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Abstract 21 
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis. Understanding the 22 
multiple mechanisms by which the tumour evades immune control, and how these mechanisms may 23 
be disrupted is critical to developing targeted immunotherapies. Previous studies have shown that 24 
higher lymphocyte infiltration is associated with better survival, and here we investigated what 25 
mediates these differences. We performed a comprehensive analysis of PDAC-associated immune 26 
cells using single cell multi-omics coupled with re-analysis of public PDAC scRNA-seq datasets. We 27 
introduce novel single-cell and repertoire analyses that have uncoupled diverse roles and 28 
contributions of various immune cell populations within different tumour microenvironments (TMEs). 29 
They revealed clear distinctions in the clonal characteristics among different patient groups, provided 30 
valuable insights into the mechanisms of immune cell migration and tissue adaptation underlying 31 
these disparities. These results point to differential CD4 polarisation of intra-tumoural T cells, 32 
differential B cell differentiation, GC reactions, antigen presentation pathways, and distinct cell-cell 33 
communication between the myeloid-enriched and adaptive-enriched groups. Overall, we identified 34 
two major distinct themes for future immune intervention within PDAC patients between those with 35 
higher adaptive versus myeloid immune cell infiltration. 36 
 37 
Introduction 38 
Pancreatic ductal adenocarcinoma has the worst survival of any common human cancer, with a 5-year 39 
survival of below 10%1. The mainstay of treatment is chemotherapy, however, approximately 15% of 40 
patients benefit from surgical resection, which can potentially provide cure in a subset of those 41 
patients. Despite the introduction of immunotherapy, the benefit in PDAC is minimal2-6, and so there 42 
is an unmet need to develop better treatments for patient benefit. 43 
 44 
Previous work from our group and others has suggested that there is a sizable immune infiltrate in 45 
these tumours and understanding the nature of this infiltrate is critical for developing pragmatic 46 
immunotherapy strategies for PDAC7-10. We have previously shown that patients with high tumour 47 
lymphocyte infiltration at resection have a better prognosis than those that do not8. Furthermore, 48 
after characterising tumour infiltrating lymphocytes (TILs) in PDAC, we see that even though there is 49 
limited exhaustion in a subset of CD8 T cells, we observed that a significant number of CD4 and CD8 T 50 
cells were senescent7,8. Additionally, we see a activated Treg expressing checkpoints TIGIT, ICOS, 51 
CTLA4 and CD397,9 suggesting a strongly immunosuppressive microenvironment. This activation was 52 
determined by the high expression of the checkpoints TIGIT, ICOS, CTLA4 and CD397,9. 53 
 54 
Other groups have made recent observations regarding the intra-tumoural immune infiltrate11. Peng 55 
et al. did the first large scale single cell analysis of PDAC and demonstrated that there was a complex 56 
immune infiltrate, and they highlighted that T cells were the dominant immune cell in the TME10. 57 
Steele et al. performed a second large single cell experiment and demonstrated that the predominant 58 
CD8 T cell exhaustion marker was TIGIT12. Schlack et al, have performed single cell sequencing with 59 
TCR sequencing. They have identified a heterogeneous lymphocyte infiltrate and trajectory analysis 60 
demonstrated similarities between inhibitory and dysfunctional populations13. Brouwer et al had 61 
undertaken a single cell CyTOF analysis using a 41-marker panel focused on infiltrating lymphocytes. 62 
They found low levels of tissue resident cytotoxic CD8 T cells and they concurrently have low levels of 63 
PD1. Interestingly, the group has also found high levels of activated Tregs and B cells14. Liudahl et al. 64 
used an immune focused multiplex IHC panel to evaluate leukocyte populations in a cohort of 135 65 
PDAC patient samples. They demonstrated that the T cell to CD68 ratio is important in the treatment 66 
naive setting to demonstrate prognostic benefit15. 67 
 68 
There is a growing body of evidence describing a distinction between lymphocyte- and myeloid-69 
enriched tumours and understanding what is driving this is critical to therapeutic interventions. 70 
Despite the growing number of datasets aiming at defining the nature of the different immune subsets 71 
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within PDAC TME, we still lack an understanding of the clonal evolution and differentiation pathways 72 
driving these populations. PDAC has been traditionally considered to have a low mutation rate, 73 
suggesting a low prevalence of antigens to stimulate the immune response. However, seeing the 74 
presence of activated and exhausted cells within the TME, and associations between cytotoxic CD8 T 75 
cells, B cells and neoantigen quality with patient survival16,17 suggests the presence of specific stimuli 76 
and warrants the investigation of the clonal distribution and evolution of both T and B cells. Multiple 77 
previous studies have shown that higher adaptive immune cell infiltration is associated with marginally 78 
better survival8,18, however, both adaptive and myeloid enriched PDAC patients have dismal 79 
prognosis6. This study’s objective is to elucidate the distinctive features of adaptive immune responses 80 
in patients’ tumours with high levels of adaptive and myeloid cell populations and to identify the 81 
specific immune suppression pathways that set apart the myeloid-high and adaptive-high patient 82 
groups. These insights will help in patient stratification and the development of personalised 83 
therapeutic approaches. Furthermore, the nature of B and T cells moving between the tumour and 84 
draining lymph nodes is important for mounting effective anti-tumoural immune responses and 85 
establishing long-term systemic memory19. However, the signals responsible for B and T cell tumour 86 
infiltration, retention and egress, such as adhesion and chemokine milieu, are unknown. We aimed to 87 
explore the nature and determinants of B and T cell immunosurveillance in PDAC to identify pathways 88 
that can be targeted to improve immune cell trafficking. 89 
 90 
To this end, we performed the largest and most comprehensive analysis of PDAC-associated 91 
lymphocytes from tumour and blood to date using single cell multi-omics analysis coupled with the 92 
re-analysis of public PDAC scRNA-seq datasets10,12. Importantly, we developed and applied novel single 93 
cell analyses to uncouple the distinct roles and contributions different immune cell populations, the 94 
clonal nature across patient groups, the nature of immune cell migration and tissue adaptation, and 95 
provided insights into key pathways defining these differences. This study lays the foundation for 96 
understanding why immunotherapy has so far not been successful in PDAC, and provides an avenue 97 
for identifying novel therapeutic targets based on an enhanced understanding of the patients’ intra-98 
tumoural immune composition. 99 
 100 
 101 
 102 
 103 
 104 
  105 
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Results 106 
 107 
Single cell profiling of PDAC tumour immune cell infiltration across three datasets 108 
To elucidate the heterogeneity of tumour immune cell infiltration, we performed single cell RNAseq 109 
(GEX), ADT-seq (cell surface protein expression derived from Antibody-Derived Tags), and BCR/TCR-110 
seq on CD45+ cells enriched from matched PBMCs and fresh tumour tissue following surgical resection 111 
of 12 treatment-naïve patients, herein referred to as PancrImmune. In addition to the PancrImmune 112 
dataset, we integrated and re-analysed the two largest existing PDAC scRNA-seq datasets from Peng10 113 
and Steele12 (Figure 1a). Integrative multi-omics analysis of GEX, ADT-seq and BCR/TCR-seq allowed 114 
for high confidence and quality annotations of B cell, T cell and myeloid populations (Figure 1b, 115 
Supplemental Table 1), making this the largest single cell analysis of immune cells in PDAC with robust 116 
detection of immune cell diversity, whilst also being the first PDAC study to incorporate all four single 117 
cell modalities (GEX, ADT-seq, BCR-seq and TCR-seq). This high granularity analysis of immune cells in 118 
the blood and PDAC tumour infiltrate revealed high complexity of immune cell infiltration in the TME 119 
with a wide variety of activated and regulatory immune cells in all major immune subsets 120 
(Supplemental Item 1). The integrated Peng and Steele datasets only had GEX data and therefore we 121 
used a novel support vector machine (SVM) cell label transfer method, SVMCellTransfer, using the 122 
PancrImmune GEX data as a reference (Supplemental Item 1, Supplemental Table 1, see methods). 123 
The resulting gene expression patterns of each cell annotation type reflected well the patterns 124 
observed in the PancrImmune reference dataset (Supplemental Item 1). 125 
  126 
PDAC tumour myeloid infiltration positively associates with plasma cell abundance  127 
Patients’ tumours span a spectrum of immune cell infiltration, and higher intra-tumoural T 128 
cell/lymphocyte frequencies are typically associated with improved patient survival (Supplemental 129 
Table 2). We therefore investigated next what might be mediating these differences. The proportion 130 
of immune cells consisting of tumour infiltrating myeloid cells inversely correlates with B and T cells 131 
consistently across datasets (p-values<1e-7, Figure 1c, p-values per dataset <0.018, Table S3). To 132 
better understand the mechanisms underlying this, we compared patients with high B and T cell 133 
tumour infiltrate proportions (as a percentage of CD45+ cells), termed adaptive-enriched (AE) versus 134 
high myeloid, low B and T cell proportions, termed myeloid-enriched (ME) (Figure 1d-e). This mirrors 135 
the prognostic signatures previously identified8 and summarised in Supplemental Table 2. Indeed, the 136 
top 10 differentially expressed genes (DEGs) between groups (pseudobulk analysis) have 137 
predominantly B cell and T cell specificities for AE patients, or myeloid cell specificities for ME patients 138 
(Supplemental Table 4). The cellular subset proportions within B cells, T cells, NK cells and ILCs 139 
significantly differed between AE and ME groups across all three datasets, and were clearly separable 140 
by PCA analysis (Figure 1e, Supplemental Figure 1a-c). Across all three datasets, we observe 141 
significantly reduced plasma cell abundance with increased overall B and T cell infiltration, along with 142 
consistent trends in proportions of other immune cell populations demonstrated across datasets 143 
(Figure 1f, Supplemental Figure 1d-e), suggesting that different mechanisms of differentiation, 144 
proliferation and recruitment may be acting in the different patient groups. Indeed, this is in 145 
agreement with previous studies showing an association between plasma cells and myeloid cells in 146 
lymphoid tissues20-22. 147 
 148 
We also confirmed that there are consistent significant differences in myeloid versus adaptive immune 149 
cell infiltration into the tumour when considering the total cell population (rather than just the 150 
proportion of CD45+ cells) in both the Peng and Steele datasets (Supplemental Figure 1f). There were 151 
no significant differences in the proportions of non-immune cell types between the ME and AE 152 
patients, suggesting that tumour load (found in the epithelial cell compartment) and non-immune cell 153 
composition is not driving these differences. No correlations were observed with other patient factors 154 
including age, gender, prior disease history.  155 
  156 
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Inverse correlation between ductal and immune cell subset proportions 157 
Using the Peng and Steele datasets where all pancreatic cells were present, we were able to dissect 158 
the correlations between the immune and non-immune cell compartments. Although there was no 159 
correlation between the epithelial cells and any other non-immune cell type, we saw the strongest 160 
significant inverse correlations between epithelial (containing the tumour cells) with the myeloid, T 161 
cells and NK cell proportions (Supplemental Figure 1f), suggesting direct immunosuppressive activity 162 
by the tumour cells. Moreover, there was no significant inverse correlation between the fibroblast 163 
compartment and the immune cell infiltration, which supports recent evidence disputing the 164 
previously held idea that the desmoplastic core limits immune infiltration23. 165 
 166 
B cell selection is distinct between patient groups 167 
Next, we examined the intra-tumoural B cells in greater detail given their divergent proportions 168 
between patient groups. The proportions of both plasma cells (PCs) and plasmablasts (PBs) of total B 169 
cells were significantly higher in ME tumours than AE tumours (Figure 2a). IGHV gene usages and 170 
isotype features were distinct and clearly separable by PCA between AE and ME patients (Figure 2b, 171 
Supplemental Figure 2a, p-values<0.0125) suggesting different B cell repertoire selection processes 172 
between patient groups24.  173 
  174 
Reduced B cell class-switching in AE patients 175 
Elevated IgA1 and IgA2 were observed in the intra-tumoural activated, memory, and antibody 176 
secreting PB cells in the ME patient group, whereas elevated IgG1 and IgM levels were observed in 177 
the AE group (Figure 2c). These differential phenotypes are suggestive of differences in B cell signalling 178 
and germinal centre (GC) or tertiary lymphoid structure (TLS) responses. Interestingly, the patients 179 
associated with better prognosis (AE) had reduced class switch recombination (increased proportion 180 
of IgM B cells) compared to ME. Indeed, this observation of elevated IgM in the better-prognostic 181 
patients is supported when examining the larger PDAC TCGA dataset (n=67 patients at stage II), in 182 
which we identified a weak but significant association between both high IGHM with improved 183 
survival (Figure 2d). In addition, IgM+ BCRs had lower levels of somatic hypermutation (SHM) 184 
(Supplemental Figure 2b). Taken together the AE patients may have distinctive GC reaction outcomes. 185 
We note that the dominant IGHA1, IGHA2 and IGHM isotype usages observed here also reflect what 186 
is seen in healthy pancreatic tissue (reanalysis of GTEx RNA-seq data, Supplemental Figure 2c). This 187 
could be suggestive that the pancreatic environment and supporting draining lymph nodes 188 
preferentially support class-switching to IGHA1/2 as observed in other GI tract locations, rather than 189 
a predominance of IGHG1/2 observed in non-GI tract tissues25. These differences in isotype usages 190 
were not observed in blood (Supplemental Figure 2d), in keeping with tissue-specific differences 191 
rather than differences in systemic B cell responses between patients. Fc receptors for IGHA 192 
(FCAR/CD89), which are known to have dual effect, either to inhibit or activate macrophage responses 193 
depending on either monovalent or multimeric IgA ligation26, are predominantly expressed in 194 
pancreatic myeloid cells, and Fc receptors for IGHM (FCMR) are predominantly expressed in B, T and 195 
NK cells (Supplemental Figure 2e). Together, this further strengthens the relationship between IGHM 196 
and improved survival (potentially as antigen presenting cells) as seen in lung cancer27, despite the 197 
signs of reduced GC efficiency, as seen in the AE group, and potentially the relationship between IGHA 198 
secretion and myeloid cell phenotypes driving one of the pathways of immune suppression in the ME 199 
patients. 200 
 201 
Increased GC B cell clonality in AE patients 202 
We next assessed the clonality of the B cell subpopulations via two measures: intra-subset clonality 203 
which reflects specific cell populations which are actively expanding, and inter-subset clonality to 204 
reflect the expansion and differentiation between subpopulations (Figure 2e). Intra-subset clonality 205 
quantifies the percentage of cells in clones of 2 or more cells per subset, measuring the clonality within 206 
the subset. Inter-subset clonality quantifies the percentage of cells of each cell type as members of 207 
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clones of 3 or more cells across all populations, this indicates cells within each B cell subset that may 208 
be members of larger clones that span multiple phenotypes, reflecting B cell plasticity driven by the 209 
specific TME signals they encounter. The elevated clonality observed in ME of antibody secreting cells 210 
(PCs and PBs) suggests that these are arising from recent or ongoing immune reactions in ME patients. 211 
The relatively higher levels of inter-subset clonality in the naïve B cells in ME patients, despite the 212 
expectedly low intra-subset clonality, is likely driven by the activation and clonal expansion of some 213 
naïve B cells and transition to other B cell phenotypes. The highest intra-subset clonality was observed 214 
in the GC B cells in keeping with these cells partaking in clonal B cell response, potentially in TLSs. 215 
Indeed, these comprised the largest proportion of B cells from expanded clones (inter-subset clonality) 216 
along with memory B cells in the AE group only, with significantly lower inter-subset clonality in these 217 
cells in the ME patients. There were no significant differences in the proportions of GC B cells, which 218 
may be due to the small numbers of patients and GC cells. Together, this is suggestive of GC formation 219 
in AE patients with greater clonal expansion in GC B cells, however, resulting in unswitched memory 220 
B cells rather than intra-tumoural plasma cells. Conversely, GC B cells in ME patients are not as clonal, 221 
however, the responses are predominantly IGHA1 and IGHA2, and are more likely to differentiate into 222 
plasma cells. 223 
 224 
B cells comprise a major pool of antigen presenting cells in AE patients 225 
B cells are considered as one of the major professional antigen-presenting cells (pAPCs) via the MHC 226 
II pathway28, however their role in the activation of T cells in PDAC has not been fully explored. Here, 227 
we derived a pAPC score for each cell by quantifying the feature expression programme for MHC II 228 
and accessory pathway molecules (see Methods). We defined pAPCs as those above a threshold 229 
derived from the optimal separation between scores from DCs (known pAPCs) and CD8 T cells (known 230 
non-pAPCs) (Figure 2f). Together with DCs, >65% of naive and antigen-experienced (activated and 231 
memory) B cells and monocyte-derived macrophages (MoMacs) are pAPCs (Figure 2g). Whilst a mean 232 
of 57.6% of pAPC are MoMacs, and 21.1% of pAPC are DCs in the ME patients, only 16.0% of pAPCs 233 
are B cells (Figure 2g). Interestingly B cells comprise a major source of antigen presenting cells in the 234 
AE patient group, 80.4% of pAPCs are B cells (p-values<0.05), mainly antigen-experienced (activated 235 
and memory) B cells. This trend is validated in the Peng et al dataset (Supplemental Figure 2f-i, p-236 
values<0.05). Given the elevated T cell infiltration in the AE patients (Figure 1f) and the significant 237 
contribution of B cells to the pAPC pool, this highlights a potential role for B cells in PDAC TME in 238 
shaping T cell activation. 239 
 240 
Increased CD8 T cell clonality in AE patients 241 
To understand the drivers behind the increased T cell prevalence in the AE patients, we performed 242 
clonality analysis of the T cell populations using the TCR sequencing data. We observe an increased 243 
CD8 T cell clonality in the AE group (Figure 3a, p-values<0.05) which suggests that the increased PDAC 244 
lymphocyte infiltration is partly driven by clonal activation and expansion. This is observed in both 245 
tumour-infiltrating and peripheral blood T cells, implying that some of the tumour expanded clones 246 
could potentially be also present in blood. We further analysed the different sub-populations for any 247 
differential presence of T cell subsets between the two groups of patients. In addition to the elevated 248 
CD4:CD8 T cell ratio in ME patients (Supplemental Figure 1a, p-value<0.05), ME tumours showed 249 
higher proportions of Treg, activated Treg, and gamma-delta (gd) T cells, while AE tumours had higher 250 
proportions of T follicular helper (fh), naïve CD4 cells and CD8 effector memory (EM) cells (Figure 3b). 251 
The increased proportion of CD8 EM cells in the AE group further reinforces the role of clonal 252 
activation in driving T cell infiltration, and the elevated proportions of Tfh cells in the AE patients 253 
further supports the inter-relationship between B and T cells in PDAC. By contrast, the elevated 254 
proportions of Tregs and activated Tregs in the ME group could reflect the increased 255 
immunosuppressive TME of these tumours. A validation was performed via cellular deconvolution of 256 
the PAAD TCGA dataset (n=156 patients) showing that indeed Treg proportions (as a proportion of 257 
total T cells) correlated with myeloid cell proportions (as a proportion of total immune cells) 258 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.31.555730doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555730
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Supplemental Figure 3a), whereas the T cell proportion of total immune cells inversely correlated 259 
with the proportion of myeloid cells (Supplemental Figure 3a). Furthermore, TCR clonality and TRVB 260 
features are distinct between AE and ME patients (Supplemental Figure 3b: PCA plot of T cell 261 
repertoire features, Supplemental Figure 3c: V gene usages). Together, this is suggestive of different 262 
T cell selection processes between ME and AE patients.  263 
 264 
Activated Tregs are enriched in expanded T cell clones and are the most proliferative T cell 265 
population 266 
We next assessed the clonality of the T cell subpopulations via intra-subset clonality and inter-subset 267 
clonality (Figure 3c). Intra-subset clonality measures the clonality within the subset, and inter-subset 268 
clonality quantifies the cells within each T cell subset that may be members of larger clones that span 269 
multiple phenotypes, reflecting T cell plasticity driven by the specific TME signals they encounter. The 270 
highest intra-subset clonality was observed in the CD8 EM, activated EM, effector memory cells re-271 
expressing CD45RA (EMRA), exhausted and senescent T cells. There was preferential intra-subset 272 
expansion in the AE group of the CD8 EM and CD8 activated EM T cells. Taken with the increased 273 
percentages we observed earlier (Figure 3b), this provides additional support that the increased CD8 274 
EM presence in AE patients is driven by local expansion within the tumour. Notably, although activated 275 
Tregs, which are marked by the highest expression of immunomodulatory molecules TIGIT, ICOS, and 276 
CTLA4, as well as the transcription factors FOXP3 and IKZF2, were not the most clonal CD4 T cell 277 
population (intra-subset clonality), which is to be expected from a polyclonal regulatory T cell 278 
population, they were members of the most expanded clones (inter-subset clonality, Figure 3c), which 279 
was significantly more expanded in the ME patient group, suggesting some of the observed Tregs 280 
could be differentiating from other CD4 T cells within the TME.  281 
 282 
The factors driving CD4 T cell differentiation toward CD4 Treg phenotype in PDAC are not yet 283 
understood, and whether increased proliferation or reduced apoptosis in the Treg populations were 284 
causing this association with clonal expansion. Indeed, activated Tregs represent the most 285 
proliferative lymphocyte population within the tumour (as measured by percentage cells in S phase 286 
and mean per cell GO_T_CELL_PROLIFERATION score across all patients, Figure 3d). Conversely, there 287 
was no notable difference in apoptosis, as measured by mean per cell REACTOME_APOPTOSIS 288 
pathway score. There were no widespread significant differences between patient groups. This is 289 
suggestive that activated Tregs are associated with clonal expansions and are the most proliferative T 290 
cell population within the tumour. 291 
 292 
Distinct T cell clonal fate between AE and ME patient groups 293 
Through quantifying the relative overlap of clones between different phenotypes within the CD4 and 294 
CD8 T cell populations, lineage patterns can be discerned (Figure 3e). Indeed, highest clonal overlap 295 
in the CD8 T cell populations was observed between CD8 EM, activated EM and CD8 senescent T cell 296 
subsets, suggesting that common antigens are driving the expansions across these populations. 297 
Elevated intra-subset clonality was observed in the ME patients between CD8 EM and CD8 senescent 298 
T cell populations in the tumour, suggesting that activated T cells are pushed to dysfunctional 299 
phenotypes. The development of senescence in both patient groups suggest that the TME is conducive 300 
to the generation of these populations through potentially shared pathways. In the CD4 T cells, 301 
activated Tregs have the highest degree of clonal overlap with activated Tfh and activated Treg 302 
populations, which was significantly higher in the ME patients. In AE tumours there was higher clonal 303 
overlap between CD4 naïve and Tfh T cells. Taken together, these results point to differential CD4 304 
polarisation of intra-tumoural CD4 T cells between the ME and AE groups.  305 
 306 
T cell clonality between tumour and blood are distinct  307 
Using the matched blood and tumour samples, we observed that the clonality of T cells between blood 308 
and tumour is highly divergent (Supplemental Figure 3d). Within the blood CD4 T cell compartment, 309 
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only CD4 senescent and Th1 T cells had high levels of intra-subset clonality. We noted that Tregs were 310 
not clonal in blood, with <5% of these cells comprising expanded clones, a possible indication that 311 
Tregs from TME expanded clones are tissue resident. In the CD8 T cell compartment, the CD8 EMRA 312 
and senescent populations were the most clonal populations and are significantly more clonal than 313 
their corresponding tumour T cell counterparts (Supplemental Figure 3e); which is to be expected for 314 
these populations as they are driven through chronic antigen exposure (in many cases viral)29. There 315 
was no difference in CD8 T cell clonality observed in the blood between ME and AE patients 316 
(Supplemental Figure 3d). Finally, to determine if the T cell responses within the tumour were 317 
enriched for systemic anti-viral responses rather than potential tumour-specific responses, we 318 
screened the tumour and blood-derived TCRs against a library of known anti-viral TCRs (see Methods). 319 
Indeed, we found that anti-viral T cell clones are not enriched in the tumour compared to the blood 320 
and there were no widespread consistent differences between ME and AE patients (Supplemental 321 
Figure 3f). This supports that tumour clones are not enriched for systemic non-tumour-reactive 322 
clones.  323 
  324 
Immunosurveilling and resident tumour-infiltrating B and T cell clones are phenotypically distinct 325 
Our dataset benefits from having matched blood and tumour samples taken at the same timepoints 326 
allowing us to perform analysis to identify circulating tumour infiltrating lymphocytes (TILs). These can 327 
be identified from clones shared between blood and tumour and represent clonally expanded 328 
lymphocytes recirculating between tumour and blood and will therefore be critical for 329 
immunosurveillance. We identified B and T cells clones that were (a) shared between blood and 330 
tumour (recirculating clones), (b) tumour-only (non-circulating TIL clones) and (c) blood-only clones. 331 
These states, by definition, exhibit different cellular tendencies for tumour ingress and/or adhesion 332 
(Figure 4a). Circulating TIL B cells were enriched for naïve B cells in both AE and ME groups, suggesting 333 
that naïve B cells may be major components of immunosurveillance and selected B cells become 334 
activated in response to the TME (Figure 4b). This is supported by the elevated IGHM usage in 335 
circulating TIL B cell clones (Supplemental Figure 4a). Non-circulating TIL B cells were enriched for 336 
antibody secreting B cells and activated memory, suggesting that these are much less mobile upon 337 
tumour entry or differentiation. The dynamics of immune cell infiltration is explored in the next 338 
section.  339 
  340 
Next, we explored the dynamics of immune cell infiltration. Whilst there was no significant difference 341 
of specific CD4 T cell subsets between circulating and non-circulating TILs, circulating CD4 TILs are 342 
dominated by Tregs, Tfh, and Th2 (Figure 4b). Circulating CD8 TILs are dominated by CD8 EM T cells, 343 
which is consistent with the arrival of activated CD8 T cells from the tumour-draining lymph nodes. 344 
However, these were not statistically enriched compared to non-circulating CD8 T cell clones only 345 
found in the tumour. As expected, exhausted clones were enriched in the TME where they are most 346 
likely to encounter their antigen. 347 
  348 
We did not observe differences in the proportions of total recirculating B and T cell TIL clones between 349 
ME and AE patients (Supplemental Figure 4b). However, recirculating B and T cell TIL clones were 350 
significantly more expanded than clones private to the tumour or blood clones (Supplemental Figure 351 
4c). Finally, through screening the TCRs with a library of known anti-viral TCRs, we find that anti-viral 352 
T cell clones are not enriched in the circulating TILs compared to the non-circulating and blood-only T 353 
cell clones (Supplemental Figure 4d). This supports the conclusion that recirculating TIL clones are not 354 
enriched for systemic non-tumour-reactive clones. 355 
  356 
Dynamics of recirculating tumour-infiltrated B and T cells 357 
Next, we considered how the phenotype of clonally-related B and T cells differ between the blood and 358 
the tumour. This can be measured through determining the phenotypes of B and T cells within the 359 
same clone shared between the blood and tumour (Figure 4c, Supplemental Figure 4e-g). Many of 360 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.31.555730doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555730
http://creativecommons.org/licenses/by-nc-nd/4.0/


the recirculating B and T cells have different phenotypes between blood and tumour, suggesting 361 
extensive intra-tumoural B and T cell differentiation within the tumour site and/or distal from the 362 
tumour. For B cells, the majority of recirculating B cells are derived from tumour-infiltrated naive, 363 
memory and activated pre-memory B cells. This suggests that selected naive B cells from the blood 364 
infiltrate the tumour, and these differentiate to express memory B cell markers before recirculating. 365 
This also provides evidence that the tumour may be a major site of B cell activation. 366 
  367 
For CD4 T cells, the largest overlap occurs between CD4 naïve and T helper phenotypes (Tfh, Th17, 368 
Th2, and Tregs) (Supplemental Figure 4f), suggesting naïve CD4 cells are being polarised based on 369 
intra-tumoural factors. The ME patient group has significantly higher overlap between naïve CD4s and 370 
activated Tregs, supporting that the myeloid-enriched TME in these patients is driving the 371 
differentiation and proliferation of activated Tregs from naïve cells. Blood CD8 senescent are 372 
predominantly related to CD8 EM, activated EM, EMRA and senescent, suggesting that these cells are 373 
derived from highly activated effector T cell clones, as expected30. Indeed, the clonal relatedness of 374 
blood CD8 EMRA and tumour CD8 EM T cells is supported by the observation that these subsets are 375 
the most clonal populations in the blood and tumour CD8 populations, respectively (Supplemental 376 
Figure 2h). Overall, these results demonstrate that the TME can differentially shape the B and T 377 
differentiation in the two patient groups. 378 
 379 
B and T cell infiltration is dependent on chemokine receptor upregulation 380 
Previous reports have shown that chemokines are critical for the infiltration and egress of immune 381 
cells from tumours, including the CXCR4-CXCL12 axis shown in mouse models of melanoma31, as well 382 
as a pre-requisite for the formation of TLSs, including the CXCR5-CXCL13 axis32. Therefore, we 383 
considered the expression of key lymphocyte chemokine receptors upon infiltrating into the tumour 384 
which is possible to assess between matched tumour and blood samples in the PancrImmune dataset 385 
where this is possible. The chemokine receptors CCR6, CCR7, CXCR3, CXCR4, CXCR5, and CXCR6 have 386 
the highest expression across lymphocytes (Supplemental Figure 5a), and CCR8, a known hallmark of 387 
tumour infiltrating Tregs, is exclusively expressed on Tregs33. We observe significant correlations 388 
between some chemokine receptors and lymphocyte infiltration, including CCR8 expression 389 
correlating with activated Treg levels (Supplemental Figure 5b). Differential gene expression (DGE) 390 
between blood and tumour infiltrating B and T cell subsets (see Methods) revealed that multiple 391 
chemokines and their receptors are upregulated upon entry to the tumour (Figure 4d, Supplemental 392 
Figure 5c). Upregulation of chemokine receptors in TILs implies that they are central to recruitment 393 
and maintenance of these immune cell types within the tumour. Of note, CXCR4 was significantly 394 
upregulated across 24 out of 28 lymphocyte populations in the AE patient group, but in the ME group, 395 
CXCR4 was not upregulated in B cells, MAIT, gamma/delta or CD8/CD4 senescent T cells, in accordance 396 
with their lower prevalence in this patient group. Similarly, CXCR5 was only observed to be 397 
upregulated in tumour non-naive B cells and Tfh T cells only in the AE but not in ME patients. Lower 398 
CXCR5 in tumour B cells and Tfh T cells in ME patients will likely impact the effectiveness of B cell 399 
migration, retention and responses within the tumour site. CCR8 expression is significantly increased 400 
in intra-tumoral Tregs compared to blood, predominantly in ME patients, with the highest CCR8 401 
expression observed in activated Tregs. Indeed, the same trends were observed when considering 402 
only immunosurveilling clones (clones shared between blood and tumour) (Supplemental Figure 5d-403 
e). Overall, we observed reduced chemokine receptor expression in intra-tumoural ME patient 404 
lymphocytes.  405 
 406 
Finally, we show that only TIL T cell clones tend to be acutely activated with elevated with CD69 and 407 
PD1) whereas the blood counterparts of same clones are not acutely activated (Figure 4d). However, 408 
the significant upregulation of CD69 was observed in only AE patients for B cells and multiple CD4 T 409 
cell populations, suggesting reduced activation in specific lymphocyte subsets in ME patients.  410 
 411 
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Myeloid cells in ME patients dominate cell-cell communication  412 
We have thus far shown that differential immune cell subtype frequencies distinguish ME and AE 413 
patients and lymphocyte-associated differences. We next examined the cell-intrinsic differences in 414 
cell-cell communication between immune cells between ME and AE patients. Here we considered cell-415 
cell interaction strengths between known cytokine- and inflammation-associated ligands and their 416 
receptors (see Methods). The signalling strengths between each pair of cell subtypes for each 417 
receptor-ligand pair was calculated by multiplying the percentage of cells per cell subtype expressing 418 
each respective gene for each patient. Thus, the strengths are independent of the total proportions 419 
of each cell type within the tumour (Figure 5a). The cell-cell communication network depicted an 420 
expected high level of complexity within the tumour microenvironment with each cell subtype 421 
providing and receiving signals from many other cells. However, within this complexity, several 422 
features were clearly observed. Firstly, ME patients had significantly higher levels of signalling 423 
between myeloid and T cell populations, and AE patients had higher levels of signalling between B cell 424 
and T cell populations. Indeed, enumerating the number of incoming and outgoing interactions 425 
(corresponding to or from cell-surface receptors, respectively, Figure 5b) clearly demonstrated that 426 
immune signalling within the tumour was dominated by myeloid cells in ME patients and B and T cells 427 
in AE patients. The highest levels of incoming and outgoing interactions within ME patients were from 428 
MoMac, moDC and granulocyte populations, whereas the highest levels within AE patients were from 429 
CD8 EM T cells and memory B cells. Although the proportions of GC and MZ B cells were very low (<5% 430 
of total B cells, Figure 2a), we observed that these cells have considerable contributions to cell-cell 431 
signalling, and indeed significantly higher interactions were seen in the AE patients. 432 
 433 
The top significantly enriched immune modulator in the ME patients was SPP1 (Figure 5c) which 434 
encodes for osteopontin, and is overexpressed in PDAC and known to potentiate tumour cell 435 
stemness, M2 macrophage polarisation34, checkpoint expression35 and is associated with poorer 436 
survival across multiple cancers including PDAC36. AXL was the third most ME-enriched cytokine that 437 
induces mregDC formation and upregulation of PD-L1 expression37. Indeed, the top 30 significantly 438 
enriched immune modulators in ME patients included CCL8, a ligand for the tumour infiltrating Tregs 439 
chemokine receptor CCR8, PVR, a ligand for the T cell checkpoint protein TIGIT and ITGA8, which is 440 
known to activate TGFb (Figure 5c).  441 
 442 
We next considered the signalling interactions to Tregs which are known for being associated with 443 
immunosuppression within the tumour microenvironment. The ranked interaction strengths between 444 
the key Treg chemokine receptors (CCR4, CCR8, CXCR4 and CXCR6) and their ligands per cell type 445 
(Figure 5d, Supplemental Figure 6a-b) showed that the incoming interactions with Tregs were 446 
dominated by myeloid cells, notably mregDCs (driven by their expression of CCL17 which interacts 447 
with CCR4 from Tregs) as well as the regulatory axis CCL22-CCR4 which promotes Treg function38, and 448 
DC2B CCL17+ and multiple MoMac populations (driven by their expression of CXCL16 which interacts 449 
with CXCR6 from Tregs). Finally, interactions with the Treg-exclusive receptor CCR8 were dominated 450 
by MoMac expression of CCL8. Indeed, MoMacs were more numerous in ME patients (Supplemental 451 
Figure 1a), and thus would support the infiltration of Tregs into the tumour region. Whilst the 452 
expression of the Treg-associated chemokines, CCL17 and CXCL16, was observed in non-immune cells, 453 
including epithelial cells (which includes the tumour cells) (Supplemental Figure 6c), the highest 454 
expression of these chemokines was within the myeloid MoMac and DC populations. Together, these 455 
findings demonstrate a key role of myeloid cells in promoting the immune-regulatory nature of the 456 
PDAC TME. 457 
 458 
Checkpoint genes are upregulated across both immune and non-immune cell subsets in PDAC 459 
Finally, we examined the immunosuppressive nature of the whole TME including non-immune cells. 460 
Differential gene expression (DGE) analysis between PDAC and normal adjacent tissue from the Peng 461 
et al. dataset showed significantly elevated checkpoint gene expression in both immune and non-462 
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immune cell compartments (Figure 5ei, Supplemental Figure 6d). While T cells are the primary source 463 
of TIGIT expression, stellate, epithelial and endothelial cells also have increased expression in the 464 
tumour compared to pancreatic adjacent normal tissue. Likewise, ICOS and CTLA4 are primarily 465 
expressed by T cells, but are significantly higher in expression in tumour compared to pancreatic 466 
adjacent normal tissue in epithelial and endothelial cells. Differential expression of TIGIT, ICOS and 467 
CTLA4 ligands were observed in both immune and non-immune cell types. Treg-associated chemokine 468 
receptor CCR8 ligands, CCL8, CCL16 and CCL18, were also elevated in tumour tissue stellate, epithelial 469 
and endothelial cells. Although the highest levels of CCL18 was expressed by MoMacs, stellate cells 470 
also contributed significant levels of Treg-specific chemokines suggesting a key role for both immune 471 
and non-immune components in shaping the TME into an immunosuppressive environment during 472 
tumourigenesis (Figure 5eii)39. 473 
 474 
Discussion 475 
Our work sheds new light on the potential mechanisms that might underlie the observed differences 476 
between myeloid-enriched and adaptive-enriched PDAC tumours. Combining scRNA-seq, CITE-seq 477 
and TCR and BCR repertoire analysis of matched blood and tumour samples allowed, for the first time, 478 
the identification of different patient groups with distinct immune cell infiltration, selection, 479 
differentiation and response mechanisms within the TME, providing a rational way for the selection 480 
and design of novel immunotherapeutic interventions for PDAC patients. To this end, we developed 481 
several new bioinformatics tools, including (a) SVMCellTransfer which allows for efficient and effective 482 
annotation of published scRNA-seq datasets based on a reference high-confidence dataset, (b) 483 
scClonetoire which quantifies the intra- and inter-subset clonality and other repertoire metrics run on 484 
single cell multi-omics repertoire data, (c) scRepTransition which quantifies the clonal overlap 485 
between B or T cell subsets within a sample or between samples. Importantly, scClonetoire and 486 
scRepTransition account for sampling depth differences between samples thus ensuring the ability for 487 
statistical comparisons between samples. This comprehensive analysis of the immune landscape 488 
within treatment-naive PDAC patients provides a valuable scMulti-omics dataset with high-confidence 489 
annotations and important insights into the TME. 490 
 491 
Through our multi-omics analyses, we show that dominant immune mechanisms within AE patients, 492 
characterised by a low infiltration of myeloid cells and increased proportion of lymphocytes, include 493 
dysfunctional GC (or TLS) responses, lower isotype switching, and higher occurrence of IgM+ B cells, 494 
and lower generation of plasma cells. The predominance of intra-tumoural memory B cells and the 495 
elevated cell-cell interaction signals between B and T cells suggests an antibody-independent role of 496 
B cells, such as antigen presentation. Indeed, the predominant contributors of professional APCs in AE 497 
patients were B cells, highlighting a potential role for B cells in PDAC TME in shaping T cell 498 
activation40,41. However, the poor class switching and SHM in AE patients is indicative that some 499 
factors that are needed for TLS formation and cell recruitment could be defective, hampering the full 500 
development of a GC-like response.  T cells, on the other hand, showed clearly increased clonality and 501 
higher levels of cytotoxic T cells, yet their ability to control tumour was limited, possibly due to poor 502 
infiltration or retention outside the tumour core due to high stromal expression of the CXCR4 ligand, 503 
CXCL12 or/and the development of senescence.  504 
 505 
ME patients have exhibited a poorer survival signature across multiple studies, and are characterised 506 
by the higher infiltration of myeloid cells. Here we showed that ME tumours have a higher presence 507 
of immuno-regulatory moMacs and mregDCs. Indeed, we show in our clinical cohort that myeloid cells 508 
can act as coordinators of further immuno-suppressive mechanisms through extensive cell-cell 509 
signalling mechanisms that are distinct from AE patients, including the attraction of regulatory T cells 510 
into the TME42. Tregs in ME patients are highly expanded from naive T cells, likely driven by the high 511 
levels of TGFb in the pancreatic TME43,44. Their association with Tfh T cells could be a driver of 512 
differentiation of Tfr (T follicular regulatory cells) which further limit the GC B cell responses in those 513 
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patients45,46. Reduced GC B cell clonal expansion but increased plasma cell fate in ME patients points 514 
to direct macrophage-plasma cell cross-talk inducing plasma cell differentiation22. GC B cells in ME 515 
patients were not as clonal as in AE patients, however, the plasma cell responses are predominantly 516 
via IGHA1 and IGHA2. Indeed the IgA isotype can engage with the inhibitory Fc receptor FCAR on 517 
myeloid cells, and can mediate inhibitory effects on many immune cell subsets via activation of FcαRI 518 
receptors and induction of IL10 production47. Indeed, previous studies have shown that tumour-519 
associated antibodies may also exert a pro-tumoural effects through inflammation initiation and 520 
maintenance, tissue remodelling, and angiogenesis48,49. 521 
 522 
We further reveal differential B and T cell selection within the tumour between ME and AE patients. 523 
Their infiltration into the tumour may also be limited in ME patients due to the lack of upregulation of 524 
key chemokine receptors upon entry into the tissue, including CXCR4 and CXCR5, which have been 525 
shown to be important for control of B and T cell trafficking into tissues and play central roles in 526 
orchestrating the adaptive cell functions50. Indeed, CXCR4 upregulation is known to be driven by 527 
factors including hypoxia (HIF1A and VEGF)51, where the pancreas is a significantly more hypoxic 528 
environment than the blood52. However, previous studies have shown that extent of hypoxic areas 529 
within the tumour correlates with worse survival of PDAC patients52. Alternatively, strong antigen 530 
signalling has been shown to downregulate CXCR4 in T cells in melanoma53. However, stronger antigen 531 
signalling in the ME patients is not well supported due to the higher Treg levels, lower T cell infiltration 532 
levels, and lower levels of B-T cell interaction signals. This lays the foundation for future studies 533 
determining the key molecular factors influencing lymphocyte infiltration and egress.  534 
 535 
Overall, we can identify numerous potential mechanisms that might underlie the observed differences 536 
between ME and AE patients and highlight two potential major themes for immune intervention 537 
within PDAC patients. In ME patients, targeting the inhibitory myeloid compartment alongside specific 538 
targeting of tumour infiltrating Tregs may have the ability to alleviate some of the suppressive 539 
mechanisms. For example, the CCR4 and CCR8 pathways are highly active in Tregs and appear to play 540 
a crucial role within the TME and their interactions with myeloid cells. It is important to note that the 541 
interplay within the TME between the different populations is complex and redundant effects could 542 
be at play, as previous reports have suggested that depleting Tregs or fibroblasts can both result in 543 
worsening of the disease through the conversion by TGFb of a pathogenic myeloid population even as 544 
CD8 T cell responses can be improved42,54-56. It is therefore critical to start considering those 545 
interventions in combination. AE patient tumours contain diverse lymphocyte subsets, and their 546 
activation status suggests that sufficient neoantigens are presented to them. However, the immune-547 
incompetent TME is potentially preventing proper anti-tumour immune responses as can be seen with 548 
high levels of CXCR4 on the B cell compartment, potentially restricting their access to the tumour core 549 
via retention outside. Indeed, higher number and a specific locations of B cells quality in TME, maturity 550 
of TLSs, and neoantigen have been shown in PDAC long-term survivors16. These data suggest that 551 
patients with higher adaptive cell infiltration may benefit most from boosting the immune response 552 
against abortive or dysfunctional TLSs, which may potentially be achieved by cancer vaccines57, 553 
targeting T cell senescence and/or targeting chemokines. Conversely, patients with higher myeloid 554 
cell infiltration may benefit most from selective targeting of Treg functions, such as with anti-555 
CCR833,58,59 and plasma cells. 556 
 557 
This study lays the foundation for understanding why immunotherapy has so far not been successful 558 
in PDAC and provides an avenue for designing novel therapeutic targets based on a complete 559 
understanding of patient intra-tumoural immune heterogeneity. We demonstrate the need for trials 560 
to assess changes in immune infiltration over time and under different therapies to build a spatio-561 
temporal understanding of the tumour-immune cross-talk dynamics. Overall, this framework, which 562 
combined multimodal data, integrated knowledge-based, unsupervised microstructural annotations, 563 
and novel computational tools, has the power to drive niche discovery and can be applied to other 564 
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tissues in health and disease, such as in cancers with similar AE and ME differential prognostic 565 
signatures including glioblastoma60, breast61, prostate62, non-small cell lung cancer, melanoma63, 566 
bladder cancer64,65.  567 
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Materials and Methods 568 
 569 
Sample access and preparation for scRNA-seq 570 
Patients who underwent a curative resection for pancreatic ductal adenocarcinoma were consented 571 
for this study. Eight patients were recruited from Oxford under the Oxford Radcliffe biobank 572 
(09/H0606/5+5, project: 19/A177). Four patients were recruited from Aachen medical centre under 573 
RWTH Aachen biobank project: EK360/19. Informed consent was obtained for all patients. The study 574 
was in strict compliance with all institutional ethical regulations. All tumour samples were surgically 575 
resected primary pancreatic ductal adenocarcinomas. All tumours were subjected to pathological re-576 
review and histological confirmation by two expert PDAC pathologists before analysis. A supplement 577 
providing individual clinical information is provided as Table S1. 578 

 579 
The methods for sample collection, PBMC isolation and tissue digestion were previously designed in 580 
our manuscript Sivakumar et al. in methods section 5.2-5.47. 581 
 582 
scMulti-omics sequencing and pre-processing 583 
scRNAseq transcriptome processing was performed using the Chromium 10x system involving GEM 584 
generation, post GEM-generation clean-up, cDNA amplification and DNA quantification. The library 585 
was sequenced using the Illumina NovaSeq platform. Chromium Single Cell Immune Profiling Reagent 586 
Kits v1.1 solution was used to deliver a scalable microfluidic platform for digital CITEseq (Cell Surface 587 
Protein), GEX, VDJ TCR and VDJ BCR by profiling 500-10,000 individual cells per sample. Libraries were 588 
generated and sequenced from the cDNAs and 10x Barcodes were used to associate individual reads 589 
back to the individual partitions. 590 
 591 
The analysis pipeline applied to process Chromium single-cell data to align reads and generate feature-592 
barcode matrices was performed as previously described66. Briefly, gene expression FASTQ files were 593 
processed using Cellranger count (v3.1.0) to perform alignment, filtering, barcode counting, and UMI 594 
counting, using 10X Genomics’ GRCh38 v3.0.0 reference for Gene Expression analysis and IMGT’s 595 
reference for VDJ TCR and BCR analysis. It uses the Chromium cellular barcodes to generate feature-596 
barcode matrices, determine clusters, and perform gene expression analysis.  597 
 598 
Filtering, doublet detection and batch correction of the PancrImmune dataset 599 
For each sample, cells with fewer than 500 transcripts or 500 genes were filtered out. Normalisation 600 
and scaling was done using the standard Seurat pipeline. Principal component analysis (PCA) was 601 
performed on 5,000 highly variable genes (HVGs) to compute 50 principal components, then Harmony 602 
was performed (reference) for batch correction, UMAP for dimensionality reduction, and the Louvain 603 
algorithm was used for clustering. These clusters were then annotated broadly into B cell, T cell or 604 
myeloid clusters based on mapping of >10% BCR+ droplets and elevated CD19 expression, >10% TCR+ 605 
droplets and elevated CD3 expression, <10% BCR/TCR+ droplets, respectively.  606 
 607 
Doublet identification and removal was performed using both DoubletFinder67 and MLtiplet68. Each 608 
cell type was subsetted into individual objects, and re-clustering within these objects was performed 609 
excluding genes which were likely to be influenced by experimental rather than biological factors69.  610 
These include genes encoding for TCR variable chain, ribosomal proteins, heat shock proteins, 611 
mitochondrial proteins, cell cycle proteins, HLA, and noise-related genes (MALAT1, JCHAIN, XIST). For 612 
the B and T cell objects, immunoglobulin variable, TCR variable and isotype genes were also excluded.  613 
 614 
Cell type annotations 615 

T/NK cell annotations of the PancrImmune data: 616 
The re-dimensionality reduced T cell object resulted in 100 clusters generated by k-means. Where 617 
ADT-seq data was available this was used in preference to RNA for annotation. T cell clusters were 618 
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defined by mean proportion TCR expression >0.3, with innate clusters being those with mean 619 
proportion TCR <0.3. Individual cells in innate clusters which expressed TRA or TRB sequences were 620 
labelled as NK-like T cells. 621 
 622 
The innate cells were re-clustered without the T cells to generate 10 clusters, and were labelled by 623 
gene expression, ILC1 (TBX21, IFNG, CCL3), ILC3 (RORC, AHR, IL23R IL1R1), gdT (TRDC), NK (EOMES, 624 
GZMA, GNLY, KLRC1) based on de Andrade, et al.70. CD56 bright (immature) NK cells were labelled 625 
based on ADT-seq CD56 expression. The remaining NK clusters were labelled based on gene 626 
expression patterns to give phenotypic descriptions. NK transitional cells have greater expression of 627 
cytokines, chemokines and their receptors (XCL1, XCL2, CXCR4), NK mature cells have greater 628 
expression of cytotoxic genes (GZMA, GZMB, PRF1), NK terminal cells have greater expression of 629 
adaptive genes (PRDM1, ZEB2).  630 
 631 
CD4 and CD8 clusters were defined by ADT-seq expression. As has been well documented in T cell 632 
single cell papers, there were clusters with overlapping CD4 and CD8 expression. Cells in overlapping 633 
clusters were reassigned at the single cell level if either CD4 or CD8 expression was higher. Memory 634 
phenotypes were label based on CD45RA, CD45RO, and CD62L expression. Naïve (CD45RA, CD62L), 635 
EMRA (CD45RA), EM (CD45RO), CM (CD45RO, CD62L). Further phenotypic labels were based on RNA 636 
expression. Exhausted (4 or more of the following: HAVCR2, PDCD1, TOX, LAG3, CTLA4, TIGIT, CD38, 637 
ENTPD1). CD4 cells: Treg (FOXP3), senescent (B3GAT1, KLRG1, CD28-, CD27-), Tfh (BCL6, ICOS, CXCR5), 638 
Th17 (RORC), Th2 (GATA3), Th1 (TBX21). Finally, clusters were labelled as activated based on HLA-DR 639 
ADT-seq expression.  640 
 641 

B cell annotations of the PancrImmune data: 642 
The re-dimensionality reduced B cell object resulted in 34 clusters generated by Louvain clustering, 643 
and AddModuleScore was used to identify enriched phenotypes (Table S7). Plasma cells were defined 644 
as clusters with the percentage of droplets above the 95th percentile BCR nUMIs (percBCR_high) >40% 645 
and PC score>0.04, plasmablasts as percBCR_high >15%, naive B cells with >80% unmutated BCRs and 646 
>98% IGHD/M BCRs, and memory B cells with mean CD27 expression>0.1. The following cell types 647 
were based on AddModuleScores and mean gene expression: B cell memory activated (>0.3 activated 648 
score and CD27 expression >0.1), B cell activated pre-memory (>0.4 activated score and CD27 649 
expression <0.1), B cell MZ (>0.8 FGR score and CD27 expression >0.1), B cell GZMB+ memory (GZMB 650 
expression>0.3 and CD27 expression >0.1), B cell pre-GC (>0.2 GCB_FT or >0.02 preGC score), B cell 651 
GC (>0.3 GC score), of which B cell DZ GC (>0.9 DZ GC), B cell LZ GC (>0.3 LZ GC score). Finally, naive B 652 
cells were reassigned at the single cell level if there was >3 SHM, if the isotype was not IGHD/M, or if 653 
there was detectable CD27 expression (activated memory) or without CD27 expression (activated pre-654 
memory). 655 
 656 

Myeloid cell annotations of the PancrImmune data: 657 
The re-dimensionality reduced myeloid subsetted object was used to identify enriched phenotypes 658 
(Table S7). We downsampled the cells to 2000 UMIs/cells and selected variable genes similarly to the 659 
seeding step of the clustering. To focus on biologically relevant gene-to-gene correlation, we 660 
calculated a Pearson correlation matrix between genes for each sample. For that purpose expression 661 
values were log transformed Log(1+UMI(gene,cell) while genes with less than 5 UMIs were excluded. 662 
Correlation matrices were averaged following z-transformation. The averaged z matrix was then 663 
transformed back to correlation coefficients. We grouped the genes into gene “modules” by complete 664 
linkage hierarchical clustering. Specifically, semi-supervised module analysis by complete linkage 665 
hierarchical clustering was carried out on variable, biologically-meaningful, and abundantly expressed 666 
genes71. For example, curated cell-cycle genes and other lateral programs (such as HLA- and HIST-) 667 
were excluded from module analysis. Subsequently, myeloid cells were assigned annotations at two 668 
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levels of granularity based on prior knowledge of marker genes and modules, spanning PDAC and 669 
other cancer datasets.  670 
 671 
Annotation of published datasets using SVMCellTransfer 672 
The raw gene-count matrices from Steele et al. and Peng et al. were downloaded from 10,12 and filtered 673 
using the same parameters as above, and merged. The B, T and myeloid cells were identified and 674 
separated in individual objects, merged and batch corrected with the PancrImmune populations via 675 
Harmony, and annotated using the custom-written support vector machine (SVM) cell label transfer 676 
method, SVMCellTransfer. The non-immune cells from the Peng et al. and Steele et al. datasets were 677 
merged, batch-corrected and broad cellular annotations were performed using published cell-type 678 
markers (Supplemental Item 1). 679 
 680 
BCR-seq/TCR-seq analysis 681 
A pipeline, scIsoTyper, was written to assign most probable BCR IGH and IGK/L chains per droplet 682 
(based on nUMIs) and most probable TCR TRA and TRB chains per droplet (based on nUMIs). 683 
Annotations were performed using IMGT, and clonality was performed using a single-cell extension of 684 
established VDJ network construction software from Bashford-Rogers et al.24 as part of scIsoTyper.  685 
 686 
scClonetoire was written to quantify the intra- and inter-subset clonality and other repertoire metrics 687 
run on single cell multi-omics repertoire data. Intra-subset clonality measures the number of B, CD4 688 
or CD8 T cell clones with 2 or more cells within each cell subset. This accounts for sampling depth 689 
differences between samples through generating a mean across 1000 subsamples a set depth of each 690 
sample (n=5 cells). Inter-subset clonality measures the percentage of B, CD4 or CD8 T cells of each cell 691 
type as members of clones 3 or more cells across all populations. This accounts for sampling depth 692 
differences between samples through generating a mean across 1000 subsamples a set depth of each 693 
sample (n=50 cells). These sampling depths were chosen to ensure values were captured across as 694 
many immune cell subsets as possible, even when the cell type was rare, whilst still ensuring 695 
representation across the sample.  696 
 697 
The quantification of clonal overlap between B, CD4 or CD8 T cell subsets within a sample or between 698 
samples was performed using a novel pipeline called scRepTransition. For the clonal overlap between 699 
B, CD4 or CD8 T cell subsets, the absolute number of B or T cells within the same with different cellular 700 
annotations was quantified. For all samples in which 1 or more clonal overlaps between cellular 701 
annotations was observed, these were normalised to sum to 1. The relative proportions were 702 
statistically compared between patient groups via MANOVA.  703 
 704 
Viral TCR detection was performed using VDJdb72, McPAS73 and TCRdb74 as reference datasets. 705 
 706 
Cell-cell interaction analysis 707 
The human ligand-receptor database was accessed from Fantom (https://fantom.gsc.riken.jp/), and 708 
intercepted the genes that were captured in the PancrImmune scMulti-omics dataset (Table S5). The 709 
signalling strengths between each pair of cell subtypes for each receptor-ligand pair was calculated by 710 
multiplying the percentage of cells per cell subtype expressing each respective gene for each patient. 711 
This was calculated for each cell subtype with >=3 cells. This was plotted using igraph in R, and 712 
MANOVA was used to determine statistical differences between patient groups. The number of 713 
inbound and outbound links between cell subtypes was the counts of all corresponding non-zero 714 
receptor-ligand signalling strengths (Figure 5b). This was computed using igraph in R. Ranked 715 
interaction strengths per cell type were extracted per receptor-ligand pair for the Treg-specific 716 
analysis (Figure 5c).  717 
 718 
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APC analysis 719 
The pAPC score for each cell (which quantifies the feature expression programme for MHC II and 720 
accessory pathway molecules) was calculated using the AddModuleScore using the pAPC pathway 721 
genes (Table S7). The distributions of scores from DCs (known pAPCs) and CD8 T cells (known non-722 
pAPCs) was used to define a threshold above which we defined cells as being pAPCs using a logistic 723 
regression classifier via fitting a glm in R. The statistics between the proportions of tumour pAPC cells 724 
between patient groups was performed using MANOVA.  725 
 726 
Differential gene expression analysis and pathway analysis 727 
Pseudobulk differential gene expression methods were employed using the edgeR75 package for 728 
analysis of aggregated read counts per cell type per patient. This was chosen to reduce the false 729 
positive detection rates, reduce biases between patient samples, and address the problem of zero 730 
inflated scRNAseq expression data. Briefly, for cells of a given type, we first aggregated reads across 731 
cells within each patient. The likelihood ratio test as well as the quasi-likelihood F-test approach 732 
(edgeR-QLF). For limma, we compared two modes: limma-trend, which incorporates the mean-733 
variance trend into the empirical Bayes procedure at the gene level, and voom (limma-voom), which 734 
incorporates the mean-variance trend by assigning a weight to each individual observation76. Log-735 
transformed counts per million values computed by edgeR were provided as input to limma-trend. 736 
Differentially expressed genes were defined as adjusted p-values <0.05. Pathway scores per cell were 737 
calculated using the AddModuleScores function in Seurat in R using pathway gene sets 738 
(GO_T_cell_proliferation and REACTOME_apoptosis).  739 
 740 
Survival analysis  741 
Data from the PAAD TCGA (https://portal.gdc.cancer.gov/) was downloaded and normalised. Patients 742 
that were not pathologically PDAC including samples with <1% neoplastic cellularity, neuroendocrine, 743 
IPMN and acinar cell carcinoma were excluded based on sample annotations 744 
(http://api.gdc.cancer.gov/data/1a7d7be8-675d-4e60-a105-19d4121bdebf). R packages survival and 745 
survminer were employed. The Kaplan Meier (KM) curve was plotted using survfit in R to observe 746 
survival probabilities over time between patient groups (high versus low IGHM expression). 747 
Surv_cutpoint() and surv_categorize() was used to determine an optimal cutpoint using maximally 748 
selected rank statistics for IGHM expression. The cox regression model was used to estimate and 749 
compare hazard ratios between IGHM high and low groups. 750 
 751 
Cell composition deconvolution  752 
Deconvolution between the PancrImmune and TCGA datasets was carried out using BayesPrism77, a 753 
Bayesian method to infer cell type fraction. The intersection of genes present in both datasets was 754 
identified, and the raw untransformed count data was used. To assign cell type labels, cell types from 755 
annotated single-cell data was used. Substantial heterogeneity was accounted for by creating cell 756 
state labels through sub-clustering of cell types within each patient. A threshold of 50 cells per cell 757 
state was applied to ensure a sufficient number of cells for accurate sub-clustering. Genes related to 758 
ribosomes, mitochondria, chromosome X, and chromosome Y were filtered out from the analysis, as 759 
their presence could introduce bias. When running prism object, count matrix was used as input type 760 
and key was set to NULL since there were no malignant cells present in the PancrImmune dataset, as 761 
recommended by the authors. All other parameters were left at their default values. The mean cell 762 
expression was then obtained from get.theta() function. Subsequently, downstream analysis included 763 
PCA to divide TCGA cohort as myeloid high, adaptive enriched followed by plotting the proportions.  764 
 765 
Code and data availability  766 
All code is available via https://github.com/rbr1/scIsoTyper/, 767 
https://github.com/rbr1/PancrImmune_PDAC_paper, and 768 
https://github.com/sakinaamin/BayesPrism. Data will be made available via XX (currently in progress).  769 
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Figures 807 
 808 

 809 
Figure 1: Increased intra-tumoural lymphocyte infiltration is associated with distinct immune 810 
cellular compositions. 811 
a) Schematic of the datasets and analyses 812 
b) UMAP dimensionality reduction of the immune cells from the PancrImmune dataset depicting total 813 
immune cells (centre), B cells (left), myeloid cells (bottom) and T cells (right).  814 
c) The correlation of (left) B cells and Myeloid cells and (right) myeloid cells and T cells as a proportion 815 
of total intra-tumoural immune cells across the three datasets, coloured blue red and yellow for the 816 
PancrImmune, Peng and Steele datasets respectively.  817 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.31.555730doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555730
http://creativecommons.org/licenses/by-nc-nd/4.0/


d) Principal component analysis (PCA) of the immune cell proportions per sample, coloured orange 818 
for myeloid-enriched (ME) patient samples and grey for adaptive immune cell enriched (AE) patient 819 
samples (PancrImmune dataset).  820 
e) The cellular proportions of the broad immune cell types between myeloid- and adaptive-enriched 821 
patients.  822 
f) Heatmap of the differences in cellular proportions between ME and AE patient tumour samples. The 823 
colour denotes the proportional skew between ME and AE patients, and * denotes a significant 824 
difference between ME and AE patients (p-value <0.05). Statistical tests were performed by MANOVA. 825 
  826 
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 827 
Figure 2: Increased PDAC lymphocyte infiltration is associated with differences in B cell selection, 828 
clonal expansion and class-switch recombination. 829 
a) Immune cell subset proportions between ME and AE patient groups within tumour B cell subsets as 830 
a proportion of total B cells (orange represents ME patients and grey represents AE patients) within 831 
the PancrImmune dataset.  832 
b) Principal component analysis (PCA) of the tumour BCR clonality, IGHV gene usages and isotype 833 
usages, coloured by patient group.  834 
c) The proportions of tumour B cells within activated, memory and plasma cells expressing each 835 
isotype, coloured by patient group.  836 
d) Clonality of the tumour B cell subpopulations between the ME and AE patient groups via two 837 
measures: (top) intra-subset clonality (the percentage of cells in clones >2 cells per subset, measuring 838 
the clonality within the subset thus reflecting specific cell populations which are actively expanding), 839 
and (bottom) inter-subset clonality (the percentage of cells of each cell type as members of clones >3 840 
cells across all populations, demonstrating, this indicates cells within each B cell subset that may be 841 
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members of larger clones than span multiple phenotypes, reflecting B cell plasticity of expanding 842 
clones). 843 
e) Survival plot for high vs low IGHM expression with a p-value for Kaplan–Meier (KM) plot (log-rank 844 
test) and Cox proportional hazards model (Wald test). HR = hazard ratio, CI = confidence interval. 845 
f) Histogram of the professional antigen presentation (pAPC) scores for (grey) all tumour cells, (red) 846 
tumour CD8 T cells and (blue) tumour DCs. Dashed line indicates the threshold for classification of 847 
pAPCs.  848 
g) (top) Bar chart of the percentages of pAPCs comprising each cell type, and (bottom) the proportion 849 
of tumour pAPCs comprising each cell type between patient groups.  850 
All analyses in this figure were performed on the PancrImmune dataset. * denotes p-values<0.05, and 851 
tests were performed by MANOVA.  852 
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 853 

 854 
Figure 3: Increased PDAC lymphocyte infiltration is associated with increased activated Treg 855 
clonality and proliferation.  856 
a) The clonality of tumour T cells within total CD4 and CD8 T cell populations, measured by percentage 857 
of clones consisting of >2 cells. Orange represents ME patients and grey represents AE patients. 858 
b) Immune cell subset proportions between ME and AE patient groups within tumour T cell subsets as 859 
a proportion of total CD4 and CD8 T cells, respectively. 860 
c) Clonality of the tumour T cell subpopulations between the ME and AE patient groups via two 861 
measures: (top) intra-subset clonality (the percentage of cells in clones >2 cells per subset, measuring 862 
the clonality within the subset thus reflecting specific cell populations which are actively expanding), 863 
and (bottom) inter-subset clonality (the percentage of cells of each cell type as members of clones >3 864 
cells across all populations, demonstrating, this indicates cells within each T cell subset that may be 865 
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members of larger clones than span multiple phenotypes, reflecting T cell plasticity of expanding 866 
clones).  867 
d) The relative mean percentage cells within predicted S phase, mean Gene Ontology (GO) T cell 868 
proliferation score, and mean REACTOME apoptosis scores per cell between tumour T cell 869 
populations. The circle size indicates the relative means between cell types. 870 
e) Level of tumour TCR clonal sharing between (left) CD4 T cell and (right) CD8 T cell populations. Each 871 
line represents a sharing of TCR clones between cell types, and the line thickness denotes the mean 872 
relative level of sharing. A red line denotes that the clonal sharing between the corresponding cell 873 
types is significantly higher in the ME patients than AE, and a blue line denotes that the clonal sharing 874 
between the corresponding cell types is significantly lower in the ME patients than AE. The size of the 875 
dot represents the mean relative frequency of the corresponding cell type. 876 
All analyses in this figure were performed on the PancrImmune dataset. * denotes p-values<0.05, and 877 
tests were performed by MANOVA.  878 
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 879 

 880 
 881 
Figure 4: Immunosurveilling and resident B and T cell clones are phenotypically distinct. 882 
a) Schematic of clonal definitions: B and T cells clones that are (a) shared between blood and tumour 883 
(recirculating clones), (b) tumour-only (non-circulating TIL clones) and (c) blood-only clones. 884 
b) The percentage of tumour B cells, CD4 T cells, and CD8 T cells that (red) have clonal members in the 885 
blood or (blue) no clonal members in the blood for the ME patients (top) and AE patients (bottom). 886 
c) Clonal migration overlap plot, showing the linked phenotypes between blood and tumour B and T 887 
cells from shared clones between sites. Line thickness represents the relative means calculated over 888 
each patient. Red lines indicate that the corresponding clonal sharing between the corresponding cell 889 
types is significantly higher in the ME patients than AE, and a blue line denotes that the clonal sharing 890 
between the corresponding cell types is significantly lower in the ME patients than AE.  891 
d) Heatmap of DGE between blood and tumour biopsy between ME and AE patients per lymphocyte 892 
cell type. For each chemokine receptor and for each cell type, the upwards triangle denotes significant 893 
elevation of expression in tumour compared to blood and downwards triangle denotes significant 894 
reduction of expression in tumour compared to blood. The triangles are coloured orange, grey and 895 
blue if the significance is observed in ME patients only, AE patients only or both, respectively. The sizes 896 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.31.555730doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555730
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the triangles denotes relative mean expression. All analyses in this figure were performed on the 897 
PancrImmune dataset. * denotes p-values<0.05, and tests were performed by MANOVA. 898 
  899 
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 900 
Figure 5. Distinct regulatory mechanisms between patients with different immune cell infiltration. 901 
a) Intercellular immune modulator communication network between intra-tumoural immune cells, 902 
where each line thickness corresponds to the mean number of receptor-ligand interactions between 903 
the corresponding pair of cell types. A red line denotes that the number of receptor ligand-interactions 904 
between the corresponding cell types is significantly higher in the ME patients than AE, and a blue line 905 
denotes that the number of receptor ligand-interactions between the corresponding cell types is 906 
significantly lower in the ME patients than AE.  907 
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b) Quantification of the number of incoming and outgoing interactions per cell type split by ME and 908 
AE patient groups, calculated as a sum of all receptor-ligand pairs identified between all cell types. 909 
Bars indicate the means for each patient group, and * denotes p-values<0.05 between groups. 910 
c) The number of interactions of the top 30 significantly enriched cytokines in ME patients and all the 911 
top 30 significantly enriched cytokines, chemokines and immune-modulators in AE patients (p-912 
values<0.05).  913 
d) The top 20 ranked interaction strengths between the key tumour Treg receptors (CCR4, CCR8, 914 
CXCR4 and CXCR6) and their ligands per cell type, coloured by receptor-ligand interaction type. 915 
ei) Differential checkpoint gene expression between adjacent normal pancreatic tissue and PDAC 916 
in both immune and non-immune cell compartments (using the Peng et al. dataset). Red circles 917 
indicate significantly higher expression in the tumour and green circles indicate significantly higher 918 
expression in the adjacent normal pancreatic tissue. Circle size indicates relative mean gene 919 
expression per cell type. 920 
ii) Schematic of the checkpoint expression landscape between healthy and pancreatic tumour tissue.  921 
All analyses in this figure were performed on the PancrImmune dataset unless otherwise indicated. * 922 
denotes p-values<0.05, and tests were performed by MANOVA. 923 
 924 
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 929 
Supplemental Figure 1. 930 
a) Tumour immune cell subset proportions between ME and AE patient groups within cellular subsets 931 
as a proportion within the PancrImmune dataset. Orange represents ME patients and grey represents 932 
AE patients.  933 
b) Principal component analysis (PCA) based on PDAC CD45+ immune cell infiltration proportions for 934 
the Steele and Peng datasets, coloured by patient group.  935 
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c) Cell subset proportions between ME and AE patient groups within cellular subsets as a proportion 936 
for the Steele and Peng datasets. Orange represents ME patients and grey represents AE patients. 937 
d) Correlation of the cell enrichment between ME and AE patients between the PancrImmune tumour 938 
and (left) Peng and (right) Steele datasets. P-values and R2 values provided above each plot. 939 
e) The correlation of myeloid cells as a proportion of total intra-tumoural immune cells with 940 
plasmablasts and plasma cells as a proportion of total B cells, coloured blue, red and yellow for the 941 
PancrImmune, Peng and Steele datasets respectively.  942 
f) Correlation of immune and non-immune cell proportions from the Steele and Peng datasets 943 
combined as a proportion of total cells. The blue positively sloped ellipses represent positive 944 
correlations and negatively sloped ellipses represent negative correlations, and * denotes significant 945 
correlations p-values<0.05. 946 
In panels (a) and (c), * denotes p-values<0.05, and tests were performed by MANOVA. 947 
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 950 
 951 

952 
Supplemental Figure 2. 953 
a) IGHV proportions between ME and AE patient groups of total tumour B cells within the 954 
PancrImmune dataset. Orange represents ME patients and grey represents AE patients. 955 
b) Mean SHM levels between ME and AE patient groups for tumour memory B cells and plasma cells 956 
within the PancrImmune dataset. 957 
c) Isotype usages (left) as a proportion of total IGH and (right) counts per million in healthy pancreatic 958 
tissue from the GTEx RNA-seq dataset. P-values generated by ANOVA. 959 
d) The proportions of blood B cells within activated, memory and plasma cells expressing each isotype, 960 
coloured by patient group using the PancrImmune dataset. 961 
e) The relative levels of the FC receptor gene expression between intra-tumoural cell types, where 962 
larger circle size indicates higher expression using the PancrImmune dataset.  963 
f) Table of the mean cellular contribution to pAPCs between ME and AE patient groups, using the 964 
PancrImmune dataset.  965 
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g) Histogram of the professional antigen presentation (pAPC) scores for (grey) all cells, (red) CD8 T 966 
cells and (blue) DCs, using the Peng dataset. Dashed line indicates the threshold for classification of 967 
pAPCs.  968 
h) (top) Barchart of the percentages of pAPCs comprising each cell type, and (bottom) the proportion 969 
of pAPCs comprising each cell type between patient groups, using the Peng dataset.  970 
i) Table of the mean cellular contribution to pAPCs between ME and AE patient groups, using the Peng 971 
dataset. 972 
* denotes p-values<0.05, and tests were performed by MANOVA. 973 
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 975 

 976 
Supplemental Figure 3. 977 
a) Correlation of the Treg proportions (as a proportion of total T cells) with myeloid cell proportions 978 
(as a proportion of total immune cells). Cellular deconvolution of the PAAD TCGA dataset (n=156 979 
patients) by BayesPrism using the PancrImmune dataset as a reference. The TCGA patients were split 980 
into tertials based on myeloid cell proportions (low % myeloid cells = lowest 33% of patients, mid % 981 
myeloid cells = mid 33% of patients, high % myeloid cells = highest 33% of patients). P-values 982 
calculated by Wilcoxon test.  983 
b) Principal component analysis (PCA) of the TCR clonality and TRB V gene usages, coloured by patient 984 
group.  985 
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c) TRBV proportions between ME and AE patient groups of total tumour T cells, activated Tregs and 986 
CD8 activated EM T cells within the PancrImmune dataset. Orange represents ME patients and grey 987 
represents AE patients. 988 
d) Clonality of the blood T cell subpopulations between the ME and AE patient groups via two 989 
measures: (top) intra-subset clonality (the percentage of cells in clones >2 cells per subset, measuring 990 
the clonality within the subset thus reflecting specific cell populations which are actively expanding), 991 
and (bottom) inter-subset clonality (the percentage of cells of each cell type as members of clones >3 992 
cells across all populations, demonstrating, this indicates cells within each T cell subset that may be 993 
members of larger clones than span multiple phenotypes, reflecting T cell plasticity of expanding 994 
clones).  995 
e) The inter-subset clonality between tumour (blue) and blood (red) T cells.  996 
f) The percentage of TCRs from each T cell subset that match to anti-viral T cell clones, coloured by 997 
patient group. 998 
All analyses in this figure were performed on the PancrImmune dataset. * denotes p-values<0.05, and 999 
tests were performed by MANOVA. 1000 
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 1002 

 1003 
Supplemental Figure 4. 1004 
a) The isotype usage percentages of tumour B cells have clonal members in the blood or (blue) no 1005 
clonal members in the blood between ME patients (top) and AE patients (bottom). 1006 
b) The normalised level of re-circulating tumour clones between ME and AE patients B and T cell 1007 
clones. 1008 
c) The mean clone sizes per patient between blood and tumour re-circulating and private clones, 1009 
plotted between ME and AE patient groups. * denotes p-values<0.05, ** p-values<0.005. 1010 
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d) The percentage of TCRs that match to anti-viral T cell clones between re-circulating and private 1011 
clones, coloured by patient group. 1012 
The relative proportions of clones overlapping blood and tumour split by phenotype for e) B cells, f) 1013 
CD4 T cells, and g) CD8 T cells, coloured by patient group 1014 
h) The percentage of cells in clones shared between blood and tumour, split by source and coloured 1015 
by patient group. 1016 
All analyses in this figure were performed on the PancrImmune dataset. Unless otherwise mentioned, 1017 
* denotes p-values<0.05 and tests were performed by MANOVA. 1018 
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 1022 
Supplemental Figure 5. 1023 
a) Gene expression dot plot of the chemokine receptor gene expression across lymphocytes. 1024 
b) Correlations between immune cell proportion within tumour microenvironment and mean 1025 
chemokine expression of that cell type. P-values and r2 values were computed using the repeated 1026 
measures correlation from rmcorr package in R, with the patients from the Peng et al. data in blue and 1027 
the Steele et al. data in red.  1028 
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c) The mean gene expression of key lymphocyte chemokine receptors between all blood and tumour 1029 
biopsy between ME and AE patients for each cell type. Each point represents the mean expression per 1030 
patient per cell group.  1031 
d) The mean gene expression of key CXCR4 and CCR8 between blood and tumour biopsy between ME 1032 
and AE patients for each cell type for only immunosurveilling clones (clones shared between blood 1033 
and tumour). Each point represents the mean expression per patient per cell group. * denotes p-1034 
values <0.05 as determined by DGE.  1035 
e) Heatmap of DGE between blood and tumour biopsy for immunosurveilling clones (clones shared 1036 
between blood and tumour) between ME and AE patients. For each chemokine receptor and for each 1037 
cell type, the upwards triangle denotes significant elevation of expression in tumour compared to 1038 
blood and downwards triangle denotes significant reduction of expression in tumour compared to 1039 
blood. The triangles are coloured orange, grey and blue if the significance is observed in ME patients 1040 
only, AE patients only or both, respectively. The sizes of the triangles denote relative mean expression. 1041 
All analyses in this figure were performed on the PancrImmune dataset. Unless otherwise indicated, 1042 
* denotes p-values<0.05 and tests were performed by MANOVA.  1043 
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 1044 
Supplemental Figure 6. 1045 
a) The mean normalised gene expression per sample of key Treg chemokines and their receptors 1046 
across cell types within the tumour from the PancrImmune dataset. * denotes p-values<0.05 and tests 1047 
were performed by MANOVA. 1048 
b) The top 20 ranked interaction strengths between the exclusive Treg receptor CCR8 and its ligands 1049 
per cell type, coloured by receptor-ligand interaction type. 1050 
 1051 
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c) The relative expression of key lymphocyte chemokines across both immune and non-immune cells, 1053 
using the Peng dataset. The circle colour denotes relative mean expression level (yellow indicates 1054 
higher levels) and size indicates percentage of cells expressing each gene.  1055 
d) Boxplots differential checkpoint gene expression between adjacent normal pancreatic tissue and 1056 
PDAC in both immune and non-immune cell compartments using the Peng dataset. 1057 
 1058 
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