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Abstract 

Protein kinase function and interactions with drugs are controlled in part by the movement of the 
DFG and ɑC-Helix motifs, which enable kinases to adopt various conformational states. Small 
molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that 
often depend on the kinase conformation(s) they bind. However, the limited availability of 
experimentally determined structural data for kinases in inactive states restricts drug discovery 
efforts for this major protein family. Modern AI-based structural modeling methods hold potential 
for exploring the previously experimentally uncharted druggable conformational space for 
kinases. Here, we first evaluated the currently explored conformational space of kinases in the 
PDB and models generated by AlphaFold2 (AF2) (1) and ESMFold (2), two prominent AI-based 
structure prediction methods. We then investigated AF2’s ability to predict kinase structures in 
different conformations at various multiple sequence alignment (MSA) depths, based on this 
parameter’s ability to explore conformational diversity. Our results showed a bias within the PDB 
and predicted structural models generated by AF2 and ESMFold toward structures of kinases in 
the active state over alternative conformations, particularly those conformations controlled by the 
DFG motif.  Finally, we demonstrate that predicting kinase structures using AF2 at lower MSA 
depths allows the exploration of the space of these alternative conformations, including identifying 
previously unobserved conformations for 398 kinases. The results of our analysis of structural 
modeling by AF2 create a new avenue for the pursuit of new therapeutic agents against a 
notoriously difficult-to-target family of proteins. 

Significance Statement 
 
Greater abundance of kinase structural data in inactive conformations, currently lacking in 
structural databases, would improve our understanding of how protein kinases function and 
expand drug discovery and development for this family of therapeutic targets. Modern 
approaches utilizing artificial intelligence and machine learning have potential for efficiently 
capturing novel protein conformations. We provide evidence for a bias within AlphaFold2 and 
ESMFold to predict structures of kinases in their active states, similar to their overrepresentation 
in the PDB. We show that lowering the AlphaFold2 algorithm’s multiple sequence alignment 
depth can help explore kinase conformational space more broadly. It can also enable the 
prediction of hundreds of kinase structures in novel conformations, many of whose models are 
likely viable for drug discovery. 
 
Main Text 
 
Introduction 
 
Protein kinases are key regulators of numerous cell-signaling pathways via phosphorylation of 
substrates and are involved in a variety of processes, such as cell proliferation, movement, and 
growth, as well as immunological responses (3-5). Protein kinases have been prominent targets 
for modern drug discovery against a variety of diseases (6-8). As of January 2023, 72 inhibitors 
were FDA-approved that primarily target two dozen different kinases (7).  
 
However, kinases are difficult to target selectively (9, 10). The ATP-binding site, which most 
inhibitors bind, is highly conserved (11, 12), and druggable allosteric sites can be difficult to 
identify and target. Additionally, kinase structures are highly flexible, adopting different 
pharmacologically relevant states (13, 14), particularly in the ATP-binding site, which includes the 
DFG (Asp-Phe-Gly) motif. The ‘DFG-in’ conformation facilitates ATP binding (15), whereas the 
‘DFG-out’ state, characterized by a roughly 180° ‘flip’ of the Asp and Phe residues, precludes 
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ATP binding (13, 14, 16). The conformational plasticity of kinases is also characterized by the 
movement of the nearby ɑC-Helix, which can also adopt ‘in’ and ‘out’ states (17).  
 
The conformations of kinases are of the utmost importance for pharmacology and drug discovery. 
Kinase inhibitors, including multiple prescription drugs, have been classified based on the 
conformation to which they bind, and different inhibitor types show different biochemical and 
pharmacological profiles (18). For instance, Type-II inhibitors targeting the ɑC-Helix-in / DFG-out 
(CIDO) conformation, an inactive conformation, exhibit longer residence times compared to Type-
I inhibitors, which target the active ɑC-Helix-in / DFG-in (CIDI) conformation (19, 20). 
Furthermore, both DFG-out and ɑC-Helix-out conformations have additional, nearby allosteric 
pockets that can be targeted for drug discovery (21-25). Recently, additional conformations have 
been described, which represent intermediate states that may enable the development of a 
unique class of kinase inhibitors (26, 27). The design of small molecule kinase inhibitors is aided 
by structural data of kinases in specific conformations they are intended to bind (28). 
 
A major limitation in the development of conformation-specific kinase inhibitors (e.g., Type-II) is 
the relatively small number of inactive structures in the PDB (29) available for rational drug design 
(27, 30). However, computational modeling has helped researchers bridge the gap in our 
structural knowledge of kinase conformations for drug design. For example, homology modeling- 
(31) and molecular dynamics (MD) simulations- (32) based methods have been applied to 
visualize alternative kinase conformations and advance the design of compounds targeting them 
(33, 34). However, homology modeling does not model long regions that are unaligned to 
template structures (35). Similarly, MD simulations often fail to sample the pharmacologically 
relevant ‘DFG flip’ due to time and forcefield limitations, which limit their utility in kinase drug 
discovery. 
 
Emerging ab initio modeling methods address some of these barriers by employing machine 
learning (ML) algorithms to generate 3D models with accuracies comparable to experimentally 
determined structures (1, 2, 36, 37). Some of these methods, including AlphaFold2 (AF2) (1) and 
RosettaFold (36), use a multiple sequence alignment (MSA) as input that captures conserved 
contacts between evolutionarily related sequences needed to preserve the overall fold and 
topology governing all proteins (38). Another example is ESMFold (2), which is an alignment-free, 
language-based model capable of predicting protein structures based on biological properties 
learned directly from sequence data.  
 
Recent work has demonstrated that the modulation of some of the AF2 prediction parameters 
may help explore structural variations in membrane proteins (39) and multidomain electron 
transfer complexes (40). In this work, motivated by the importance of protein kinases and their 
unique conformations, we examined the ability of two representative AI-based structural modeling 
methods, i.e., AF2 and ESMFold, to explore the kinase conformational landscape relevant to drug 
discovery. Focusing on AF2, we also evaluated the quality of predicted models with respect to 
known experimental data and devised an approach to promote conformational exploration of the 
DFG and ɑC-Helix motifs within these models. Our analyses suggest that a number of high-
quality AF2 models that we predicted for several kinases were in never-before-seen 
conformations that can be used for drug design in future work.  
 
Results 
 
PDB Structures and AlphaFold2 and ESMFold Models Overrepresent the Kinase Active State 
 
We first sought to assess the current conformational space of experimentally determined 
structures of kinases in the PDB and structural models deposited in the AlphaFold2 Protein 
Structure Database (‘AF2 Database’) (41) and generated by ESMFold (2). We downloaded all 
available experimentally determined structures of 497 human kinase domains (from 484 kinases) 
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from the PDB. Although, on average, each kinase has more than 10 structures in the PDB, many 
kinases (268) have no known experimentally determined structure. We found that, as of May 9th, 
2023, the PDB had 5,136 structures classifiable (42) into one of six defined conformations, 
including ɑC-Helix-in / DFG-in (CIDI), ɑC-Helix-in / DFG-out (CIDO), ɑC-Helix-out / DFG-in 
(CODI), ɑC-Helix-out / DFG-out (CODO), DFGinter, and Unassigned (Figure 1A). These 
structures covered 270 kinases, of which 78.9% only exhibited two or fewer conformations. A 
summary of our workflow is visible in Supp. Figure 1.  
 
We also downloaded all computational models of these domains from the AF2 Database and 
predicted structures of the same kinase domains using ESMFold, which were all also classified 
by their conformation. Included in the AF2 Database were models of 153 kinases with no 
deposited structures in the PDB. We calculated the fractional distribution of the six conformation 
types present in the PDB and AF2 Database (Figures 1B and 1C) and models predicted by 
ESMFold (Supp. Figure 2). Our analysis revealed a significant overrepresentation of the active 
state ‘CIDI’ in all three datasets. Interestingly, both AF2 and ESMFold exhibited an even greater 
fraction of active-state models than that of the PDB (73.6%, 82.9% and 65.7%, respectively; 
p(PDBCIDI < AF2CIDI) = 1.26 x 10-34; p(PDBCIDI < ESMFoldCIDI) < 2.2 x 10-16. Furthermore, DFG-out 
conformations were underrepresented in all three datasets, more so in the AF2 Database and by 
ESMFold than in the PDB (2.3%, 0.8% and 9.7%, respectively; p(PDBDFG-out > AF2DFG-out) < 2.2 x 
10-16; p(PDBDFG-out > ESMFoldDFG-out) < 2.2 x 10-16). Notably, all three datasets contained a small 
fraction of Unassigned models (PDB: 2.2%; AF2: 0.4%; ESMFold: 0.4%). After limiting the 
analysis to models of kinases with deposited structures in the PDB, the distributions of AF2 and 
ESMFold model conformations of kinases showed similar trends when compared to those of their 
full datasets (Supp. Figure 3; p(AF2 Overlap) = 0.751; p(ESMFold Overlap) = 0.913), indicating 
that these differences do not arise from the expanded coverage of the kinome by AF2 or 
ESMFold. This suggests that these ab initio predictors exhibit a bias for predicting structures of 
kinases in the active (CIDI) state, which should be addressed to expand the conformational 
exploration of the kinome. 
 
Different Kinase Groups Tend to Adopt Distinct Conformations 
 
Next, we investigated if the bias for the CIDI conformation existed within individual kinase groups. 
We therefore computed the fractional distributions of each conformation by kinase group (AGC, 
CAMK, CK1, CMGC, Other, RGC, STE, TK and TKL) (43) using our datasets from the PDB and 
AF2 Database (Figures 1B and 1C) and the models generated by ESMFold. We observed that 
the active conformation, CIDI, consistently represented the greatest fraction among all kinase 
groups in all three datasets, ranging from 46.7% (Other) to 98.9% (CK1) in the PDB, 62.2% (TK) 
to 100% (CK1) in the AF2 Database, and 58% (STE) to 100% (CK1 and CMGC) by ESMFold 
(Supp. Figure 4). Interestingly, the CAMK and CK1 groups appeared to have similar fractions of 
each conformation type between the PDB and AF2 Databases (CAMK: p = 0.587; CK1: p = 1). 
These same groups did not retain those similar distributions in ESMFold-predicted models (Supp. 
Figure 4).  
 
Other groups showed noticeable differences. For example, those groups having higher fractions 
of CIDO structures in the PDB, such as CMGC, STE, TK, and TKL, had lower CIDO fractions by 
AF2 and ESMFold. However, it is noteworthy that TK had the highest CIDO fraction in all three 
datasets, since previous analyses have shown members of this group to be more likely to adopt 
DFG-out states (15, 43). Intriguingly, the understudied conformation CODO was a minor 
population across all groups in the PDB, ranging from 0.0% (CK1) to 6.1% (TKL), but was even 
less frequent in the AF2 and ESMFold datasets, ranging from 0.0% (all but AGC) to 3.4% (AGC) 
by AF2 and 0.0% (all but AGC) to 1.7% (AGC) by ESMFold. Finally, in addition to the sole CODO 
model belonging to AGC generated by ESMFold, the only two Unassigned models belonged to 
the Other group, and the only three CIDO models belonged to TK. Taken together, our results 
suggest that the conformation bias seen across the kinome (Figure 1B) is also observed at the 
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group level for the PDB and both predictive methods and that some groups are more 
conformationally diverse than others.  
 
Lowering MSA Depth Increases the Structural Diversity of AF2-Generated Kinase Models 
 
The AF2 algorithm includes a variety of parameters whose tuning can impact the output protein 
structural models. Specifically, the number of sequences (‘depth’) in the multiple sequence 
alignment (MSA) used as input for AF2 correlates with the conformational diversity of the 
structural models generated of a given sequence (39). Therefore, to sample alternative kinase 
conformations, we used ColabFold (44) to run AF2 at various MSA depths as input (Methods). 
The MSA generated by AF2 includes evolutionarily related sequences to the input kinase 
sequence. We generated five models for each kinase, which were then classified into the same 
six conformations as earlier. We observed limited structural diversity in models generated at 
higher MSA depths of 512, 128, and 32, where most distributions appeared similar to those 
observed in the AF2 dataset, though only the distribution at a depth of 512 was statistically similar 
(Figure 2A; Supp. Table 1). For example, at an MSA depth of 512, 76.8% of the models were in 
the active conformation, CIDI, while DFG-out states (CIDO and CODO) were under-represented 
(total of 1.7%).  
 
Interestingly, we observed greater fractions of alternative conformations in models generated at 
shallow MSAs (i.e., MSAs with fewer sequences) (Figure 2A). For instance, at an MSA depth of 
8, the CIDI fraction of models was 45.2%, while the DFG-out states’ (CIDO and CODO) fraction 
was 12.3%. At lower MSA depths of 4 and 2, the models were even more diverse, respectively 
including only 15.7% and 3.2% of the models in the CIDI conformation. Furthermore, substantial 
fractions of the models (49.3% and 80.5%, respectively) were classified as Unassigned at these 
MSA depths. Statistical comparison of the fractional compositions of each conformation at each 
MSA depth to each other showed that they were all statistically different (Supp. Table 2). We also 
examined if the conformational predisposition of some sequences can affect other model 
predictions. For this, we used custom MSAs made only from sequences predicted to be in at least 
one DFG-out state out of five models at an MSA depth of 8. These custom MSAs were generated 
from all such 161 kinases, with depths ranging from 161 to 4 sequences, to favor prediction of 
structures in those inactive conformations. However, these models exhibited similar 
conformational distributions to that observed in the AF2 Database (Supp. Figure 5), i.e., favoring 
the CODI and CIDI DFG-in conformations (Methods). 
 
Additionally, we observe that lowering MSA depth impacts the distribution of model conformations 
by kinase group (Figure 2B). First, the CIDI fraction at an MSA depth of 8 is much lower for all 
groups than the corresponding fractions in the AF2 Database, and ranges from 29.6% (STE) to 
71.7% (CK1) (Figures 1E and 2B). Second, the fractions of CIDO models in most groups is higher 
at an MSA depth of 8 (3.3% (CK1) to 12.1% (TK)) than the corresponding fractions in the AF2 
Database (0.0% (many) to 7.8% (TK)). A similar trend is observed in CODO models for all groups 
(range of 1.7% (CK1) to 6.8% (STE) at MSA depth of 8), except AGC. The levels of statistical 
significance of all these comparisons are provided in Supp. Table 3. 
 
To better understand these findings, we visualized the number of unique conformations for each 
kinase using KinMap (45), a tool for presenting data across the kinome, for the PDB structures 
and AF2 (MSA depth=8) models (Figures 2C and 2D, respectively). A comparison between these 
kinome trees demonstrated that lowering the MSA depth explored the conformational space of 
the kinome more broadly than the PDB and that, on average, an MSA depth of 8 yielded more 
conformations predicted per kinase over those with structures in the PDB. (p-value = 5.05 x 10-

29). Part of this expansion is in the form of conformations not previously reported for many 
kinases. For instance, CLK3, NEK9, and MAP3K4, all from different kinase groups, have no 
experimentally determined structures in the PDB but were predicted confidently in previously 
uncharacterized conformations (CIDI, CIDO, and CODI (CLK3); CIDI and CIDO (NEK9); CIDI, 
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CODI, CODO, and DFGinter (MAP3K4)) by AF2. Collectively, the above data suggest that 
conformational exploration is not limited to any one kinase group. 
 
Models Generated by AF2 at Different MSAs Vary in Quality 
 
While the above results demonstrated that AF2 can generate previously unseen kinase 
conformations, an assessment of model quality is a prerequisite for their utility for drug discovery 
and other applications. To evaluate the models’ quality, we compared them to experimentally 
determined structures from the PDB using the template modeling-score (TM-Score) (46), which is 
commonly used to evaluate protein structure prediction methods (1, 47) (Methods). We focused 
on models specifically containing the DFG motif. Briefly, we aligned each predicted model with 
every structure of the same kinase in the PDB and calculated a TM-Score of the aligned 
structures. To consider the comparison of each model to the most closely matching PDB 
structure, this was followed by calculating an average of the best TM-Scores for all models at 
each MSA depth and for each conformation type (Figure 3). We observed that the average TM-
Score for models deteriorated with MSA depth starting at a depth of 16 (0.85 to 0.4 at MSA depth 
2) (Figure 3A). These results indicated that while lower MSA depths did explore a larger 
conformational space, they were also likely to lead to models of lower accuracy.  
 
In terms of individual structural conformations, we observed that DFG-in models exhibited better 
accuracy scores than those in the DFG-out and DFGinter conformations (Figure 3B). For 
instance, CIDI models were the most similar to known structures (TM-Score of 0.85), while 
Unassigned models were the least (TM-score of 0.39). Notably, models classified as DFG-out 
(CIDO and CODO) tended to be more dissimilar to PDB structures (TM-scores of 0.7 and 0.59, 
respectively) than CIDI models.  
 
One limitation of comparing models to PDB structures using similarity metrics like TM-score is 
that they penalize previously unobserved conformations that did not appear in the PDB. 
Therefore, we also calculated and analyzed the predicted local-distance difference test (pLDDT) 
scores (1, 41) for the AF2-generated kinase models. The pLDDT score assesses the overall 
confidence in AF2’s prediction on a per-residue level, ranging from 0 (low confidence) to 100 
(high confidence), and is more lenient toward structural novelty than direct similarity metrics, such 
as TM-Score. We analyzed the distribution of average pLDDT scores taken from all residues in 
each model by MSA depth and conformation (Figure 4). Our analysis revealed that, as the MSA 
depth decreased from 512 to 2, we observed a nearly consistent drop in the overall confidence of 
models (Figure 4A).  
 
We also observed that different conformations had varying levels of confidence in terms of the 
pLDDT score (Figure 4B). Models in the active CIDI conformation were predicted with the highest 
level of confidence (94% at 90 < pLDDT < 100), while Unassigned models were mostly predicted 
at very low levels of confidence (89% at 30 < pLDDT < 40). Other conformations were more 
broadly distributed across the pLDDT range.  
 
Collectively these data suggest that, while AF2 did produce models of varying accuracies in 
different conformations, excessive lowering of the MSA depth diminished the overall quality of 
predicted models.  
 
AlphaFold2 Predicts Structures in Diverse DFG-in, DFG-out and Unseen Conformations 
 
While we understood that high model quality was an important requirement for rational drug 
design using these models, it was also important to assess how well AF2 explored the 
conformational flexibility of the DFG motif. To do this, we next sought to evaluate the range of 
DFG motif movement captured by AF2. This movement determines the biophysical features (e.g., 
shape and volume) of the ATP binding site, which are relevant for the development of particular 
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kinase inhibitor types (e.g., Type-I and -I½) (24, 25, 48). For this, we analyzed the reliable models 
generated (i.e., those models with pLDDT > 70) by AF2 at an MSA depth of 8 (Figure 5A) in 
terms of pseudo-dihedral angles involving the DFG backbone (49). Briefly, these pseudo-dihedral 
angles capture movement of the DFG motif and distinguish between DFG-in and DFG-out 
models. In Figures 5A, the DFG-in conformations (red and purple) clustered toward the bottom of 
the plots where DFG-in models typically do, and DFG-out models (cyan and green) clustered in a 
line near the middle in the same way. DFGinter models (blue) spanned the conformational space 
between the two states. We observed that reliable Unassigned models, which were relatively 
uncommon at depth 8, often fell outside the regions occupied by the distinct DFG-in, DFG-out 
and DFGinter groups.  
 
Notably, for the MSA depth of 512, we observed a limited exploration of DFG movement in the 
DFG-out and Unassigned conformational space (Figure 5B), indicated by narrower clusters of 
models in each region and fewer DFG-out models. In contrast, the MSA depth of 2 appears to 
show wider exploration of the DFG motif’s conformational space, but it is difficult to make 
definitive conclusions, as far fewer models were confidently predicted at this depth (Figure 5C), 
These observations demonstrate that reliable AF2-generated models captured the known 
conformational space of the DFG motif, but also some diverse and potentially druggable 
conformations (i.e., via the ATP binding site) outside of standard groupings. 
 
AlphaFold2 Predicts Structures of Kinases in Previously Unseen Conformations 
 
Encouraged by AF2’s ability to predict inactive conformations of kinases, we investigated whether 
any kinases in our dataset were predicted in previously unobserved conformations. For this, we 
compared all models output by AF2 to PDB structures of the same kinases and calculated the 
number of models predicted in conformations not yet experimentally observed for their respective 
kinases at each MSA depth. We also included in our analysis models of kinases for which no 
structures currently exist in the PDB. We only considered ‘confident’ models, as defined by a 
pLDDT score higher than 70 (Table 1) (1, 41). A total of 6,297 confident models were generated 
in previously unobserved conformations, covering 398 kinases and 37% of all models generated 
across all MSA depths. This attests to our ability to explore new conformational spaces for many 
established and emerging drug targets that can now be targeted by inhibitors of different types in 
an expansion of the druggable kinome (Figures 2C and 2D). For example, confident (pLDDT > 
70) models of CAMK2A, DDR2 and ULK3 at an MSA depth of 8 in Unassigned conformations 
represent previously unobserved and potentially druggable kinase models (Figure 5D). These 
three kinases reside in different groups and demonstrate that our predictions provide new 
structural information, not just for one family of kinases, but across the kinome. However, it 
should be noted that several of these models in new conformations contain partially obstructed 
ATP sites and DFG pockets. The seemingly collapsed binding sites likely make rational drug 
design challenging and may require further modeling to dock against them. To enable further 
study of and rational drug design efforts against such targets, all confident AF2-generated models 
analyzed here have been made available at https://kinametrix.com/ under the ‘AlphaFold2 Kinase 
Structures’ tab with helpful scripts through our GitHub (https://github.com/schlessinger-
lab/af2_kinase_conformations/). 
 
Discussion 
 
A major barrier for rational design of conformation-specific kinase drugs is the limited availability 
of structures in diverse conformations. While inhibitors targeting the kinases’ ATP binding site 
may suffer from issues such as promiscuity and low residence time, kinase inhibitors targeting 
inactive states (e.g., Type II and Type 1½) can offer several advantages, such as improved 
pharmacokinetic properties and chemical novelty (18-20, 50). However, the limited number of 
structures of kinases in inactive states (e.g., DFG-out or ɑC-Helix-out) in the PDB attests to the 
difficulty of capturing these elusive conformations by experimental methods (Figure 1). Therefore, 
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refined computational prediction methods are necessary to bridge this gap in our structural 
knowledge for the purpose of advancing drug discovery. Here, we performed a comprehensive 
analysis of the kinase conformational space captured by experimentally derived and AI-predicted 
structures, with the following three key findings: 
 
The PDB, as well as Default AlphaFold2 and ESMFold Models, Exhibit Bias for Active Kinase 
Conformations 
 
Automated classification of kinase conformations can be achieved with high accuracy (42, 51), 
enabling high-throughput conformational analysis for kinase structure datasets. We determined 
fractions of kinase conformations in the PDB and AF2 Database, as well as models predicted by 
ESMFold (Figure 1). Our analysis revealed a significant bias within the PDB for the active kinase 
state (Figure 1B), which is consistent with previous analyses using different approaches (27, 42). 
This bias was even more pronounced in the AF2 Database and among models predicted by 
ESMFold (Figure 1C). Furthermore, DFG-out states represented only 10%, 2%, and <1% of the 
kinases in the PDB, AF2 Database, and ESMFold models, respectively, and together were only a 
minor fraction of structural data for conformation-specific ligand design. The bias in the models 
generated by both the AI-based methods likely resulted from the inherent bias in the PDB, which 
was used for their development and/or evaluation (1, 2). Alternatively, it is plausible that the 
methods favor the most energetically stable active (CIDI) conformation (16, 24). Future methods 
can potentially be trained and evaluated on structures of kinases in specific conformations to 
make the methods more representative. Encouragingly, although the handful of AI-predicted 
models in inactive conformations does not fully address the gap in our knowledge of kinase 
conformations, even a small number of high-quality models in unique conformations may enable 
the identification of targeted, selective compounds.  
 
Multiple Sequence Alignment (MSA) Depth Influences the Diversity of AlphaFold2-Predicted 
Kinase Structures 
 
We explored whether varying the MSA depth, a core parameter of the AlphaFold2 algorithm, 
generated kinase models in inactive states. Our analysis showed that lower MSA depths 
correlated well with increased conformational diversity and yielded some high-quality models in 
previously unobserved conformations (Table 1). For example, NEK9 and CLK3 were predicted 
with high confidence in the CIDO conformation and MAP3K4 in the CODI conformation, which 
have not been seen for these proteins before (Figures 2E-G respectively). This suggests that 
shallow MSAs fed as input to AF2 result may result in fewer structural constraints, thereby 
enabling the method to sample rare, but possible, conformational states. Further studies should 
examine what information embedded in sequence alignments drives enhanced sampling of 
alternative conformations, as multiple custom alignments of kinases predicted in DFG-out states 
(CIDO and CODO) did not enhance sampling of those conformations at various depths; rather, all 
of these distributions were similar to that of models predicted by AF2 under default parameters 
(Supp. Figure 5). 
 
However, our efforts did not fully overcome AF2’s bias for predicting kinases in active states, 
which could be based on AF2’s training on the PDB (52). This may also support the hypothesis 
that some kinases are less capable of adopting certain conformations, such as DFG-out, as has 
been suggested (53). It also further supports the notion that new and current computational tools 
should be developed to address this barrier to novel structure prediction. 
 
Several Predicted Models, Including Those in an Unassigned Conformation, May Represent A 
Novel Druggable Space for Kinases 
 
Particularly interesting were the AF2-predicted kinase models without an assigned conformation, 
as these showcase the method’s potential to probe the unexplored conformational space of this 
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family of proteins. While several high-scoring models were found in diverse structural 
conformations, a key question remained: were these models sufficiently accurate for the 
development of future novel kinase therapeutics? To answer this question, we performed a 
comprehensive analysis of AF2-generated kinase models and their druggable conformations. 
Although a large fraction of our models were of insufficient quality to be used in drug discovery, 
AF2 was able to capture a few high scoring models in unique conformations (Figure 5).  Many of 
these models could represent new starting points for drug design. A large kinase inhibitor profiling 
study proposed that hundreds of kinases may bind Type-II inhibitors in the DFG-out state, far 
more than have been experimentally determined (28); from this, we may learn that screening for 
drug candidates need only identify ligands that effectively stabilize these potentially elusive 
conformations. However, a closer examination of some of the models revealed partially occluded 
binding sites, which necessitates further analysis and model refinement. For example, MD 
simulations on predicted protein structural models may be key to opening these pockets, as has 
been suggested before for homology modeling protocols (54). Moreover, our analysis indicated a 
delicate balance between the exploration of the structural conformational space and the 
attainment of high model quality (Figure 4). 
 
Taken together, our results suggest that a rigorous and intentional interrogation of AI-predicted 
models by a trained scientist remains an important step in kinase drug design. While AI-based 
methods can make the structural characterization of kinases more efficient, the translation of 
these models into drug discovery campaigns still likely requires manual inspection to verify the 
placement of binding site sidechains, openness of druggable pockets, and large conformational 
changes (55). Nevertheless, our work here marks the beginning of the path towards the 
development of novel kinase therapeutics based on AI-generated structural models. Also, as 
more kinase structures are solved in alternative conformations and novel ligands targeting these 
states are developed, newly trained machine learning (ML) algorithms will likely be more 
generalizable, potentially further driving drug discovery. 
 
Limitations 
 
As mentioned above, many of the generated kinase models contain occluded or partially 
occluded binding sites, or connectivity errors. The majority of the inspected cases will likely 
require further careful analysis by a trained modeler and model refinement (e.g., using MD) in 
order to be useful for drug discovery campaigns. In addition, our study is focused on investigating 
how changes to the input MSA affect distributions of kinase model conformations. Using 
additional templates or allowing input of multiple random seeds, which will be explored in future 
studies, may also affect conformational diversity of generated models. 
 
Materials and Methods 
 
AlphaFold2 Model Generation 
 
High-throughput AlphaFold2 model generation was performed using the Minerva high-
performance computing facilities at the Icahn School of Medicine at Mount Sinai. An 
NVIDIAA100_PCIE_40GB GPU was used to run the method. Input sequences were derived from 
a previously published multiple sequence alignment (MSA) of 497 kinase domains (56). Ensembl 
BioMart (57), a web-based tool allowing the extraction of various biological data, was employed to 
match the kinase gene names to their associated Ensembl protein IDs. Furthermore, using 
BioMart, the PDB IDs of protein structures pertaining to the aggregated kinase protein IDs were 
retrieved, and the structural models matching these IDs were downloaded via the PDB’s bulk 
download tool in the CIF format. The workflow for download and classification of kinase structures 
and models is visible in Supp. Figure 1. 
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We predicted AlphaFold2 models of kinase domains at a range of MSA depths. These models 
were generated using a modified implementation of the AlphaFold2_advanced (44) ColabFold 
repository. The specific modifications were that the ‘max_recycles’ and ‘is_training’ variables 
were set to 1 to reduce structural refinement and ‘True’ to enable model dropout, respectively. 
For modeling at each MSA depth, the max_msa variable was set to “{desired MSA depth}:{double 
desired MSA Depth}.” The maximum number of models output per kinase at each MSA depth 
was set to five. The resultant models were ranked by the pLDDT score calculated by AF2. 
Memory limitations forbade successful predictions of models of MASTL at a depth of 512. All 
predicted models were visualized using the PyMOL Molecular Graphics System (version 2.5.4) 
hosted by Schrödinger, LLC. 
 
DFG-Out-Only Model Alignment-Based Prediction 
 
A total of 161 sequences of kinases that were successfully modeled by AF2 in a DFG-out state at 
an MSA depth of 8 were extracted and combined in a new, custom MSA. This MSA was used in 
an attempt to predict structures of all kinase domains that were more abundant in DFG-out 
conformations. Variations in depths of this alignment (161, 32, 16, 8 and 4), using a random seed 
of 1, and randomly sampled kinase sequences from the original alignment of 161 sequences, 
were used to make new structure predictions for all kinases according to the same protocol 
described in the previous subsection. 
 
ESMFold Model Generation 
 
Models were predicted based on sequences from the same multiple sequence alignment of 497 
kinase domains (56) using the v1 implementation of ESMFold (downloaded from 
https://huggingface.co/facebook/esmfold_v1/tree/main) (2) with default parameters. 
 
Kinase Conformation Classification  
 
Initial conformational classification of PDB structures and AF2 and ESMFold models of kinases 
were conducted using Kincore (42) and Kinformation (51). Due to its improved coverage of the 
kinome, Kincore’s results were shown and analyzed throughout this paper. This method classifies 
kinases into eight conformations based on the DFG motif and ɑC-Helix movements, which we 
grouped into the following six conformations to simplify classification by DFG-in and parse by ɑC-
Helix conformation: DFG-in/ɑC-Helix-in (CIDI), DFG-in/ɑC-Helix-out (CODI) (DFG-in clusters in 
Kincore: BLAminus, BLAplus, ABAminus, BLBminus, BLBplus, and BLBtrans in Kincore), DFG-
out/ɑC-Helix-in (CIDO), DFG-out/ɑC-Helix-out (CODO) (DFG-out cluster: BBAminus in Kincore),  
DFGinter (DFGinter in Kincore) and Unassigned (Unassigned in Kincore) (26). Kincore could not 
identify the residues of and near the DFG motif (or substituted residues) used for conformation 
classification for a total of twelve kinases, so these were excluded from the analysis. A total of 
5,136 structures and 494 models were classified from Protein Data Bank and the AF2 Database, 
respectively.  
 
Certain UniProt IDs were associated with multiple kinase models downloaded from the AF2 
Database, rarely in more than one conformation; to calculate the fractional contribution to each 
conformation by each kinase containing these domains, 1,000 random samples of one 
conformation per kinase domain were taken from all conformations for each ID. These fractional 
contributions were calculated 10 times and averaged to calculate an overall contribution that was 
added to the corresponding conformation fraction in distribution calculations.  
 
For simplicity, the most frequently observed conformation type was considered for family-wise 
distribution calculations. 2,425 AlphaFold2-predicted models were classified for each MSA depth, 
except for the depth of 512, for which 2,420 models were classified (due to memory limitations, 
AF2 failed to generate models for MASTL). A total of 486 ESMFold models were classified into 
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the six conformations. Mapping of conformation counts to kinases and their groups were 
performed using KinMap (45). Comparison of kinase conformations represented in the PDB and 
at an MSA depth of 8, displayed in these maps, was performed by performed via a one-sided, 
paired t-test (p-value (AverageAF2 > AveragePDB)). 
 
Dihedral Plots 
 
Plots of pseudo-dihedral angles used to visualize movement of the DFG motif were generated 
using Möbitz (49). Dihedral angles were calculated using the Cɑ carbons of 4 consecutive 
residues near or including the DFG motif. Biopython 1.81 (58) was used to calculate the 
coordinates of the required Cɑ carbons. The DFG Asp through the first residue after the DFG 
motif was used to define the dihedral on the X-axis, and the two residues preceding the DFG 
motif through the DFG Phe were used to define the same on the Y-axis. 
 
Statistical Analyses 
 
Comparisons of fractions of specific conformations were performed by bootstrapping from 
distributions of data and counting the number of the conformation sampled, all 1,000 times. P-
values of these comparisons were calculated using one-sided Wilcoxon rank-sum tests. The Chi-
squared, Wilcoxon rank-sum, Fisher’s exact and paired t-tests used in our analyses were 
performed using the ‘chisq.test,’ ‘wilcox.test,’ ‘fisher.test,’ and ‘t.test,’ functions, respectively, from 
R 4.9.0. The specific analyses performed between different datasets are described in Supp. 
Figure 1. 
 
TM-Score Calculations 
 
TM-Score is a metric used to compare structural similarity and is sensitive to smaller, local 
variations affecting the score of the global fold (46). TM-Scoring of AF2 models against PDB 
structures was performed using the ‘tmtools’ module and a series of helper functions obtained 
from https://gist.github.com/NicholasClark/. To simplify the analysis and focus on kinases with 
catalytic activity, TM-Score comparisons were only conducted between structures sharing a 
specific ‘DFG’ motif. Distributions of TM-Scores were calculated in terms of the averages of the 
highest TM-Scores for AF2 models compared to PDB structures of the same kinases for each 
MSA depth and structural conformation. 
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Figures and Tables

 

 

 

Figure 1. Kinase conformations in the PDB and AlphaFold2 Predicted Protein Structure 
Database. A) Prototypical structural conformations considered in our study: CIDI: ɑC-Helix/DFG-
in; CIDO: ɑC-Helix-in/DFG-out; CODI: ɑC-Helix-out/DFG-in; CODO: ɑC-Helix-out/DFG-out; 
DFGinter; Unassigned Examples, with PDB IDs, shown are CIDI: MAPK14 (1BL6), CIDO: RIPK2 
(4C8B), CODI: CDK2 (1H07), CODO: NTRK1 (6D1Y), DFGinter: AURKA (3FDN), Unassigned: 
PDGFRA (6JOJ). Residues in lime green indicate the aspartic acid and phenylalanine (DF) of the 
DFG motif, while magenta indicates the ɑC-Helix, whose conformation is signaled by movement 
of the conserved Glu residue. Red and blue atoms indicate oxygen and nitrogen atoms, 
respectively. B) Fractional representation of kinase structures from the PDB (n=5,024) classified 
into each conformation type. The plot indicates an over-representation of the CIDI state 
compared to other conformations. C) Fractional representation of kinase domain models from the 
AF2 Database (n=469) classified into each conformation type. *p-value was calculated using the 
Fisher’s exact test and indicated that the PDB and AF2 distributions were different. **p(CIDI) was 
calculated using a one-sided Wilcoxon rank-sum and indicated that AF2 had a higher 
overrepresentation of CIDI models compared to the PDB. D) Fractional distributions of models in 
different conformations by kinase group (AGC: PKA, PKG, PKC families; CAMK: 
Calcium/calmodulin-dependent; CK1: Casein kinase 1; CMGC: CDK, MAPK, GSK3, CLK 
families; STE: Sterile 7, Sterile 11, Sterile 20 kinases; TK: Tyrosine kinase; Tyrosine kinase-like) 
in the PDB. CIDI models dominated the distribution for each group, while DFG-out conformations 
(CIDO and CODO) are significantly underrepresented. Unassigned models tended to be rare. E) 
Fractional distributions of models in different conformations by kinase group in the AF2 Database. 
CIDI models dominated across all groups here as well, while DFG-out models were much less 
common and even rarer than in the PDB. Unassigned models were also rarer than in the PDB. 
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Figure 2. Exploration of the kinome’s conformational space by lowering MSA depth when 
predicting structures using AlphaFold 2 (AF2). A) Fractional distribution of models in various 
conformations across different MSA depths (left plot) and at an MSA depth of 8 (pie chart). AF2 
models were variably distributed across the various conformations at different MSA depths, the 
highest of which yielded large fractions of CIDI models among their predictions. Lower MSA 
depths, primarily beginning at a depth of 8, yielded higher fractions of non-CIDI (inactive state) 
models. B) Distributions of models predicted at an MSA depth of 8 by kinase group. Certain 
groups, including TK and TKL, exhibited relatively high fractions of DFG-out (CIDO and CODO) 
models (16% and 14%, respectively) compared to those predicted by AF2 under default 
parameters. Unassigned model fractions were also greater among all groups when compared to 
the full set of AF2 structures (Supp. Table 3). C) Coverage and conformational space 
representation across the human kinome tree, generated with KinMap, for structures from the 
PDB, where each node represents one kinase. Colors (crimson, cyan, lime, magenta, blue and 
coral, in order) and increasing circle sizes indicate greater counts of unique conformations. More 
than 88% of kinases in the PDB have been solved in only two or fewer unique conformations. D) 
Coverage and conformational space representation of the human kinome using models predicted 
by AF2 at an MSA depth of 8. The node color and size coding is the same as in C. 46% of the 
models exhibited two or fewer unique conformations at this MSA depth. In comparing paired 
counts of kinase conformations between both datasets, on average, each kinase exhibits more 
unique conformations at this depth than in the PDB (p-value = 5.05 x 10-29).  E-G) Representative 
models predicted by AF2 at an MSA depth of 8 for kinases from different groups in novel 
conformations not seen in the PDB. Examples shown are E) CLK3 in the CIDO conformation, F) 
NEK9 in the CIDO conformation, and G) MAP3K4 in the CODI conformation. Residues in lime 
green represent the ‘DF’ of the DFG motif (‘DY’ of DYG for NEK9), while residues in magenta 
represent the ɑC-Helix. Red and blue atoms indicate oxygen and nitrogen atoms, respectively. 
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Figure 3. Accuracy of AF2 models by MSA and conformation type. Bar plots summarizing 
the accuracy in terms of TM-Scores calculated for AF2 models by comparing them to the 
corresponding PDB structures. A) Averages of the highest TM-Scores calculated from 
comparisons between all AF2 models to all PDB structures of the same kinase by MSA depth. A 
trend of decreasing model accuracy is evident, especially from an MSA depth of 16 through 2. B) 
Averages of the best TM-Scores calculated from comparisons between all AF2 models to all PDB 
structures of the same kinase by conformation type. CIDI models were the most accurate, 
followed by those in CODI and DFGinter conformations. CIDO and CODO models were generally 
less accurate than DFG-in models. Unassigned models were the least accurate. 
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Figure 4. Distributions of accuracies of AF2-
generated models in terms of the pLDDT score. pLDDT, as output by AF2, is a measure of 
confidence in the predicted model, calculated as a whole-chain average of per-residue scores of 
predicted model accuracy. A) Distribution of kinase models by pLDDT across different MSA 
depths. High MSA depths typically yielded more confident models, as low MSA depths typically 
yield less confident models. B) Distribution of pLDDT scores of all models predicted across all 
MSA depths, grouped by conformation type. CIDI models represented the most confident models. 
CIDO, CODI, CODO and DFGinter models more broadly spanned different levels of confidence, 
while Unassigned models accounted for the vast majority of low-confidence predicted structures.  
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Figure 5. Distribution of AF2-predicted models in terms of the movement of the DFG motif, 
as defined by pseudo-dihedral angles, for AF2-predicted models. For models predicted at 
MSA depths of (A) 8, (B) 512, and (C) 2, pseudo-dihedral angles are defined by Möbitz (49). The 
X-axis is defined by the pseudo-dihedral angle constructed by the Cɑ carbons of the DFG-Asp, 
DFG-Phe, DFG-Gly and DFG+1 residues, while the Y-axis is defined by the angles of the DFG-2, 
DFG-1, DFG-Asp and DFG-Phe residues. A) Distribution of all models predicted at an MSA depth 
of 8 with pLDDT > 70, categorized by their adopted conformation. B) As defined in A, dihedral 
angles plot of all AF2 models with pLDDT > 70 predicted at an MSA depth of 512. Movement of 
the DFG motif into DFGinter and DFG-out conformations and overall conformational exploration 
were much more limited at this depth than at 8. C) Dihedral angles plot of all AF2 models 
predicted at an MSA depth of 2 with pLDDT > 70. Movement of the DFG motif into diverse 
conformations was much more frequent at this MSA depth, but far fewer models were confidently 
predicted. The majority of confident models were still DFG-in at this depth. D) Examples of 
confident ‘Unassigned’ models are illustrated, where red and blue atoms indicate oxygen and 
nitrogen atoms, respectively. 
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Table 1. Counts of confidently predicted AF2 models in conformations (columns) not seen 
for the same kinases in the PDB at multiple MSA depths (rows). 

 

a ‘Unique Kinases All Depths’ signifies the total count of all sequence-unique kinases predicted in 
novel conformations across all MSA depths. 
b Numbers given in parentheses represent the same counts for models with pLDDT scores higher 
than 90 to assess the robustness of the findings for even higher accuracy models. 

c ‘MSA’ indicates the MSA depth or the number of sequences as input tp AF2 to predict structural 
models of kinases. 

d ‘Kinases’ corresponds to the number of unique kinases predicted in novel conformations at each 
MSA depth.  

e ‘All’ corresponds to the total count of models predicted in novel conformations for their 
respective kinases at each MSA depth. 
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