
1 

 

Transcriptomic Response to Nitrogen Availability Highlights Signatures of 1 

Adaptive Plasticity During Tetraploid Wheat Domestication 2 

Alice Pieri1, Romina Beleggia2*, Tania Gioia3, Hao Tong4,5, Valerio di Vittori1, Giulia 3 

Frascarelli1, Elena Bitocchi1, Laura Nanni1, Elisa Bellucci1, Fabio Fiorani6, Nicola Pecchioni2, 4 

Concetta De Quattro7, Antonina Rita Limongi7, Pasquale De Vita2, Marzia Rossato7, Ulrich 5 

Schurr6, Jacques L. David8, Zoran Nikoloski4,5, Roberto Papa1* 6 

 7 

1 Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic 8 

University, via Brecce Bianche, 60131, Ancona, Italy 9 

2 Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and 10 

Industrial Crops (CREA-CI), 71122 Foggia, Italy 11 

3 School of Agricultural, Forestry, Food and Environmental Sciences, University of 12 

Basilicata, 85100 Potenza, Italy 13 

4 Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14 

14476 Potsdam, Germany 15 

5 Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant 16 

Physiology, 14476 Potsdam, Germany 17 

6 Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich 18 

GmbH, 52428 Julich, Germany 19 

7 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, 20 

Italy 21 

8 Montpellier SupAgro, UMR Amelioration Genetique et Adaptation des Plantes, 34060 22 

Montpellier, France 23 

 24 

* Corresponding authors contact: Roberto Papa: r.papa@univpm.it; Romina Beleggia: 25 

romina.beleggia@crea.gov.it 26 

  27 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2023.08.31.555682doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555682
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 28 

The domestication of crops, with the development of the agroecosystems, is associated with 29 

major environmental changes and represent a model to test the role of phenotypic plasticity. 30 

Here we investigated 32 genotypes representing key stages of tetraploid wheat domestication. 31 

We developed a dedicated pipeline combining  RNA-Seq data, estimates of evolvability and 32 

QST to characterize the plasticity of gene expression and identify signatures of selection under 33 

different nitrogen conditions. The analysis of gene expression diversity showed contrasting 34 

results between primary and secondary domestication in relation to nitrogen availability. 35 

Indeed, nitrogen triggered the expression of twice the number of genes in durum wheat 36 

compared to emmer and wild emmer. QST distributions and QST–FST comparisons revealed 37 

distinct selection signatures at each domestication stage. While primary domestication affected 38 

the expression of genes involved in biotic interactions, secondary domestication was associated 39 

with changes in expression of genes involved in metabolism of amino acids, particularly lysine. 40 

Selection signatures were found also in differentially expressed genes, specifically involved in 41 

nitrogen metabolism, such as glutamate dehydrogenase. Overall, our findings show that 42 

nitrogen availability had a pivotal role during the domestication and adaptive responses of a 43 

major food crop, with varying effects across different traits and growth conditions. 44 

 45 

Introduction 46 

Domestication influences the genetic diversity of animals and plants as they adapt to 47 

agroecosystems, and undergo selection to meet human preferences and needs. This process is 48 

typically associated with the genome-wide loss of nucleotide diversity due to the combined 49 

consequences of selection and genetic drift, which is known as the domestication bottleneck. 50 

The loss of genetic diversity has been documented in many domesticated species by comparing 51 

them with wild relatives (Bitocchi et al., 2017). A parallel effect is the reprogramming of gene 52 

expression and the loss of expression diversity, which was first reported in the common bean 53 

(Phaseolus vulgaris) (Bellucci et al., 2014) and subsequently in other domesticated plants and 54 

animals (Sauvage et al., 2017; Liu et al., 2019; Burgarella et al., 2021). Similar observations 55 

have been reported at the level of metabolic diversity (Beleggia et al., 2016; Alseekh et al., 56 

2021). 57 

Changes in nucleotide and gene expression diversity during the domestication of tetraploid 58 

wheat (Triticum turgidum L., 2n = 4x = 28; AABB genome) are not fully understood. Evidence 59 
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indicates that domestication occurred in two well-defined phases: Primary domestication from 60 

wild emmer (Triticum turgidum ssp. dicoccoides) to emmer (Triticum turgidum ssp. dicoccum) 61 

started ~12,000 years ago in the Fertile Crescent. This was followed by secondary 62 

domestication from emmer to durum wheat (Triticum turgidum ssp. durum), which started 63 

~2,000 years ago in the Near East and gave rise to durum wheat, the most important form of 64 

tetraploid wheat and currently the most widespread Mediterranean crop (Gioia et al., 2015; 65 

Taranto et al., 2020). 66 

The molecular mechanisms underlying phenotypic plasticity in crops (Laitinen and Nikoloski, 67 

2019) and their wild relatives must be understood to address the challenges faced by modern 68 

agriculture, including the overreliance on nitrogen (N) fertilizers to meet Sustainable 69 

Development Goals (SDGs). N is an essential macronutrient whose availability is directly 70 

linked to crop yield and grain quality (protein content) (Barneix, 2007; Howarth et al., 2008; 71 

Laidò et al., 2013), but it is also harmful to people and nature. Indeed, excess of N from 72 

agricultural sources is one of the major pollutant in fresh water (Bijay-Singh and Craswell, 73 

2021). Understanding genetic variations in N acquisition, assimilation and metabolism can 74 

therefore provide novel sustainable strategies for crop improvement (Plett et al., 2018; 75 

Hawkesford and Griffiths, 2019). In tetraploid wheat, phenotypic differences related to N 76 

availability primarily arose during secondary domestication rather than primary domestication 77 

(Gioia et al., 2015), but the relationship between N metabolism and changes in gene expression 78 

plasticity during domestication is unclear. 79 

Here we analysed 32 wild emmer, emmer and durum wheat genotypes by RNA-Seq to 80 

determine how contrasting differences in N availability shaped the nucleotide and gene 81 

expression diversity of tetraploid wheat during primary and secondary domestication. Our 82 

results provide insight into the pivotal role of N during the domestication and adaptive 83 

plasticity of one of our major food crops. 84 

 85 

Results and discussion 86 

A greater loss of nucleotide diversity occurred during the secondary domestication of 87 

tetraploid wheat 88 

We prepared 128 RNA-Seq libraries from 4-week-old leaves of 32 tetraploid wheat genotypes 89 

representing T. turgidum ssp. dicoccoides, ssp. dicoccum and ssp. durum (Supplementary Table 90 

S1). On average, 6.8 million of reads per genotype (Supplementary Table S1) were mapped to 91 
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the A and B reference subgenomes of bread wheat (Alaux et al., 2018). The mapping frequency 92 

exceeded 85% for all the three subspecies and the fraction of reads mapping to gene regions 93 

exceeded 72% (Supplementary Table S1). 94 

Variant calling produced 800,996 high-quality single-nucleotide polymorphisms (SNPs). The 95 

number of polymorphic sites was similar in wild emmer (617,128) and emmer (613,509), but 96 

was much lower in durum wheat (425,513), confirming the higher genetic diversity of the wild 97 

population. We identified 190,377 common SNPs shared by all three taxa. As expected, wild 98 

emmer and emmer shared the highest percentage of SNPs (33%, 206,578). In contrast, durum 99 

wheat shared only 11% (46,352) of its SNPs with wild emmer and 17% (71,147) with emmer. 100 

SNPs principal component analysis (PCA) revealed the broad genetic structure of the three 101 

wheat taxa (Figure 1) and confirmed that secondary domestication had a greater impact than 102 

primary domestication in differentiating the durum wheat subspecies. The analysed 12 durum 103 

wheat genotypes are genetically very similar, forming a dense cluster that is clearly 104 

distinguishable from the wild emmer and emmer genotypes. In contrast, the wild emmer and 105 

emmer genotypes were loosely clustered, indicating a greater genetic admixture. These results 106 

are consistent with previous genetic studies on the origins of domesticated wheat and reflect 107 

the multiple stages of domestication (Luo et al., 2007; Civáň et al., 2013; Oliveira et al., 2020), 108 

and indicate that the used genotypes are representative. 109 
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 110 

Figure 1: Principal component analysis of 32 wheat genotypes based on single-nucleotide 111 

polymorphisms (SNPs). The first two principal components (PC1 and PC2) are shown. The 112 

three colors represent different taxa. Labels show the accession name of each genotype. 113 

 114 

Nucleotide diversity estimates (Table 1) show the expected substantial loss of nucleotide 115 

diversity during domestication. The average nucleotide diversity of durum wheat was ~35% 116 

lower than domesticated emmer, which was in turn ~11% lower than wild emmer, highlighting 117 

the greater impact of secondary domestication. When the cumulative effect of primary and 118 

secondary domestication is taken into account, we observed a ~42% reduction in the nucleotide 119 

diversity of durum wheat compared to its wild ancestor (Table 1). 120 

 121 

 122 

 123 

 124 
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    Loss of nucleotide diversity (%) 

 
wild 

emmer 
emmer 

durum 

wheat 
Lpd Lsd both 

π 0.0050 0.0045 0.0029 11.4 34.6 42.1 

θ 0.0047 0.0040 0.0029 15.3 27.2 38.3 

Table 1: Nucleotide diversity estimates and diversity loss for the three wheat taxa. 125 

Diversity loss is shown during primary domestication (wild emmer to emmer, Lpd), secondary 126 

domestication (emmer to durum wheat, Lsd) and both processes (wild emmer to durum wheat), 127 

based on average π and θ values. The π and θ symbols represent averaged estimates of 128 

nucleotide diversity. 129 

 130 

The variability of gene expression during domestication was influenced by N availability 131 

To quantify the diversity of gene expression in each subspecies, we calculated evolvability 132 

scores under high and low N availability conditions. Evolvability was estimated using the 133 

additive coefficient of variation (CVA) in read counts (Supplementary Table S2). In contrast to 134 

heritability, CVA is a standardized measure of additive genetic variation that is not influenced 135 

by other sources of variance (Houle, 1992; Hansen et al., 2011), and is therefore well suited for 136 

comparative analysis (Garcia-Gonzalez et al., 2012). As for nucleotide diversity, we found that 137 

the CVA decreased during domestication under both N conditions; however, the mean CVA of 138 

all three subspecies was higher under low N conditions (Figure 2a,b; Table 2). High N 139 

availability therefore appears to promote a more uniform gene expression pattern, whereas 140 

higher variability is observed during N starvation. The association between domestication and 141 

declining diversity in gene expression has also been reported in crops, such as: common bean 142 

(Bellucci et al., 2014), tomato (Sauvage et al., 2017) and sorghum (Burgarella et al., 2021) as 143 

well as domesticated animal species (Liu et al., 2019). 144 
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 145 

Figure 2: Density plots of the additive coefficient of variation (CVA) in the three wheat 146 

taxa. Comparison of the estimated density functions of the CVA in gene expression, calculated 147 

using all 32,358 genes. a High nitrogen conditions. b Low nitrogen conditions. Dashed lines 148 

represent the averaged CVA value, colored according to the different taxa. 149 

 150 

We used the contrasting N conditions of our samples to examine whether the loss of expression 151 

diversity is associated with the specific aspects of the cultivation environment, causing primary 152 

and secondary domestication to have a significantly different impact. Under high N conditions, 153 

we observed a ~9% loss in expression diversity in emmer compared to wild emmer (effect of 154 

primary domestication) and a ~15% loss in durum wheat compared to emmer (effect of 155 

secondary domestication). In contrast, these losses were ~18% and 11% under N starvation 156 

conditions, revealing twice the loss of expression diversity during primary domestication, but 157 

a lower value during secondary domestication (Table 2). All four values differed significantly 158 

from each other (Mann–Whitney test, p < 0.001). The opposing expression diversity profiles 159 

during domestication under high and low N conditions were observed not only for overall gene 160 

expression, but also for the subgroup comprising all differentially expressed genes (DEGs) and 161 

the subgroup comprising all unmodulated genes (Supplementary Table S3). The loss of 162 

expression diversity among the DEGs due to primary domestication was ~9% and ~15% under 163 

high and low N conditions, respectively, whereas the loss due to secondary domestication was 164 

~18% and ~14% under high and low N conditions, respectively (Supplementary Table S3). 165 
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The loss of expression diversity among the unmodulated genes was similar to the values for 166 

overall gene expression (Supplementary Table S3). 167 

    Loss of expression diversity (%) 

 
wild 

emmer 
emmer 

durum 

wheat 
Lpd Lsd both 

CVA high N 0.062 0.056 0.048 9.1 14.5 22.3 

CVA low N 0.076 0.063 0.056 17.6 11.1 26.7 

Table 2: Mean additive coefficient of variation (CVA) in gene expression and loss of 168 

expression diversity for the three wheat taxa. Diversity loss is shown during primary 169 

domestication (wild emmer to emmer, Lpd), secondary domestication (emmer to durum wheat, 170 

Lsd) and both processes (wild emmer to durum wheat), based on averaged CVA values 171 

calculated for all 32,358 genes. 172 

 173 

A phenotypic study of the same accessions used in the present work has already shown that 174 

secondary domestication reduced the phenotypic diversity under high N conditions, but the 175 

reduction was smaller and not significant under N starvation conditions (Gioia et al., 2015). In 176 

the case of durum wheat, selection has apparently enhanced the growth response to N 177 

availability, indicating a putative focus on improving N uptake and utilization efficiency. Our 178 

expression diversity results indicate that selection has favored specific traits and thus led to a 179 

more uniform set of cultivars, as also suggested in earlier study using morphological traits 180 

(Gioia et al., 2015). 181 

 182 

Domestication and nitrogen availability shaped the divergence of tetraploid wheats 183 

Genetic differentiation among the three subspecies was estimated by calculating the pairwise 184 

fixation index (FST) for every gene locus in our dataset. As shown in Figure 3a, the lowest 185 

genetic differentiation was observed between wild emmer and emmer (mean FST = 0.09), 186 

whereas much higher genetic differentiation was found between emmer and durum wheat 187 

(mean FST = 0.27) and, similarly, between wild emmer and durum wheat (mean FST = 0.28). 188 

These values align with earlier findings that examined broad collections of tetraploid wheat 189 

accessions (Luo et al., 2007; Mazzucotelli et al., 2020), and provide additional evidence for the 190 

representativeness of the genotypes used. 191 
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Divergence at the transcriptomic level was estimated by calculating QST, the quantitative analog 192 

of FST, taking N availability into account as an environmental variable. Under both N 193 

conditions, we observed the same trend shown for FST (Figure 3b). Specifically, secondary 194 

domestication had a stronger impact on differentiation (emmer vs durum wheat, mean QST LN = 195 

0.23, mean QST HN = 0.33) than primary domestication (wild emmer vs emmer, mean QST LN = 196 

0.16, mean QST HN = 0.23). Interestingly, the QST distributions of every pairwise comparison 197 

showed higher values under high N conditions compared to N starvation (Figure 3b), 198 

suggesting that N availability during domestication significantly contributed to the 199 

differentiation of gene expression in tetraplid wheats. 200 

 201 

Figure 3: FST and QST distributions. a Boxplots showing the gene locus FST distribution for 202 

every subspecies pairwise comparison. b Boxplots showing the transcript QST distribution for 203 

every subspecies pairwise comparison under low nitrogen and high nitrogen conditions, 204 

represented by empty and hatched grayscale bars, respectively. 205 

 206 

The QST distributions were used to perform a “selection scan”, seeking genes whose expression 207 

was potentially under selection. Starting from 5,868 genes meeting the heritability criteria 208 

(H2 ≥ 0.7 or S×N ≥ 0.2, that is the species × environment variance component i.e., every species 209 

subgroup × N condition; Supplementary Figure S1), we retained 973 genes having QST values 210 

in the 5% right tail of the distributions. The QST–FST comparison method (Leinonen et al., 2013) 211 

was then used to confirm that the divergent expression (high QST values) of the filtered genes 212 

was caused by directional selection (QST > FST) and not by genetic drift (QST ≈ FST) or stabilizing 213 

selection (QST < FST) (Leinonen et al., 2013). After removing FST values < 0.01, we retained 214 
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967 genes satisfying the criterion QST > FST, indicating that their expression was likely 215 

subjected to directional selection in at least one of the evolutionary contexts examined herein 216 

(i.e., primary and/or secondary domestication under high and/or low N availability conditions) 217 

(Supplementary Table S4). 218 

Gene Ontology (GO) enrichment analysis revealed that selection acted on distinct gene 219 

categories during primary and secondary domestication (Supplementary Figure S2). During 220 

primary domestication, we found categories associated with “defense-related programmed cell 221 

death, modulated by biotic interactions”, indicating an enhanced plant hypersensitive response 222 

to pathogens. This can be interpreted as a consequence of the transition from the natural 223 

growing environment of the wild genotypes to agroecosystems characterized by high-density 224 

domesticated crop monocultures. In this context, crops face higher disease pressure from crop-225 

specific pathogens (Savary et al., 2019) and therefore induce a hypersensitive response, which 226 

can lead to programmed cell death and necrosis as a defense mechanism. It is important to note 227 

that pathogen defense mechanisms in plants often overlap with the regulation of beneficial 228 

symbiotic interactions, therefore, one expects a trade-off between traits associated with 229 

symbiosis and innate immunity (Porter and Sachs, 2020). Moreover, domesticated crops are 230 

less able to fully benefit from microbial interactions than their wild relatives, as observed in a 231 

comparative study of bread wheat landraces as well as old and modern varieties (Valente et al., 232 

2023). One contributing factor is the widespread use of high-input agricultural practices, 233 

because the availability of fertilizers reduces the need for plants to invest in symbiotic 234 

relationships (Martín-Robles et al., 2018). Additionally, certain target traits in plant breeding, 235 

such as phytohormones that regulate flowering time and plant height, can have unintended 236 

effects on beneficial symbiosis due to pleiotropy (Sawers et al., 2018). 237 

Among the genes found to be under selection during secondary domestication, we observed 238 

the enrichment of categories associated with amino acid metabolism, particularly those related 239 

to the “lysine catabolic process” (Supplementary Figure S2). This included genes encoding the 240 

bifunctional enzyme lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). 241 

This enzyme is ubiquitous in plants and animals, and represents the key step in lysine 242 

catabolism via the saccharopine pathway (SACPATH). The structure and transcription of the 243 

LKR/SDH gene has been studied in T. durum and compared with other plants, showing species-244 

dependent differences in expression levels including lineage-specific differences between 245 

monocots and dicots (Anderson et al., 2010). Lysine is the first limiting essential amino acid 246 

in cereal grains and its catabolic pathway has been targeted to increase the lysine content of 247 
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maize and rice seed (Houmard et al., 2007; Frizzi et al., 2008; Long et al., 2013). Generally, 248 

the quantity of lysine-containing proteins in cereal seeds is much lower than that of storage 249 

proteins devoid of lysine, such as prolamins (specifically gliadin in wheat). The SACPATH 250 

seems to channel the lysine skeleton into the production of glutamic acid, which is a precursor 251 

of proline, one of the most abundant amino acids in glutens (Arruda et al., 2000). 252 

General changes in amino acid metabolism during domestication have been observed in other 253 

crops based on nucleotide data, including sunflower (Chapman et al., 2008), maize (Swanson-254 

Wagner et al., 2012) and common bean (Bellucci et al., 2014). Evolutionary metabolomics has 255 

also revealed signatures of selection affecting amino acid metabolism during secondary 256 

domestication (Beleggia et al., 2016). In durum wheat, domestication was linked to the 257 

selection of a specific protein composition and led to a notable decrease in the diversity of 258 

gliadin and glutenin subunits, strongly correlating with grain yield and the technological 259 

properties of gluten (Laidò et al., 2013). The analysis of spring wheat genotypes has shown 260 

that the SACPATH is upregulated in response to drought stress, and is significantly more active 261 

in drought-tolerant compared to drought-susceptible genotypes (Michaletti et al., 2018). This 262 

may reflect the role of proline, which can be produced from this pathway, as a major constituent 263 

of storage proteins and one of the main osmoprotectants produced as a response to stress (Kavi 264 

Kishor et al., 2022). These findings suggest that selection for stress-tolerant genotypes as well 265 

as seed protein composition during wheat domestication influenced the expression of 266 

SACPATH genes. 267 

 268 

Changes in nitrogen availability trigger gene expression, resulting in a twofold increase 269 

in the number of differentially expressed genes  in durum wheat compared to emmer and 270 

wild emmer wheat. 271 

We identified DEGs in each subspecies that discriminated between high N conditions and N 272 

starvation using a stringent pipeline and strict thresholds (p-adjust < 0.001) to reduce the 273 

number of false positives. We found 3,326 DEGs in wild emmer, 3,305 in emmer and 5,901 in 274 

durum wheat, with more upregulated than downregulated genes in all three subspecies. Durum 275 

wheat had the highest percentage of private DEGs (~42%, 2,479), whereas similar numbers 276 

were found in wild emmer (~14%, 458) and emmer (~15%, 486). Wild emmer and emmer 277 

shared ~23% (749) and ~21% (700), respectively, of their DEGs with durum wheat. The 278 

percentage of DEGs shared only between wild emmer and emmer was 4% (146), but almost 279 
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60% of wild emmer and emmer DEGs and ~33% of durum wheat DEGs were shared by all 280 

three taxa (Figure 4a). The proportions of private and shared DEGs were preserved when we 281 

separated them into upregulated and downregulated subsets (Figure 4b,c). In all three taxa, 282 

most DEGs were located on chromosomes 2A, 2B, 3A, 3B, 5A and 5B, each carrying > 7.5% 283 

of the DEGs; in contrast, chromosomes 6A and 6B each contained only ~5% of the DEGs 284 

Supplementary Figure S3. 285 

 286 

Figure 4: Differentially expressed genes (DEGs) when comparing high and low nitrogen 287 

conditions within each subspecies. Venn diagrams showing a Total set of DEGs; b 288 

upregulated DEGs only; and c downregulated DEGs only. 289 

 290 

GO enrichment analysis of the DEGs meeting the threshold FDR < 0.05 revealed 23 macro-291 

categories in wild emmer, 21 in emmer and 25 in durum wheat (Supplementary Figure S4). 292 

The main differences between the three subspecies were observed for categories related to 293 

“signaling”, “regulation of biological process”, “developmental process”, and “metabolic 294 

process” Supplementary Table S5. We observed the uniform enrichment of GO categories 295 
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associated with upregulated genes in all three subspecies, including terms linked to N and 296 

amino acid metabolism as well as carbon metabolism and photosynthesis (Supplementary 297 

Table S5). In contrast, the enrichment of GO categories associated with downregulated genes 298 

was more selective, with some GO categories related to N metabolism enriched only in durum 299 

wheat, including GO:0006807 and GO:0034641 (N compound and cellular N compound 300 

metabolic process, respectively) and GO:0006536 “glutamate metabolic process” 301 

(Supplementary Table S5). Functional annotations of the most strongly modulated genes (top 302 

5% |log2FC| values) are reported in Supplementary Table S6. 303 

Our data confirm, on a larger set of samples, earlier observations on the response of wheat to 304 

N starvation based on transcriptomics and metabolomics data36–38. These earlier studies 305 

included one emmer and one durum wheat genotype also present in our sample set (Beleggia 306 

et al., 2021), but also considered the durum wheat cultivar Svevo (Curci et al., 2017) and 307 

various bread wheat cultivars (Sultana et al., 2020). As expected, genes involved in N 308 

metabolism were modulated during N starvation. Among the key genes for N assimilation, 309 

those encoding asparagine synthetase and nitrite reductase were upregulated in every taxon, 310 

whereas those encoding glutamate carboxypeptidase and glutamate decarboxylase were 311 

downregulated. We observed contrasting profiles for genes encoding ureide permease 312 

(encoding a ureide transporter), which were strongly upregulated in all three subspecies in 313 

response to N stress, whereas genes encoding nitrate transporters were strongly downregulated. 314 

The modulated genes also included transporters of amino acids and other nutrients. 315 

N starvation also influenced other metabolic pathways, revealing many further DEGs involved 316 

in C metabolism, especially fatty acid metabolism, glycolysis, photosynthesis and the 317 

tricarboxylic acid (TCA) cycle. About 10% of the highest-ranking DEGs represented 318 

transcription factors and protein kinases. The most common functional category (accounting 319 

for 17% of annotated DEGs) reflected the general stress response to N starvation, including the 320 

mitigation of oxidative stress and detoxification. Examples included genes encoding 321 

cytochrome P450s, glutaredoxin family, glutathione S-transferases and peroxidases 322 

(Supplementary Table S6). 323 

To compare gene expression between the three taxa while taking the environmental effects into 324 

account, we also identified DEGs between each pair of subspecies under all N conditions. 325 

Accordingly, we compared emmer vs wild emmer (primary domestication, high and low N), 326 

durum wheat vs emmer (secondary domestication, high and low N) and durum wheat vs wild 327 

emmer (cumulative effect, high and low N) (Supplementary Figure S5). The wild emmer vs 328 
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emmer comparison revealed few DEGs regardless of N availability (12 and 11 DEGs under 329 

high and low N conditions, respectively), whereas the emmer vs durum wheat comparison 330 

revealed 41 DEGs associated with high N and 29 associated with N starvation, and the wild 331 

emmer vs durum wheat comparison revealed 46 DEGs associated with high N and only 10 332 

associated with N starvation. These data indicate that the number of DEGs increases during 333 

domestication but only when there is a sufficient N supply (Supplementary Figure S5). 334 

Interestingly, there were more upregulated than downregulated genes in all pairwise 335 

comparisons under high N conditions (~65%) but the proportion increased under N starvation 336 

conditions, particularly for the comparison of wild emmer vs durum wheat (90%). The 337 

preponderance of upregulated genes during domestication has also been observed in maize 338 

(Lemmon et al., 2014), whereas domestication was shown to increase the proportion of 339 

downregulated genes in common bean (Bellucci et al., 2014), egg-plant (Page et al., 2019) and 340 

sorghum (Burgarella et al., 2021) landraces compared to wild relatives. The absence of 341 

consistent patterns suggests that the evolution of domesticated phenotypes is driven by specific 342 

processes that are unique to each crop. 343 

Among the 102 DEGs (Supplementary Table S7) found in at least one of the six pairwise 344 

comparisons between subspecies, 35 were also found among DEGs identified between 345 

contrasting N conditions and of which 24 were proposed to be under selection. Overall, six 346 

genes were identified in all three experiments (i.e., differentially expressed between subspecies 347 

and between contrasting N conditions, and showed evidence of selection). 348 

 349 

Selection shaped the expression profiles of genes modulated by nitrogen availability 350 

The 6,991 DEGs found in at least one species when comparing the contrasting N conditions 351 

included 101 putatively under selection, which are candidates for the adaptive response to N 352 

availability. We applied PCA to the normalized read counts in order to investigate if the 353 

different genotype groups can be separated based on their gene expression. Initially we 354 

incorporated all 6,991 DEGs (Figure 5a,b) before focusing on the subset of 101 DEGs that 355 

were also putatively under selection (Figure 5c,d). When considering all DEGs, PC1 did not 356 

completely separate the durum wheat genotypes from the other taxa, in contrast to the clear 357 

separation observed for the SNP data (Figure 1), and this was particularly evident during N 358 

starvation (Figure 5b). There was also a moderate degree of overlap between the wild emmer 359 

and emmer genotypes along PC2. However, when we focused on the DEGs under selection, 360 
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PC1 separated the durum wheat genotypes into a densely clustered group (as observed for the 361 

SNP data) under both N conditions, and PC2 separated the wild emmer and emmer genotypes 362 

more clearly, especially under high N conditions (Figure 5c,d). 363 

 364 

Figure 5: Principal component analysis of differentially expressed genes when comparing 365 

high and low nitrogen conditions within each subspecies. a,b Plots based on all 6,991 DEGs 366 

(not filtered): a high nitrogen conditions and b low nitrogen conditions. c,d Plots based on 101 367 

DEGs that are also putatively under selection: c high nitrogen conditions and d low nitrogen 368 
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conditions. Samples are represented by taxa-based colored dots. Labels show the accession 369 

name of each genotype. 370 

 371 

The integration of selection signatures (based on QST/FST values) and differential expression 372 

analysis uncovered a set of 101 candidate genes that are interesting due to their potential roles 373 

in the domestication and diversification of cultivated wheat, specifically in relation to N 374 

availability. Functional annotation (Supplementary Table S8) revealed upregulated genes 375 

involved in carbon (C) metabolism as well as some transcription factors and transporters, as 376 

well as both upregulated and downregulated genes responsible for general stress responses and 377 

N metabolism, specifically those encoding enzymes involved in amino acid metabolism, such 378 

as methionine aminopeptidase, aspartokinase and glutamate dehydrogenase (GDH). The latter 379 

is particularly noteworthy because, in addition to its modulation in response to different N 380 

conditions and the presence of selection signatures, it was also upregulated in the comparison 381 

between wild emmer and durum wheat under high N conditions. GDH is a key enzyme 382 

involved in N metabolism and N/C balance (Miflin and Habash, 2002). This is supported by 383 

the co-localization of quantitative trait loci for GDH activity and physiological traits associated 384 

with the flag leaf lamina, such as soluble protein and amino acid content, as well as flag leaf 385 

area and dry weight (Fontaine et al., 2009). Selection signatures were also identified in the 386 

GDH gene when comparing landraces with old and modern durum wheat cultivars (Taranto et 387 

al., 2020). Our results confirm that N metabolism has been a key driver during the evolutionary 388 

history of wheat, particularly the central role of glutamate in the process of domestication. This 389 

was also suggested by a combined transcriptomics and metabolomics study, showing that 390 

glutamate and γ-aminobutyric acid (mainly synthetized from glutamate) are central to the 391 

genotype-specific response of emmer and durum wheat to N starvation (Beleggia et al., 2021). 392 

 393 

We have shown that significant changes occurred at the nucleotide and gene expression levels 394 

during the domestication of tetraploid wheat, taking into account the environmental variable of 395 

N availability. We confirmed that more nucleotide diversity has been lost during secondary 396 

domestication compared to primary domestication, and revealed a parallel trend in the loss of 397 

gene expression diversity associated to the domestication process, with a stronger effect due to 398 

secondary domestication and unveil a parallel different impact of primary and secondary 399 

domestication on the loss of expression diversity, which appears to be related to N availability 400 
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in the durum wheat selection environment. We present evidence that selection may have 401 

operated in different directions during primary and secondary domestication, the former 402 

involving changes related to biotic interactions and the latter related to amino acid metabolism. 403 

By screening a large number of genotypes, we found a major transcriptional response in durum 404 

wheat (compared to emmer and wild emmer) to changes in N availability. Finally, through the 405 

innovative combination of RNA-Seq analysis and the estimate of quantitative genetics 406 

parameters, we developed a pipeline to identify selection signatures and phenotypic plasticity 407 

in gene expression data based on evolvability and QST/FST scores. Our findings, elucidating the 408 

role of N in tetraploid wheat domestication and adaptive response can guide the development 409 

of innovative strategies for crop improvement, resource use efficiency, and environmental 410 

sustainability. 411 

 412 

Materials and methods 413 

Plant material and experimental design 414 

The study included 32 tetraploid wheat genotypes, comprising 10 accessions of wild emmer 415 

(T. turgidum ssp. dicoccoides), 10 accessions of emmer (T. turgidum ssp. dicoccum), and 12 416 

accessions of durum wheat (T. turgidum ssp. durum) (Supplementary Table S1). The samples 417 

we analysed were part of a larger experiment, conducted in October 2012 and described 418 

elsewhere (Gioia et al., 2015). Briefly, wheat genotypes were grown for 4 weeks under high 419 

nitrogen (N+) and nitrogen starvation (N–) conditions in the Phytec Experimental Greenhouse 420 

at the Institute of Biosciences and Geosciences (IBG-2), Plant Sciences Institute, 421 

Forschungszentrum Jülich GmbH, Germany (50°54′36′′ N, 06°24′49′′ E). Seeds of uniform 422 

size and mass were visually selected, surface sterilized (1% (w/v) NaClO for 15 min) and pre-423 

germinated. After germination, seedlings showing uniform growth (seminal root length, 1–2 424 

cm) were transferred to soil-filled rhizoboxes, which were placed in the automated 425 

GROWSCREEN-Rhizo phenotyping system available at IBG-2. We used a Type 0 manually 426 

sieved peat soil (Nullerde Einheitserde; Balster Einheitserdewerk, Frondenberg, Germany), 427 

which provided low nutrient availability (ammonium N and nitrate N concentrations of < 1.0 428 

and < 1.0 mg l−1, respectively). All plants were watered twice daily with 400 ml of tap water 429 

and were supplied three times per week with 200 ml of modified Hoagland solution(Hoagland 430 

and Arnon, 1950) with or without added N. For the N starvation conditions, KNO3 and 431 

Ca(NO3)2 were replaced with K2SO4 and CaCl2·6(H2O), respectively. The experiment was 432 
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carried out under natural lighting in the greenhouse, with an air temperature of 18–24 °C and 433 

a relative humidity of 40–60%. For each N treatment, we used two replicates of each genotype 434 

with two plants per replicate (four plants per genotype in total). After 4 weeks, leaves were 435 

pooled from two plants of the same genotype growing in the same rhizobox. Accordingly, four 436 

independent biological replicates (two replicates per N condition) were produced for each 437 

genotype, with the exception of wild emmer IG 46504, PI 233288, PI 466991, PI 538656, 438 

emmer MG 5293/1, and durum wheat Creso, Pedroso and Trinakria, for which only three 439 

replicates were available, and emmer Molise Sel. Colli and durum wheat Simeto, for which 440 

eight replicates were available. The tissues were immediately frozen in liquid N2 and stored at 441 

−80 °C. Further details of the experiment and growth conditions are provided elsewhere(Gioia 442 

et al., 2015). 443 

RNA extraction and sequencing 444 

RNA was extracted from 100 mg of frozen ground leaves per replicate using the Spectrum 445 

Plant Total RNA kit (Sigma-Aldrich, St Louis, MO, USA) followed by treatment with RNase-446 

free DNase using the On-Column DNase I Digestion Set (Sigma-Aldrich). RNA integrity and 447 

purity were assessed by agarose gel electrophoresis and a Bioanalyzer 2100, respectively 448 

(Agilent/Bonsai Technologies, Santa Clara, CA, USA). Only RNA samples with an RNA 449 

integrity number > 8.0 were considered suitable for analysis. 450 

Library construction and RNA sequencing were carried out using the Illumina mRNA-Seq 451 

platform at the Montpellier Genomix sequencing facility (http://www.mgx.cnrs.fr) as 452 

previously described (David et al., 2014). Briefly, RNA samples were processed using TruSeq 453 

RNA sample preparation kits v2 (Illumina, San Diego, CA, USA). Libraries were quantified 454 

by real-time PCR using the KAPA Library Quantification Kit for Illumina Sequencing 455 

Platforms (Roche, Basel, Switzerland), followed by quality control using a DNA 100 Chip on 456 

a Bioanalyzer 2100. Cluster generation and sequencing were carried out using the Illumina 457 

HiSeq 2000 instrument and TruSeq PE Cluster Kit v3, following the Illumina 458 

PE_Amp_Lin_Block_V8.0 recipe, and Illumina TruSeq PE Cluster v3-cBot-HS kits with the 459 

2 × 100 cycles, paired-end, indexed protocol, respectively (David et al., 2014). 460 

RNA-Seq library processing and mapping 461 

We pre-processed 128 raw paired-end RNA-Seq libraries (David et al., 2014). Cutadapt 462 

(Martin, 2011) was then used to remove adaptor sequences and trim the end of reads with low 463 

quality scores (parameter -q 20) while keeping reads with a minimum length of 35 bp. Reads 464 
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with a mean quality score < 30 were discarded, and orphan reads (whose mates were discarded 465 

in the previous filtering steps) were removed (David et al., 2014). The final quality of trimmed 466 

and filtered reads was assessed using FastQC (Andrews, 2014). 467 

The bread wheat (Triticum aestivum cv. Chinese Spring) genome assembly IWGSC RefSeq 468 

v2.1, along with the corresponding genome annotation, were downloaded from the IWGSC 469 

data repository hosted by URGI-INRAE (https://wheat-urgi.versailles.inra.fr/) and used as a 470 

reference to map each cleaned library to the A and B sub-genomes. The bread wheat genome 471 

was chosen deliberately to ensure the inclusion of an outgroup species that is closely related to 472 

the subspecies in the panel. By doing so, we aimed to avoid bias that could arise from selecting 473 

only one subspecies among our panel of accessions. We have confidence in this strategy 474 

because the T. aestivum A and B subgenomes are derived from the tetraploid species included 475 

in the study. 476 

STAR v2.7.0e (Dobin et al., 2013) was used for read mapping with the --quantMode 477 

TranscriptomeSAM and --quantTranscriptomeBan Singleend options. The output alignments 478 

were translated into transcript coordinates (in addition to alignments in genomic coordinates), 479 

allowing insertions, deletions and soft-clips in the transcriptomic alignments. The 480 

transcriptomic alignments were used as inputs for salmon v1.6.0 (Patro et al., 2017) to quantify 481 

gene expression. Raw read counts were computed for all genes in each sample and, to filter out 482 

weakly-expressed transcripts, only genes with at least 1 count per million (CPM) in at least 10 483 

samples (of the same subspecies) were retained. This was calculated separately in each of the 484 

three subspecies and the raw counts of the filtered genes in each subspecies were then combined 485 

for downstream analysis, for a total of 32,358 genes (Supplementary Table S2). 486 

Variant identification 487 

Variants were called by applying BCFtools v1.15 (previously SAMtools) (Danecek et al., 488 

2021) to the alignment bam files. The “bcftools mpileup” command was used to determine the 489 

genotype likelihoods at each genomic position, with a minimum alignment quality of 20 and a 490 

minimum base quality of 30. The actual calls were obtained using the “bcftools call” command. 491 

The resulting VCF file was filtered using the “bcftools view” command, removing indels and 492 

keeping only sites covered by at least three reads in all genotypes. Subsequently, only biallelic 493 

SNPs with maximum values of 50% missingness and a 1% minor allele frequency were 494 

retained. To identify private and shared SNPs among the different subspecies, every possible 495 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2023.08.31.555682doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555682
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

comparison of the three subsampled VCF files (wild emmer, emmer and durum wheat) was 496 

carried out using the “bcftools isec” command. 497 

Population genetics analysis 498 

Variants were filtered (one SNP per 500 kb) using the VCFtools --thin 500000 option (v0.1.17) 499 

(Danecek et al., 2011) and then converted into ped format with PLINK (v1.90p) (Purcell et al., 500 

2007). PLINK was also used to compute genetic distances between individuals with the --501 

distance-matrix flag. The output matrix was used as input for PCA with the cmdscale function 502 

of R (v4.2.1) (R Core Team, 2022). 503 

Genetic diversity statistics, including nucleotide diversity (π and θ) (Tajima, 1983; Watterson, 504 

1975) were computed on the alignment bam files for each subspecies, from the folded site 505 

frequency spectra using ANGSD(Korneliussen et al., 2014). First, the doSaf function was used 506 

to estimate per-site allele frequencies (Saf) then realSFS was used to get the site frequency 507 

spectra. The statistical loss of diversity (Vigouroux et al., 2002) was used to test the impact of 508 

primary and secondary domestication on the molecular diversity of the three subspecies. For 509 

primary domestication, the statistic was computed as [1 − (xemmer/xwild)], where xemmer and xwild 510 

are the diversities in emmer and wild emmer, respectively, measured using π, θ and D. If xemmer 511 

was higher than xwild, then the parameter was calculated as [(xwild/xemmer) – 1]. The loss of 512 

diversity due to secondary domestication in durum wheat versus emmer was calculated as [1 − 513 

(xdurum/xemmer)], where xdurum and xemmer are the diversities in durum wheat and emmer, 514 

respectively. If xdurum was higher than xemmer, then the parameter was calculated as 515 

[(xemmer/xdurum) – 1]. 516 

We calculated FST for each pair of populations using ANGSD (Korneliussen et al., 2014). Saf 517 

and 2D SFS were calculated as for nucleotide diversity, then the fst index function was used to 518 

obtain the global estimate. To get an FST value for each gene in our dataset, we used the fst 519 

print function, which prints the posterior expectation of genetic variance between populations 520 

(called A), and total expected variance (called B) for every locus. We then computed the 521 

weighted FST as the ratio of the summed As and summed Bs for every gene region, using an ad 522 

hoc R script. 523 

Expression profiles, heritability and QST analysis 524 

Raw read counts of the 32,358 genes were normalized using the vst method allowing the 525 

additive coefficient of variation (CVA) (standard deviation/mean) to be calculated for the two 526 

N conditions in every subspecies, averaging the biological replicates of every genotype. The 527 
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statistical loss approach (Vigouroux et al., 2002) was then applied to test the loss of expression 528 

diversity in the different groups, as previously reported (Bellucci et al., 2014). The statistical 529 

significance of the differences between each CVA value and the percentage loss of expression 530 

diversity was determined using the Mann-Whitney test in R (v4.2.1) (R Core Team, 2022) with 531 

the function wilcox.test. 532 

To compute heritability, the raw counts of each subspecies under each condition were first 533 

normalized using the trimmed mean M-values normalization method in the R package 534 

edgeR(Robinson et al., 2010) and the voom normalization method in the R package 535 

limma(Smyth, 2005). To determine the variance component of each factor and heritability, the 536 

following model was considered: 537 

𝑌𝑖𝑗𝑘𝑙 = 𝑆𝑖 + 𝐺𝑗(𝑖) + 𝑁𝑘 + (𝑆 × 𝑁)𝑖𝑘 + (𝐺 × 𝑁)𝑗𝑘(𝑖) + 𝜀𝑙(𝑖𝑗𝑘),  538 

where 𝑌𝑖𝑗𝑘𝑙 is the normalized gene expression level, 𝑆𝑖 is the species factor, 𝐺𝑗(𝑖) is the genotype 539 

factor nested in species, 𝑁𝑘 is the N level factor, (𝑆 × 𝑁)𝑖𝑘 is the interaction between species 540 

and N levels, (𝐺 × 𝑁)𝑗𝑘(𝑖) is the interaction between genotypes and N levels, and 𝜀𝑙(𝑖𝑗𝑘) is the 541 

residual error. All factors were treated as random effects in the model except the intercept, 542 

which was a fixed effect. The linear mixed models were fitted using the lmer function in R 543 

package lme4 based on the normalized data of each transcript(Bates et al., 2015). The 544 

heritability (H2) was calculated as 𝐻2 =
𝑉𝑆+𝑉𝐺

𝑉𝐴
, where 𝑉𝐴 = 𝑉𝑆 + 𝑉𝐺 + 𝑉𝑁 +

𝑉𝑆×𝑁

𝑛
+

𝑉𝐺×𝑁

𝑛
+

𝑉𝜀

𝑛
, 545 

𝑉𝑆 is the variance of species, 𝑉𝐺 is the variance of genotype, 𝑉𝑁 is the variance of N level, 𝑉𝑆×𝑁 546 

is the variance of species and N level interaction, 𝑉𝐺×𝑁 is the variance of genotype and N level 547 

interaction, 𝑉𝜀 is the residual variance, and 𝑛 is the number of N levels. 𝑉𝑆×𝑁 and 𝑉𝐺×𝑁 represent 548 

the genotype × environment interaction variance components at the species and genotype 549 

(nested in species) levels, respectively. 550 

QST was calculated between pairs of the three subspecies under low and high N levels 551 

separately. The wild emmer vs emmer comparison revealed the effects of primary 552 

domestication, the emmer vs durum wheat comparison revealed the effects of secondary 553 

domestication, and the wild emmer vs durum wheat comparison revealed the cumulative effect 554 

of domestication. To this end, the model can be reduced to 𝑌𝑖𝑗𝑙 = 𝑆𝑖 + 𝐺𝑗(𝑖) + 𝜀𝑙(𝑖𝑗) at each N 555 

level. The QST value was calculated as 𝑄𝑆𝑇 =
𝑉𝑆

𝑉𝑆+𝑉𝐺
, the ratio of between-species and within-556 

species variance. 557 
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QST distributions were used to perform a “selection scan” on a restricted number of genes. First, 558 

genes were filtered for H2 ≥ 0.7 and, in order not to lose genes whose expression was strongly 559 

influenced by N availability, also the species × environment (S×N) variance component was 560 

evaluated (i.e., every species subgroup × N condition), retaining those genes meeting the 561 

threshold S×N ≥ 0.2 (Supplementary Figure S1). Successively, we obtained six different QST 562 

value distributions (QST WILD EMMER VS EMMER, QST EMMER VS DURUM WHEAT and QST WILD EMMER VS 563 

DURUM WHEAT, each for high and low N conditions) and we retained the 5% upper tail of every 564 

distribution. Finally, we compared FST and QST values for every gene, discarding FST values < 565 

0.01. We confirmed that every retained gene satisfied the condition QST > FST allowing it to be 566 

classed as undergoing directional selection. 567 

Differential expression analysis 568 

Differential gene expression was assessed by analysing the pre-processed raw count dataset 569 

(32,358 genes). We identified DEGs by comparing (i) two conditions (i.e., high and low N 570 

levels) within each subspecies, and (ii) pairs of the three subspecies under the same N levels, 571 

which considered the genotypes nested in species. For the two scenarios, we used three 572 

different approaches to detect DEGs: one linear model-based approach implemented in the R 573 

package limma (Smyth, 2005), and two Poisson model-based approaches implemented in the 574 

R packages edgeR (Robinson et al., 2010) and DESeq2 (Love et al., 2014). In all approaches, 575 

the normalization of raw counts was applied by default in the package before differential 576 

analysis. To reduce the number of false positives, the intersection of DEGs resulting from the 577 

three approaches was retained (Zhang et al., 2014; Rapaport et al., 2013) and the significance 578 

threshold was set to an adjusted p-value < 0.001. The DEGs between high and low N levels in 579 

at least one subspecies were used for PCA following the DESeq2 approach (Love et al., 2014), 580 

first using all the DEGs, then repeating the analysis on the DEGs considered to be under 581 

selection. At each step, counts were normalized using the vst method before the plotPCA 582 

function was applied to define principal components 1 and 2 for the two N levels separately. 583 

GO enrichment analysis 584 

Enriched terms in the DEGs and genes under selection were identified using agriGO (v.2.0) 585 

(Tian et al., 2017) with T. aestivum reference annotations and the following parameters: 586 

hypergeometric test, multiple hypothesis test adjustment according to the Hochberg FDR 587 

procedure at significance level < 0.05 and minimum number of mapping entries of 3. 588 

 589 
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deposited in the Sequence Read Archive (SRA) of the National Center of Biotechnology 591 

Information (NCBI) under BioProject number PRJNA1015013. 592 
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Figure legends 802 

Figure 1: Principal component analysis of 32 wheat genotypes based on single-nucleotide 803 

polymorphisms (SNPs). The first two principal components (PC1 and PC2) are shown. The 804 

three colors represent different taxa. Labels show the accession name of each genotype. 805 

Figure 2: Density plots of the additive coefficient of variation (CVA) in the three wheat 806 

taxa. Comparison of the estimated density functions of the CVA in gene expression, calculated 807 

using all 32,358 genes. a High nitrogen conditions. b Low nitrogen conditions. Dashed lines 808 

represent the averaged CVA value, colored according to the different taxa. 809 

Figure 3: FST and QST distributions. a Boxplots showing the gene locus FST distribution for 810 

every subspecies pairwise comparison. b Boxplots showing the transcript QST distribution for 811 

every subspecies pairwise comparison under low nitrogen and high nitrogen conditions, 812 

represented by empty and hatched grayscale bars, respectively. 813 

Figure 4: Differentially expressed genes (DEGs) when comparing high and low nitrogen 814 

conditions within each subspecies. Venn diagrams showing a Total set of DEGs; b 815 

upregulated DEGs only; and c downregulated DEGs only. 816 

Figure 5: Principal component analysis of differentially expressed genes when comparing 817 

high and low nitrogen conditions within each subspecies. a,b Plots based on all 6,991 DEGs 818 

(not filtered): a high nitrogen conditions and b low nitrogen conditions. c,d Plots based on 101 819 

DEGs that are also putatively under selection: c high nitrogen conditions and d low nitrogen 820 

conditions. Samples are represented by taxa-based colored dots. Labels show the accession 821 

name of each genotype. 822 

  823 
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Supplementary Materials 824 

Supplementary Figure S1: Workflow of gene expression selection scanning. 825 

Supplementary Figure S2: GO categories of genes under selection. 826 

Supplementary Figure S3: Genome-wide distribution of differentially expressed genes 827 

(DEGs) in the comparison between contrasting nitrogen conditions within each subspecies. 828 

Supplementary Figure S4: GO classification of differentially expressed genes (DEGs) in the 829 

comparison between contrasting nitrogen conditions within each subspecies. 830 

Supplementary Figure S5: Differentially expressed genes (DEGs) between subspecies.  831 

 832 

Supplementary Table S1: List of the 128 samples and read mapping results. 833 

Supplementary Table S2: Raw read counts of the 32,358 genes. 834 

Supplementary Table S3: Mean CVA in gene expression for the three wheat taxa and loss of 835 

expression diversity. The loss of expression diversity is shown for two gene subgroups (6,991 836 

DEGs and 25,367 non-DEGs). 837 

Supplementary Table S4: List of the 967 genes retained from the “selection scan”. Each gene 838 

is accompanied by its functional annotation and the group in which the selection signal was 839 

detected. 840 

Supplementary Table S5: List of GO “Biological process” and “Molecular function” 841 

subcategories for differentially expressed genes (DEGs). GO subcategories are shown for 842 

upregulated and downregulated genes under different nitrogen conditions for each subspecies, 843 

satisfying the criterion p ≤ 10–5. 844 

Supplementary Table S6: Functional annotations of the differentially expressed genes 845 

(DEGs) between nitrogen conditions in each subspecies. Genes with the top 5% |log2FC| values 846 

are shown. 847 

Supplementary Table S7: Functional annotations of the differentially expressed genes 848 

(DEGs) between subspecies under all nitrogen conditions. The corresponding log2FC values 849 

are shown. 850 
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Supplementary Table S8: Functional annotation of the 101 genes selected by the integration 851 

of selection signatures and differential expression analysis between nitrogen conditions. 852 
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