Abstract
Despite growing understanding of the various roles mitochondria play in neurons, how they contribute to higher brain functions such as learning and memory remains underexplored. Here, using the nematode Caenorhabditis elegans, we found that the mitochondrial calcium uniporter (MCU) pore forming unit MCU-1 is required for aversive learning to specific odors sensed by a single sensory neuron, AWCON. MCU-1 expression was required in the sensory neuron at the time of odor conditioning for proper behavioral response to 60 min of prolonged odor exposure. Through genetic and pharmacological manipulation, we show evidence that MCU is activated in response to prolonged odor conditioning, causing mtROS production, leading to NLP-1 secretion. Finally, we show that the timing of MCU activation and neuropeptide release correspond with the OFF-neuron properties of the AWC neuron, suggesting that mitochondrial calcium entry and neuropeptide secretion coincide with AWC activation upon odor removal. Overall, our results demonstrate that, by regulating mitochondrial calcium influx, mitochondria can modulate the synaptic response to incoming stimuli in the sensory neuron, resulting in learning and modified behavior.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
This updated version of the manuscript includes additional data to better suport our claims that mitochondrial calcium influx occur selectively to longer sensory input in the AWC neuron. In addition, the overall focus of the manuscript has been modified to emphasize the significance of MCU's role in natural behavior and learning.