
Journal of X, 2023, 1–11
DOI: xx.xxxx/xxxx

Manuscript in Preparation
Data note

Multi-omic dataset of patient-derived tumor
organoids of neuroendocrine neoplasms
Nicolas Alcala1,*,†, Catherine Voegele1, Lise Mangiante1,2, Alexandra Sexton-Oates1, Hans Clevers3,4,5,
Lynnette Fernandez-Cuesta1, Talya L. Dayton3,4,6,† and Matthieu Foll1,*,†
1Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World HealthOrganisation (IARC/WHO), Lyon, 69008, France2Department of Medicine, Stanford University, Stanford, USA3Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands4Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands5Current address: Roche Pharmaceutical Research and Early Development, Basel, Switzerland6Current address: European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
*Correspondence address. 25 avenue Tony Garnier CS 90627 69366 Lyon Cedex 07, France. E-mail: alcalan@iarc.who.int (N.A.),follm@iarc.who.int (M.F.)†These authors jointly supervised this work.

Abstract
Background: Organoids are three-dimensional experimental models that summarize the anatomical and functional structure
of an organ. Although a promising experimental model for precision medicine, patient-derived tumor organoids (PDTOs)
have currently been developed only for a fraction of tumor types.
Results: We have generated the �rst multi-omic dataset (whole-genome sequencing, WGS, and RNA-sequencing, RNA-seq)
of PDTOs from the rare and understudied pulmonary neuroendocrine tumors (n = 12; 6 grade 1, 6 grade 2), and provide data
from other rare neuroendocrine neoplasms: small intestine (ileal) neuroendocrine tumors (n = 6; 2 grade 1 and 4 grade 2)
and large-cell neuroendocrine carcinoma (n = 5; 1 pancreatic and 4 pulmonary). This dataset includes a matched sample
from the parental sample (primary tumor or metastasis) for a majority of samples (21/23) and longitudinal sampling of
the PDTOs (1 to 2 time-points), for a total of n = 47 RNA-seq and n = 33 WGS. We here provide quality control for each
technique, and provide the raw and processed data as well as all scripts for genomic analyses to ensure an optimal re-use
of the data. In addition, we report somatic small variant calls and describe how they were generated, in particular how we
used WGS somatic calls to train a random-forest classi�er to detect variants in tumor-only RNA-seq.
Conclusions: This dataset will be critical to future studies relying on this PDTO biobank, such as drug screens for novel
therapies and experiments investigating the mechanisms of carcinogenesis in these understudied diseases.
Keywords: organoid, cancer, neuroendocrine neoplasm, genomics, transcriptomics, quality control

Data Description

Context

Organoids are three-dimensional experimental models that
summarize the anatomical and functional structure of an organ
[1, 2]. Organoids are revolutionizing fundamental and medi-
cal research by allowing us to recapitulate human physiology
better than animal models, and also allowing to recapitulate
developmental biology contrary to traditional cell cultures [2].
Patient-derived tumor organoids (PDTOs) have been success-
fully derived for tumors, providing the experimental tools to
model disease progression and the preclinical models for per-
sonalized treatment testing [3, 4, 5]. Although a promising ex-
perimental model, PDTOs have currently been developed only
for a fraction of tumor types, focusing on the most frequent
cancers and those easiest to culture, leaving rare cancers with-
out appropriate experimental models.

We have recently described one of the very �rst patient-
derived organoid biobanks for the rare and understudied neu-
roendocrine neoplasms [6]. Neuroendocrine neoplasms are
rare tumors that can arise in multiple body sites, predomi-
nantly in the lung and gastrointestinal tract [7, 8, 9]. Neuroen-
docrine neoplasms are further classi�ed into neuroendocrine
tumors (NETs) and neuroendocrine carcinomas (NECs). NETs
are themselves subdivided into grades (ranging from 1 to 2 or
3 depending on the organs), while NECs are subdivided into
small cell and large cell (LCNEC). While small cell carcinomas
are more common (e.g., 15% of lung tumors), bene�ted from
more studies and have dedicated treatment options [10], the
best treatment option for LCNEC is still unclear [11], and al-
though most NETs progress slowly and have a good prognosis,
a subgroup of tumors metastasize and relapse [12].
We report here the multi-omic dataset (whole-genome se-

quencing, WGS, and RNA-sequencing, RNA-seq) of the neu-
roendocrine neoplasm PDTO biobank described in [6] (see Ta-
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Key Points

• Tumor-derived organoids are revolutionary experimental resources to test biological hypotheses and treatment options
• We have generated the �rst multi-omic dataset for neuroendocrine tumor organoids of the lung, and for the rare neuroen-
docrine tumors of the pancreas, and small intestine (ileum)

ble 1). The dataset contains PDTOs of the lung (n = 12; 6 grade
1, 6 grade 2) and small intestine ileum (n = 6; 2 grade 1 and 4
grade 2), and LCNEC of the lung (n = 4) and pancreas (n = 1).
This dataset includes longitudinal sampling of the organoids (2
to 3 time-points), and sequencing of the matched parental tu-
mor for most samples (21/23, either primary tumors or metas-
tases). Along with raw and processed data, we provide qual-
ity controls for each technique and scripts to run a complete
molecular analysis. This unique dataset will provide a refer-
ence for future research on the understudied neuroendocrine
neoplasms.

Methods

Sample collection
PDTO lines of the biobank described in [6] were established
from surgical resections or biopsies, put in culture and ex-
panded. PDTOs periodically underwent passaging, a process
by which organoids are subcultured to allow future growth [13];
passage time varied from a week to several months depending
on the growth rate ([6] Fig. 2). H&E stainings were performed
and samples underwent an independent pathological review,
and immunohistochemistry of common neuroendocrine mark-
ers (Chromogranin A, synaptophysin) were performed to con-
�rm the tumoral neuroendrocrine nature of the parental tu-
mors and PDTOs. See [6] for a detailed description of the pro-
tocol.
Extraction
For each tumor or PDTO, DNA and RNA were extracted from the
same sample using the QIAGEN All Prep DNA/RNA Mini kit.
Sequencing
Whole-GenomeSequencing (WGS). Whole-genome sequencing
was performed by the Utrecht Sequencing Facility. After DNA
quality control, genomic DNA (0.5–1 µg) was used to prepare
the whole-genome sequencing library, using the Illumina
TruSeq DNA Nano Kit. Libraries were then sequenced on a
Novaseq 6000 platform, as paired-end 150 bp reads, with a
target average coverage of 30X for normal samples and 60X to
90X for tumor tissue and PDTOs.
RNA-Sequencing (RNA-seq). RNA sequencing was performed by
the Utrecht Sequencing Facility. After RNA quality control,
libraries were prepared using the Illumina TruSeq Stranded
mRNA polyA Kit. Libraries were sequenced either on a Nextseq
2000 or an Illumina Novaseq 6000, as paired-end 150bp reads.
Data processing
All data processing was performed using the work�ows devel-
oped by the rare cancers genomics team of the International
Agency for Research on Cancer / World Health Organization
(https://github.com/IARCbioinfo/), as detailed in [14] and [15].
The work�ows are written in the popular domain-speci�c lan-
guage next�ow [16]. All software dependencies are contained
in conda environments and containerized with Docker and Sin-
gularity (containers available at https://hub.docker.com/ and

https://singularity-hub.org/).
WGS. Raw reads were mapped to reference genome GRCh38
usingwork�ow alignment-nf (https://github.com/IARCbioinfo/
alignment-nf, v1.2). This work�ow �rst maps reads (software
bwa-mem2 v2.0 [17, 18]), then marks duplicates (software
samblaster, v0.1.26 [19]), and �nally sorts reads (software sam-
bamba, v0.7.1 [20]).
RNA-seq. Raw reads were mapped to reference genome GRCh38
with annotation gencode v33 using the work�ow RNAseq-nf
(https://github.com/IARCbioinfo/RNAseq-nf, v2.4). This work-
�ow removes adapter sequences (wrapper Trim Galore v0.6.5
[21] for software cutadapt [22]), maps reads (software STAR
v2.7.3a [23]), marks duplicated reads (software samblaster,
v0.1.25), and �nally sorts reads (software sambamba, v0.7.1).
Alignments were then post-processed using two work�ows

to improve their quality. Work�ow abra-nf (https://github.
com/IARCbioinfo/abra-nf, v3.0) performs local realignment us-
ing software ABRA2 (v2.22 [24]), and BQSR-nf (https://github.
com/IARCbioinfo/BQSR-nf, v1.1) performs base quality score re-
calibration using gatk (v4.0.5.1 [25]).
Variant calling from WGS. Single nucleotide variants were called
on all WGS samples using software Mutect2 from GATK4
(v4.2.0.0 [26, 27]) with work�ow mutect-nf (https://github.
com/IARCbioinfo/mutect-nf, v2.2b), as described in [6]. Re-
sulting variant calling format (VCF) �les were normalized
using bcftools v1.10.2 [28] (work�ow https://github.com/
IARCbioinfo/vcf_normalization-nf, v1.1) and annotated us-
ing ANNOVAR v2020Jun08 (work�ow https://github.com/
IARCbioinfo/table_annovar-nf v1.1.1). Indels and multinu-
cleotide variants were additionally �ltered using the intersec-
tion of Mutect2 and strelka2 [29] calls (work�ow https://
github.com/IARCbioinfo/strelka2-nf v1.2a), in order to reduce
false positives that are more frequent in indel calls due to the
di�culty of detecting such variants with short reads sequenc-
ing.
Variant calling from RNA-seq. Variants were called on all
RNA-seq samples using software Mutect2 from GATK4
(v4.2.0.0 [26, 27]) with work�ow mutect-nf (https://github.
com/IARCbioinfo/mutect-nf, branch RNAseq), in RNA-seq and
tumor-only modes. The RNA-seq mode incorporates a pre-
processing step to �x CIGAR strings (removing NDN ele-
ments and ensuring that mapping quality 255 is not used
as some mappers like STAR can do), and GATK4’s Split-
NCigarReads method that splits reads with Ns in their
CIGAR string, in order to improve variant calling quality.
Resulting variant calling format (VCF) �les were normal-
ized using bcftools v1.10.2 [28] (work�ow https://github.
com/IARCbioinfo/vcf_normalization-nf, v1.1) and annotated
using ANNOVAR v2020Jun08 (work�ow https://github.com/
IARCbioinfo/table_annovar-nf v1.1.1). For samples which also
had WGS data, RNA-seq-detected variants were classi�ed as
somatic or germline based on the WGS variant calls described
above.
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Table 1. Sample summary
ID Primary site Tumor type WGS RNA-seq Normal sample

(ID)
Tumor sample
(ID)

Organoid
passages (IDs)

LCNEC1 pancreas LCNEC yes yes blood (PANEC1N) primary
(PANEC1T)

4 (PANEC1Tp4), 14
(PANEC1Tp14)

LNET2 lung NET (G1) yes no normal-derived
organoid passage
7 (LNET2Np12)

primary (LNET2T) 12 (LNET2Tp12),
normal-derived
organoid passage
12 (LNET2Np12)

LCNEC3 lung LCNEC yes yes tissue
(LCNEC3N*)

primary
(LCNEC3T)

17
(LCNEC3Tp17.2),
24 (LCNEC3Tp24)

LCNEC4 lung LCNEC yes yes normal-derived
organoid passage
6 (LCNEC4Np6)

primary
(LCNEC4T)

7 (LCNEC4Tp7),
24 (LCNEC4Tp24)

LNET5 lung NET (G1) yes yes blood (LNET5N) primary (LNET5T) 4 (LNET5Tp4), 7
(LNET5Tp7), 2
(LNET5Tp2.2)†

LNET6 lung NET (G1) yes yes tissue (LNET6N) primary (LNET6T) 1 (LNET6Tp1)
mSINET7 small intestine

(ileum)
NET (G2) yes yes blood (SINET7N) mesenteric

metastasis
(SINET7M)

2 (SINET7Mp2)

mSINET8 small intestine
(ileum)

NET (G2) yes yes blood (SINET8N) ovary metastasis
(SINET8M)

2 (SINET8Mp2)
mSINET9 small intestine

(ileum)
NET (G2) yes no blood (SINET9N) mesenteric

metastasis
(SINET9M)

1 (SINET9Tp1)

LNET10 lung NET (G2) yes yes blood (LNET10N) primary
(LNET10T)

4 (LNET10Tp4)
mLCNEC11 lung LCNEC no yes none brain metastasis

(LCNEC11M)
3 (LCNEC11Mp3)

mSINET12 small intestine
(ileum)

NET (G2) no yes none mesenteric
metastasis
(SINET12M)

1 (SINET12Mp1
and
SINET12Mp1.3)‡

LNET13 lung NET (G1) no yes none primary
(LNET13T)

1 (LNET13Tp1)
LNET14 lung NET (G1) no yes none primary

(LNET14T)
1 (LNET14Tp1)

mLNET15 lung NET (G2) no yes none skin/soft tissue
metastasis
(LNET15M)

2 (LNET15Mp2)

LNET16 lung NET (G2) no yes none primary
(LNET16T)

2 (LNET16Tp2)
mLNET16 lung NET (G2) no yes none metastasis to the

ribcage
(LNET16M)

1 (LNET16Mp1)

LNET18 lung NET (G2) no yes none none 2 (LNET18Tp2,
from primary)

LNET19 lung NET (G1) no yes none primary
(LNET19T)

2 (LNET19Tp2)
mLNET20 lung NET (G2) no yes none paravertebral Th1

mestastasis
(LNET20M)

2 (LNET20Mp2)

mSINET21 small intestine
(ileum)

NET (G1) no yes none paravertebral Th1
mestastasis
(SINET21M)

2 (SINET21Mp2)

mSINET22 lung NET (G1) no yes none paravertebral Th1
mestastasis
(SINET22M)

2 (SINET22Mp2)

mLCNEC23 unknown LCNEC no yes none none 3 (LCNEC23Mp3,
from
paravertebral Th1
mestastasis)

for the normal samples, only WGS was performed
* one normal tissue for this experiment was excluded due to discordance with the tumor (see Fig. 4)
† Two lines were derived for LNET5, one sequenced at passages 4 and 7 (samples LNET5Tp4 and LNET5Tp7) and one at passage 2 (LNET5Tp2.2)
‡ Two lines were derived for SINET12, each sequenced at passage 1 (samples SINET12Mp1.1 and SINET12Mp1.3)
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Quality control

For each ’omic technique, quality controls (QC) of the samples
were performed at each step.
Raw reads
Software FastQC (v0.11.9 [30]) was used to check raw reads
quality, and software MultiQC (v1.9 [31]) was used to aggregate
the QC results across samples and generate interactive plots;
all plots from Figs. 1 and 2 were generated by multiQC from
the FastQC outputs. Original MultiQC reports are available in
Supplementary Information (Files S1-S4) to allow a free explo-
ration of the QC statistics.
WGS. Raw reads passed quality control �lters in all samples. All
samples displayed good sequence quality scores (mode above
30 Phred), both on average and across all positions in the
read (Fig. 1A and B), with samples sequenced later (lower
part of Table 1, from LNET5 to LNET10) displaying better
scores (highest mode in Fig. 1A). GC content were slightly
skewed toward lower values but proved consistent across sam-
ples (Fig. 1C), and adapter content and duplication levels were
adequate (Fig. 1D and E). The number of reads were consis-
tent between read pairs and consistent with target read depths
(Fig. 1F): samples with a target depth of 30X–normal, normal-
derived organoids, the primary tumor from experiment LC-
NEC1, and tumor organoid passage 14 from experiment LCNEC3
(LCNEC3Tp14)–having a lower number of reads (∼ 4 × 100M
reads= 400M reads) than the others samples (∼ 4 × 250M =
1000M reads), which had a target depth of 90X. Note that the
metastasis organoid of experiment SINET9 (SINET9Mp1) has
been sequenced in eight lanes, with 4 lanes with a low number
of reads (∼ 30M) and 4 additional ones with a larger number
(∼ 140M) so the total is comparable with that of the other sam-
ples.
RNA-seq. Raw reads passed quality �lters after reads trimming
for adapter content and quality. All samples displayed good
sequence quality scores on average both before and after read
trimming (mode above 30 Phred; Fig. 2A and B), with samples
sequenced later (lower part of Table 1, from LNET5 to LNET14)
displaying better scores (highest mode in Fig. 1A). Six samples
displayed lower scores at the end of the reads before trimming
(Fig. 2C) but better scores after trimming (Fig. 2D). Indeed,
most samples displayed high adapter content before trimming
(Fig. 2E), and the trimming step successfully removed them
(less than 0.1% in all samples; Supplementary Information File
S1). The trimming step mostly removed less than 5 bp from
the read, but occasionally could remove up to around 50 bp
(Fig. 2F). GC content were consistent across samples (Fig. 2G-
H), although the read trimming step resulted in an excess of
reads with high GC content, presumably due to some reads be-
ing strongly shortened by the trimming step. Hopefully, in
general the trimming step did not increase much the propor-
tion of short reads (Fig. 2I-J). The number of reads were con-
sistent between read pairs and across sequencing runs both
before and after trimming (Fig. 2K-L), and total read numbers
for each sample were consistent with the target number of 50M
(25M pairs): the smallest number, 60.8M corresponded to sam-
ple PANEC1Tp14.
Alignments
WGS. The software qualimap (v2.2.2b [32]) was called by our
work�ow alignment-nf to generate QC statistics for the WGS
alignments in parallel to the data processing (Table 2). All
normal and normal tissue-derived organoids displayed a mean
coverage ≥30X, and all tumor and tumor-derived organoids
except passage 24 from the organoid of experiment LCNEC4
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Figure 1. Quality control of the raw Whole-Genome Sequencing (WGS) data.
(A) Distribution of the mean sequence quality of the reads in Phred score. (B)
Mean sequence quality score as a function of the position in the read in base
pairs (bp). (C) Distribution of the GC content in percent. (D) Percentage of
reads containing a sequence corresponding to the Illumina adapter sequence
as a function of the position in the read in bp. (E) Percentage of the library
with a given level of duplication. (F) Number of unique and duplicated reads
per �le. In panels (A)–(E), each line corresponds to a fastq �le, with each
of the 34 samples from Table 1 subdivided into four sequencing lanes (except
SINET9Mp1, subdivided into 8 lanes), and additionally subdivided into two read
pair �les, for a total of 4×2×33+8×1 = 280 �les; in panel (F), each horizontal
bar corresponds to a �le. In (A)-(E), green lines correspond to �les that passed
the most stringent QC �lters of software FastQC; orange lines correspond to
�les that passed a less stringent �lter.

(sample LCNEC4Tp24) and passage 1 of the organoid of exper-
iment SINET9 (sample SINET9Mp1) had a coverage ≥ 60X; all
samples displayed at least 65% of the genome with a coverage
larger than or equal to 30X except LCNEC4Tp24 and (57.4%).
Percentages of aligned reads exceeded 99.8% for all samples.
Interestingly, some tumor and tumor-derived organoid sam-
ples displayed bimodal coverage distributions compatible with
variations in copy number state (Supplementary Information
File S3).
RNA-seq. Software RSeQC (v3.0.1 [33]) was called to check
alignment quality in parallel to the data processing by work-
�ow RNAseq-nf. For all samples, the number of known junc-
tions (i.e., junctions annotated in the gencode v33 annotation
�le) was stable when resampling subsets of 75% to a 100% of
the reads (all lines plateau in Fig. 3A), indicating a good satura-
tion and suggesting that the sequencing depth was su�cient to
detect known junctions. In contrast, the number of novel junc-
tions (i.e., junctions not in the annotation �le) was increasing
slowly as a function of the percentage of reads resampled, but
did not completely saturate (no complete plateau in Fig. 3B).
This indicates that we probably detected the most abundant
novel junctions but that some low abundance novel junctions
were probably not detected.
Alignment scores were good, with more than 25M mapped

read pairs (50M reads) for all samples, and from 4M to 7M un-
mapped reads, mainly due to reads being too short or having
too many mismatches (Fig. 3C). The distribution of the align-
ments within annotated regions matched our expectations,
with most reads (≥80%) either aligning to exons (≥50%), 3’
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Figure 2. Quality control of the raw RNA-seq data. Panels (A), (C), (E), (G), (I),
(K) correspond to controls before read trimming for quality and adapter content
by wrapper Trim Galore for software cutadapt; panels (B), (D), (F), (H), (J), (L)
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UTR (∼3%), and 5’ UTR (∼25%) (Fig. 3D).

Data Validation

Sample matching
We used software NGSCheckMate (cloned from the github
repository https://github.com/parklab/NGSCheckMate revision
10799087bdfe4b990add5b5e536f87c47bbdb688) to check that
samples from the same experiment indeed came from the
same individual, in both WGS and RNA-seq simultaneously,

Table 2. Quality control of the WGS alignments
Sample
Name

% GC ≥30X ≥50X Coverage %
Aligned

PANEC1N 42% 84.6% 16.2% 41.0X 99.9%
PANEC1T 42% 93.8% 91.7% 104.0X 99.8%
PANEC1Tp4 42% 93.9% 93.3% 127.0X 99.9%
PANEC1Tp14 42% 93.6% 90.9% 89.0X 99.8%
LNET2Np7 41% 67.2% 1.9% 33.0X 99.9%
LNET2Np12 41% 93.4% 92.9% 104.0X 99.9%
LNET2T 41% 93.3% 92.9% 109.0X 99.9%
LNET2Tp12 42% 93.4% 93.1% 115.0X 99.8%
LCNEC3N 41% 82.5% 11.1% 39.0X 99.9%
LCNEC3Np12 42% 82.5% 11.7% 38.0X 99.9%
LCNEC3T 41% 93.9% 90.0% 89.0X 99.9%
LCNEC3Tp17 42% 93.5% 90.9% 90.0X 99.8%
LCNEC4Np6 42% 69.7% 2.7% 34.0X 99.9%
LCNEC4T 41% 93.0% 88.1% 102.0X 99.8%
LCNEC4Tp7 42% 91.7% 87.9% 102.0X 99.9%
LCNEC4Tp24 42% 51.9% 11.3% 30.0X 99.9%
LNET5N 41% 68.9% 2.5% 33.0X 99.9%
LNET5T 42% 91.9% 77.6% 68.0X 99.9%
LNET5Tp4 42% 93.3% 87.6% 75.0X 99.9%
LNET6N 42% 86.6% 22.8% 43.0X 99.9%
LNET6T 42% 93.0% 83.1% 72.0X 99.9%
LNET6Tp1 42% 90.2% 76.8% 61.0X 99.9%
SINET7N 42% 77.2% 4.9% 36.0X 99.9%
SINET7M 41% 92.8% 83.5% 73.0X 99.9%
SINET7Mp2 42% 92.8% 85.7% 69.0X 99.9%
SINET8N 42% 93.1% 91.7% 75.0X 99.9%
SINET8M 41% 92.6% 81.2% 64.0X 99.9%
SINET8Mp2 42% 93.0% 85.5% 70.0X 99.9%
SINET9N 42% 84.4% 7.2% 38.0X 99.9%
SINET9M 41% 93.0% 90.0% 81.0X 99.9%
SINET9Mp1 42% 90.2% 49.1% 49.0X 99.9%
LNET10N 42% 86.4% 9.5% 39.0X 99.9%
LNET10T 42% 93.0% 90.1% 71.0X 99.9%
LNET10Tp4 42% 93.0% 87.1% 66.0X 99.9%

using our work�ow NGSCheckMate-nf (https://github.com/
IARCbioinfo/NGSCheckMate-nf, v1.1). The sample matching algo-
rithm correctly identi�ed all experiments except one (Fig. 4).
The WGS normal-derived organoid sample from experiment
LCNEC3 (LCNEC3Np12_WGS in Fig. 4) was found not to match
other LCNEC3 samples, suggesting a possible sample swap and
was thus excluded from further analyses. Also, the RNA-seq
tumor sample for the late-passage organoid of experiment LC-
NEC3 (sample LCNEC3Tp17_RNA in Fig. 4) was found to bet-
ter match experiment LNET2, and was thus excluded from the
subsequent analyses. Finally, two samples were found to par-
tially match LNET15 and LNET16, suggesting contamination
and were also excluded (UNKN00 and UNKN01).

Sex validation

We validated the sex reported in the clinical data using the
multi-omic data. For the WGS data, we used the proportion of
reads aligned to the sex chromosomes to assess whether sam-
ples clustered by sex (Fig. 5A). We found that all samples clus-
tered by sex except for the normal of experiment LCNEC3 (sam-
ple LCNEC3Np12) which clustered with females despite other
samples from the experiment clearly clustering with males.
This further supports the sample matching reports that sug-
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Figure 3. Quality control of the RNA-seq alignments. (A) Number of known junctions identi�ed by software STAR in a subsample as a function of the percentage
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of sequence tags with each alignment score. (D) Distribution of reads among annotated regions.

gest that this sample does not match the rest of the experi-
ment. For the RNA-seq data, we compared the total expression
level on the sex chromosomes, using the variance-stabilised
read counts as a quanti�cation of gene expression (vst func-
tion from R package DESeq2 v1.26.0 [34]) (Fig. 5B). We �nd
that samples from the same sex cluster together for all experi-
ments, suggesting concordance with the clinical data.
Small variant calls from RNA-seq
We classi�ed small variants called from RNA-seq in 241 known
neuroendocrine neoplasm driver genes (from Table S4 in [6])
as somatic or germline, using a random forest (RF) algorithm
[35] (R package randomForest v4.7-1.1 [36]; Fig. 6), using a
similar approach as we recently did to classify mutations in
tumor-only WGS [37]. After �ltering out non-exonic, synony-
mous, and nonsynonymous mutations with a REVEL score [38]
below 0.5, and mutations not in the list of 241 drivers, we were
left with 2430 variants. Among them, 1174 variants were in
samples with WGS data available and their somatic status was
thus known.
We used 10 features in the RF model. One feature

was directly informative about the potential germline sta-
tus: the frequency of the allele in human populations from
the ExAc database excluding cancers from the TCGA (feature
ExAC_nontcga_ALL). Four features were informative about the
alignment: the median distance from the end of the read (fea-
ture MPOS), the likelihood ratio score of variant existence (fea-
ture TLOD), the coverage at the position (feature DP), and

the allelic fraction of the alternative allele (RNA.AF). Finally,
the other features were informative about the pathogenic-
ity of the variant: the REVEL score of pathogenicity (fea-
ture REVEL), the presence in the COSMIC 92 database (fea-
ture cosmic92_coding_nonnull), the presence in the COSMIC 92
database in a lung tumor (feature cosmic92_coding_lung), and
the InterVar annotation (feature InterVar_automated; with lev-
els “.", “Uncertain_signi�cance", “likely_pathogenic", and
“Pathogenic"), and the exonic function of the variant (mis-
sense, nonsense, inframe or frameshift insertion, etc).
The RF algorithm was trained and tested on the 1174 vari-

ants with known status (1148 germline, 26 somatic) called in 22
samples from 8 experiments (Fig. 6A). We used leave-one-out
cross-validation at the experiment level (8 folds), excluding all
samples from one same experiment from the model �t at each
iteration in order to avoid over-�tting due to the inclusion of
variants from the same individual but di�erent samples (e.g.,
LCNEC3T and LCNEC3Tp17) in the training and test sets. We
used 5000 trees, and 3 features per split (the square root of the
total number of features as recommended by default), and a
minimal node size of 1. We estimated the performance of the
model using the receiver operating characteristic (ROC) curve
and its area under the curve (AUC, computed using the trape-
zoid rule), showing the sensitivity as a function of 1-speci�city
across di�erent thresholds for the proportion of votes for the
somatic class. We also computed the false discovery rate to get
a sense of the proportion of variants classi�ed as somatic that
would actually be false positives. Once the RF model perfor-
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Figure 4. Network of matches between WGS and RNA-seq samples, computed with software NGSCheckmate. Numbers on the edges and edge thickness correspond
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mance was assessed, we trained a RF model on the full 1174
variants and predicted the status of the remaining 1256 vari-
ants. See github repository https://github.com/IARCbioinfo/
MS_panNEN_organoids for the complete R script.
We �nd that we can classify variants as somatic or germline

with a balanced accuracy of 86%, with both speci�city greater
than 98% and sensitivity greater than 73% (AUC=0.965). In-
terestingly, although somatic variants are just a fraction of
the calls (2%), the high sensitivities and speci�cities of our
RF algorithm allowed to classify variants with false discov-
ery rates below 50% while still preserving sensitivities above
60% (see Fig. 6B, E-G). We evaluated the importance of fea-
tures for the classi�cation both using the mean decrease in
accuracy, which captures how much the model loses accuracy
when the feature is excluded, and using the mean tree depth
at which the feature was observed, with a low value meaning
that the feature is used early in the decision trees and thus
separates many variants[35, 39] (R package randomForestEx-
plainer v0.10.1). The most important features for the classi�ca-

tion were the REVEL score, the TLOD, and the cosmic annota-
tion, while the frequency in the ExAC database was the least
important, presumably because all these variants were very
rare (Fig. 6C). Indeed, the most representative tree from the
RF, computed using the reprtree R package v0.6 using the d2
distance metric between tree predictions[40], relied on these
three variables, with all alterations present in a lung tumor
from the COSMIC 92 database automatically classi�ed as so-
matic (root of the tree), and TLOD and REVEL score being the
most common features used for splitting (Fig. 6D).

Re-use potential

We describe here some of the very �rst multi-omic datasets for
patient-derived tumor organoids of pancreatic, small intestine
(ileum), and pulmonary neuroendocrine neoplasms, in partic-
ular including the �rst lung neuroendocrine tumor organoids.
Because such low grade tumors are di�cult to cultivate in
vitro, there is currently a lack of adequate experimental sys-
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Figure 5. Validation of reported sex. (A) Percentage of reads aligned to chro-
mosome X and Y in the whole-genome sequencing data. (B) Total gene ex-
pression in X and Y chromosome, in units of variance-stabilized read counts,
computed from RNA-seq data. In all panels, samples from each sex are encir-
cled (red:male, blue:female), excluding LCNEC3Np12, which we report as not
matching the other samples from the LCNEC3 experiment.

tems for these tumors, and we expect the biobank associated
with the data presented here to be the basis for future experi-
mental studies–either fundamental or treatment oriented–on
neuroendocrine neoplasms across body sites. The multi-omic
dataset we provide here constitutes the molecular �ngerprints
of these experimental models, and will be key to investigate
oncogenic processes responsible for tumor initiation and pro-
gression, and to link drug responses to molecular features to
design future personalized treatments.
To facilitate future studies, we used the exact same data

processing as in our previous studies of neuroendocrine neo-
plasms [14, 15] and other rare cancers [41], in particular using
rigorous RNA-seq expression quanti�cation with container-
ized software and operating systems (see methods section).
In addition, we provide all R scripts to analyze the data at
https://github.com/IARCbioinfo/MS_panNEN_organoids.

Conclusion

We have shown that our multi-omic dataset is of high quality
and can be easily re-used. Given the rarity of neuroendocrine

tumors from the lung, pancreas, and small intestine, past ge-
nomic studies each only reported data for a handful of samples,
limiting the potential discoveries. For example, for lung NETs,
29 WGS and 39 RNAseq were reported in [42], 3 WGS and 20
RNA-seq in [14], and 30 RNA-seq in [43]; for small intestine
NETs, for example, 81 RNA-seq with no WGS were reported
in [44] and 7 RNA-seq in [45]). As a result, the primary tu-
mors and metastasis sequencing data we report here (10 sam-
ples with WGS, 21 with RNA-seq) alone are very valuable, and
should be combined with other datasets in future studies to
provide enough power to discover informative molecular fea-
tures for diagnosis, prognosis, and treatment. In addition, we
report a unique multi-omic dataset generated from patient-
derived tumor organoids, whichwill allow all researchers work-
ing on our biobank to test hypotheses regarding the molecular
features associated with drug responses and thus advance re-
search on personalized treatments for these understudied dis-
eases.

Availability of source code and requirements

• Project name: NEN organoids project, lungNENomics
• Project home pages: https://www.embl.org/groups/dayton/,

http://rarecancersgenomics.com/lungnenomics/
• Operating system(s): Platform independent
• Programming language: Next�ow, R
• Other requirements: R packages caret, randomForest
• License: GNU GPL

Availability of supporting data and materials

The data set supporting the results of this article is avail-
able in the European Genome-Phenome archive repository,
study EGAS00001005752. The study consists of seven datasets:
EGAD00001009988, with WGS CRAM �les for 2 experiments,
EGAD00001009989 with WGS CRAM �les for 6 experiments,
EGAD00001009990, with WGS CRAM �les for 2 experiments,
EGAD00001009991 with RNA-seq fastq �les from 4 experi-
ments, EGAD00001009992, with RNAseq fastq �les for 15 ex-
periments, EGAD00001009993, with RNA-seq fastq �les for
2 experiments, and EGAD00001009994, with gene expres-
sion in multiple formats (R data, tab-separated text �les)
and multiple units (raw counts, TPM, FPKM) for 21 samples.
Because of the sensitivity of the data and the patient con-
sent, to get access to the data, please contact the data access
committee of the Division of Biomedical Genetics from UMC
Utrecht at dacdbg@umcutrecht.nl. Once a data access agree-
ment has been signed and access granted, data can be down-
loaded using the EGA python client (see detailed instructions
at https://github.com/EGA-archive/ega-download-client, and
video tutorial at https://embl-ebi.cloud.panopto.eu/Panopto/
Pages/Viewer.aspx?id=be79bb93-1737-4f95-b80f-ab4300aa6f5a )
ThemultiQC report for WGS raw reads is available in Supple-

mentary File S1; the multiQC report for RNA-seq raw reads is
available in Supplementary File S2; the multiQC report for WGS
alignments is available in Supplementary File S3; the multiQC
report for RNA-seq alignments is available in Supplementary
File S4.

Abbreviations

bp: base pairs. LCNEC: large-cell neuroendocrine carci-
noma. NEC: neuroendocrine carcinoma. NEN: neuroendocrine
neoplasms. NET: neuroendocrine tumors. RNA-seq: RNA-
sequencing. WGS: whole-genome sequencing. RF: random for-
est.
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Figure 6. Random forest (RF) classi�cation of variants as somatic or germline from RNA-seq data. (A) Schematic of the RF training, test, and prediction. B)
Receiver operating characteristic (ROC) curve. C) Feature importance for classi�cation accuracy. D) Representative tree of the RF. At each split, the split condition
is written above, the left branch corresponds to a Yes and the right branch to a No. Final decision (SOMATIC or NON-SOMATIC) is represented by the leaves.
(E)-(G) Confusion matrix for di�erent levels of sensitivity and speci�city. Reference: somatic status assessed from whole-genome sequencing data. Prediction:
somatic status predicted from RNA-seq data using the RF algorithm.
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