiver 

specific 

All (625) Stratified by 

caller and 

receiver ID 

 

20.3% 7.6 ± 0.75% <0.0001 

H2: labels are 

arbitrary 

Convergent 

calls (195) 

 

Stratified by 

caller and 

receiver ID 

 

17.2% 4.9 ± 1.1% <0.0001 

H2: labels are 

arbitrary 

Divergent 

calls (299) 

 

Stratified by 

caller and 

receiver ID 

 

32.4% 13.1 ± 1.4% <0.0001 

H3: labels 

shared across 

callers 

All (625) All calls with 

same caller 

and receiver 

in same fold 

 

1.4% 1.4 ± 0.40% 0.453 

Cepstral acoustic features 

H1: calls are 

receiver 

specific 

All (625) Stratified by 

caller and 

receiver ID 

 

14.9% 6.3 ± 0.96% <0.0001 

H2: labels are 

arbitrary 

 

Convergent 

calls (195) 

 

Stratified by 

caller and 

receiver ID 

 

13.4% 4.5 ± 1.4% <0.0001 

H2: labels are 

arbitrary 

 

Divergent 

calls (299) 

 

Stratified by 

caller and 

receiver ID 

 

22.0% 10.0 ± 1.7% <0.0001 

H3: labels 

shared across 

callers 

All (625) All calls with 

same caller 

and receiver 

in same fold 

 

1.4% 1.4 ± 0.48% 0.433 

All random forests had 500 trees, 6 variables per node, 60% of observations per tree, minimum 644 

node size = 1, and no maximum tree depth, and 6-fold for cross-validation. Observations were 645 

weighted by the certainty of receiver ID. Classification accuracies were averaged across 2000 646 
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runs of the model to improve stability. To determine if the classification accuracy was higher 647 

than expected by chance, the model was run 10,000 times with randomly permuted acoustic 648 

variables, and the original classification accuracy was compared to the distribution of 649 

classification accuracies for these 10,000 null models. 650 

  651 
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Table 2. Results for Type III Analyses of Deviance on playback experiment models 652 

Response 

variable 

Model 

type 

Trtmnt Reltnshp 

Caller to 

Org. Rcv. 

Dist. dBC Other 

adults 

Speaker 

location 

Cumul. 

playback 

exposure 

Latency to 

approach 

Cox 

 

χ2=6.8, 

P=0.009 

χ2=1.7, 

P=0.80 

χ2=2.4, 

P=0.12 

χ2=0.65, 

P=0.42 

χ2=0.41, 

P=0.52 

χ2=0.59, 

P=0.44 

χ2=0.11, 

P=0.73 

 

Latency to 

vocalize 

Cox χ2=7.9, 

P=0.005 

χ2=6.4, 

P=0.17 

χ2=0.97, 

P=0.32 

χ2=0.02, 

P=0.90 

χ2=0.64, 

P=0.42 

χ2=0.20, 

P=0.66 

χ2=0.10, 

P=0.75 

Number of 

calls 

Poisson χ2=6.2, 

P=0.013 

χ2=19.9, 

P=0.0005 

χ2=0.32, 

P=0.57 

χ2=0.48, 

P=0.49 

χ2=0.72, 

P=0.40 

χ2=0.13, 

P=0.72 

χ2=0.01, 

P=0.91 

Latency to 

vigilance 

Cox χ2=3.1, 

P=0.08 

χ2=10.1, 

P=0.038 

χ2=1.8, 

P=0.18 

χ2=1.9, 

P=0.16 

χ2=5.5, 

P=0.019 

χ2=0.55, 

P=0.46 

χ2=0.02, 

P=0.88 

 

Vigilance 

duration 

after - 

before 

Linear χ2=0.06, 

P=0.81 

χ2=2.1, 

P=0.72 

χ2=4.0, 

P=0.045 

χ2=0.02, 

P=0.89 

χ2=0.43, 

P=0.51 

χ2=0.33, 

P=0.56 

χ2=0.83, 

P=0.36 

Subject ID (not shown) was also included as a random effect in each model. The Poisson 653 

regression for Number of vocalizations failed to converge. 654 

  655 
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TITLES AND LEGENDS FOR EXTENDED DATA 656 

Extended Data Figure 1. Violin plots illustrating distribution of data with respect to callers 657 

and receivers. The dataset consisted of 625 total calls, 114 unique callers, and 119 unique 658 

receivers, but each caller only addressed a small number of the receivers in the dataset. 659 

Extended Data Figure 2. Schematic illustrating how spectral acoustic features were 660 

measured. First, a spectrogram was calculated by applying a Fast Fourier Transform to the 661 

signal (Hamming window, 700 samples, 90% overlap). Then a mel filter bank with 26 662 

overlapping triangular filters between 0-500 Hz was applied to each window of the spectrogram 663 

to produce a mel spectrogram. The mel spectrogram was then normalized by dividing the energy 664 

value in each cell by the total energy in that time window and these proportional energies were 665 

logit-transformed so they would not be limited to between 0 and 1. As features for the robust 666 

principal components analysis, we used the vector of energy in each of the 26 mel frequency 667 

bands as well as the vectors of delta and delta-delta values for each frequency band (representing 668 

the change and acceleration in energy over time, respectively). In the spectrogram and mel 669 

spectrogram in this figure, warmer colors indicate higher amplitudes (greater energy). 670 

Extended Figure 3. Scatterplots showing the separation in 3D space between calls from the 671 

same caller to different receivers. Axes are the three most important variables for predicting 672 

receiver ID (means of PCs 33, 23, and 48) as determined from the variable importance scores of 673 

a conditional inference random forest using the spectral acoustic features. Each plot represents a 674 

single caller, each point is a single call, and receiver IDs are coded by both color and shape. This 675 

figure only includes calls where certainty of caller ID and receiver ID were at least 0.5 (no more 676 

than 2 possible candidates) and the caller made at least 3 calls each to at least 2 different 677 

receivers. 678 
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Extended Data Table 1. Hypotheses and predictions tested in this study 679 

Extended Data Table 2. Acoustic features used in the random forest models 680 

All acoustic features were derived from either the sparse matrix or low-rank matrix of a robust 681 

principal components analysis performed on multiple acoustic contours of equal length that were 682 

measured directly from the signal. For the spectral acoustic features, the acoustic contours were 683 

the Hilbert amplitude envelope, the vector of energies in each of the 26 bands of a mel 684 

spectrogram, and the delta and delta-delta values of the mel spectral bands. For the cepstral 685 

acoustic features, the acoustic contours were the Hilbert amplitude envelope, first 12 mel-686 

frequency cepstral coefficients, and the delta and delta-delta values of the first 12 cepstral 687 

coefficients. The principal components analysis was performed on a matrix of all the contours 688 

for each call stacked end-to-end. 689 

Extended Data Table 3. Definitions of social relationship categories between caller and 690 

receiver 691 

Categories were defined based on sex, age, and mother-offspring status, the most important 692 

factors influencing dominance and bond strength within an elephant family group. Females were 693 

defined as adults if ≥10 years old, and males were defined as adults if independent from their 694 

natal group. All non-adults under this definition were classified as juveniles. Six years was 695 

chosen as the cutoff for different age classes because it is between 1-2x the average inter-birth 696 

interval, so a female ≥6 years older than another individual could have been that individual’s 697 

allomother. 698 

Extended Data Table 4. Results for ANOVAs to test if calls with the same caller and 699 

receiver were more similar than calls with the same caller and different receivers 700 
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Each observation was a pair of calls. ANOVA models were of the form Rank-transformed 701 

Proximity Score ~ Same Caller Pair Type (whether the two calls in a pair had the same caller and 702 

receiver or same caller and different receivers) + Same Context (whether the two calls in a pair 703 

had the same behavioral context). Pairs of calls recorded on the same date or where the two calls 704 

had a different type of caller-receiver relationship were excluded. Three models were run for 705 

each set of acoustic features (spectral and cepstral): all pairs of calls meeting above criteria 706 

(n=2391), pairs of calls in which both calls were convergent on the receiver’s calls (n=252), and 707 

pairs of calls in which both calls were divergent from the receiver’s calls (n=798). Convergent 708 

calls = calls from caller A to receiver B that were more similar to receiver B’s calls than calls 709 

from caller A to other receivers were to receiver B’s calls. Divergent calls = calls from caller A 710 

to receiver B that were less similar to receiver B’s calls than calls from caller A to other receivers 711 

were to receiver B’s calls. 712 

Extended Data Table 5. Results for ANOVAs to test if calls addressed to a given receiver 713 

were imitative of the receiver’s calls  714 

Each observation was a pair of calls. ANOVA models were of the form Rank-transformed 715 

Proximity Score ~ Imitation Pair Type + Same Relationship + Same Context + Caller Dyad ID. 716 

Model was run once for each set of acoustic features: spectral and cepstral. Imitation Pair Type = 717 

whether the caller of one call in a pair was the receiver of the other call. Same Relationship = 718 

whether the callers of both calls in a pair had the same type of relationship to their respective 719 

receivers. Same Context = whether the two calls in a pair were recorded in the same behavioral 720 

context (contact/greeting). Caller Dyad ID = identifier for the two callers in a pair. Pairs of calls 721 

recorded on the same date, from callers in different social groups, or with the same caller or 722 
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receiver were excluded. We also excluded pairs of calls for which Caller Dyad ID only occurred 723 

with one level of Imitation Pair Type (final n=11,309). 724 

Extended Data Table 6. Results for ANOVAs to test if different callers used similar labels 725 

for the same receiver 726 

Each observation was a pair of calls. ANOVAs were of the form Rank-transformed Proximity 727 

Score ~ Different Caller Pair Type + Same Relationship + Same Context. Model was run 728 

separately for each set of acoustic features: spectral and cepstral. Different Caller Pair Type = 729 

whether the two calls in a pair had different callers and the same receiver or different callers and 730 

different receivers. Same Relationship = whether the two calls in a pair had the same type of 731 

relationship between caller and receiver. Same Context = whether the two calls in a pair were 732 

recorded in the same behavioral context (contact/greeting) or not. Pairs of calls recorded on the 733 

same date or from callers in different social groups were excluded (final n=20,235) 734 

Extended Data Table 7. Summary of playback trials for each subject 735 

All callers and subjects were adult females except M25.0012 (subadult male) and M9.9612 736 

(subadult female). The letter in parentheses after each caller ID represents a unique call (e.g., 737 

R23 (a) and R23 (b) were different calls recorded from R23). Twelve trials were redone once or 738 

twice because the playback system malfunctioned, the subject went out of sight just as the 739 

playback began, or the speaker was accidentally placed >60 m away or in the wrong direction 740 

relative to the subject and the original caller. Trials that were later redone are not included in this 741 

table. 742 
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