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Abstract  9 

Each new human has an expected �� � 2 � 10 new deleterious mutations. This deluge of deleterious 10 

mutations cannot all be purged, and therefore accumulate in a declining fitness ratchet. Using a novel 11 

simulation framework designed to efficiently handle genome-wide linkage disequilibria across many 12 

segregating sites, we find that rarer, beneficial mutations of larger effect are sufficient to compensate 13 

fitness declines due to the fixation of many slightly deleterious mutations. Drift barrier theory posits a 14 

similar asymmetric pattern of fixations to explain ratcheting genome size and complexity, but in our 15 

theory, the cause is �� � 1 rather than small population size. In our simulations, ��~2 � 10 generates 16 

high within-population variance in relative fitness; two individuals will typically differ in fitness by 15-17 

40%. ��~2 � 10 also slows net adaptation by ~13%-39%. Surprisingly, fixation rates are more sensitive 18 

to changes in the beneficial than the deleterious mutation rate, e.g. a 10% increase in overall mutation rate 19 

leads to faster adaptation; this puts to rest dysgenic fears about increasing mutation rates due to rising 20 

paternal age. 21 

Keywords: mutation load; Muller’s ratchet, Ohta’s ratchet, chromosome number, background selection, 22 

genetic hitchhiking.  23 
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Introduction 24 

The average human begins life with upwards of a hundred new mutations not found in their parents 25 

(Lynch, 2010b). Lesecque et al. (2012) assumed that mutations are deleterious only in the 55% of the 26 

6×109 diploid genome that is not dominated by transposable elements, which evolves due to this 27 

constraint at 94.3% of the rate, at a point mutation rate of 1.1×10-8; this yields an estimated rate of 28 

deleterious mutations of 0.55×6×109×0.057×1.1×10-8  = 2.1 per replication. This estimate is conservative: 29 

some mutations to transposable element regions are deleterious, more recent estimates of the human point 30 

mutation rate are slightly higher at ~1.25×10-8 (Awadalla et al., 2010; Roach et al., 2010), and non-point 31 

mutations and beneficial mutations are neglected. Some therefore argue that the deleterious mutation rate 32 

is as high as 10 (Kondrashov, 2017). Mutation rates of this order are not unique to humans (Haag-Liautard 33 

et al., 2007; Popovic et al., 2023).  34 

Given such an extraordinarily high deleterious mutation rate, geneticists have long worried about the 35 

effects of the resulting “mutation load” on human health (Crow, 1997; Lynch, 2016; Muller, 1950; Vy et 36 

al., 2021). Classical infinite sites population genetics theory in the absence of epistasis or linkage 37 

disequilibrium predicts that segregating deleterious mutations reduce fitness from 1 (maximum relative 38 

fitness for a mutationless individual) to 	���, which means that human fitness is reduced to only 13% of 39 

what it could be without deleterious mutations (Haldane, 1937). Matters are worse when we consider the 40 

possibility that deleterious mutations might fix. Since removing a single deleterious mutation requires on 41 

average one ‘selective death’(Matheson et al., 2023), selection cannot keep up with mutation for 42 

deleterious mutation rates above one, resulting in the progressive accumulation (“Ohta’s ratchet” (Ruan et 43 

al., 2020)) of slightly deleterious fixations, even in sexual populations.  44 

Partial solutions have been proposed to the puzzle of how populations such as humans persist in the face 45 

of such high deleterious mutation rates. Firstly, mutation load is sometimes defined as  
 �  ���� � �
  , 46 

where ����  represents the fitness of a completely mutationless individual (Haldane, 1937). Since this 47 
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hypothetical deleterious-mutation-free individual has almost certainly never existed, mutation load 48 

concerns depend on assumptions about this hypothetical individual’s fitness (Agrawal & Whitlock, 2012). 49 

If a mutation-free human could average a hundred offspring, then reducing human fitness to 13% of that 50 

optimum would pose no threat. However, this does not resolve the issue of the progressive accumulation 51 

of load. 52 

Secondly, some load presumably affects intrinsically relative fitness traits, such as mating success or 53 

intraspecific competition for resources, rather than absolute survival and fecundity (Agrawal & Whitlock, 54 

2012). Defining load in terms of relative rather than absolute fitness means that the appropriate ���� is 55 

the fittest individual in the population, not a mutationless individual. High load then represents large 56 

differences in competitive ability among members of a population, not a threat to population survival. 57 

However, at the molecular level, many deleterious mutations simply break functionality. While the 58 

biggest immediate impact of impaired cellular metabolism might be on relative competitiveness, inferior 59 

functioning at the molecular level will inevitably also have absolute effects. While some load might be 60 

strictly relative, some will be absolute. Endlessly deteriorating relative fitness is anyway a problematic 61 

formulation of evolution. 62 

Thirdly, load is much lower if the effects of most deleterious mutations are restricted to their impact on 63 

traits under stabilizing selection (Charlesworth, 2013). In a trait-based model, all mutations modify the 64 

value of a higher-level trait, and load is determined by the distance between this value and some optimum 65 

value. When the trait deviates far from the optimum, the fraction of mutations that are beneficial rises 66 

much higher, eventually approaching 50% in Fisher’s geometric model (Fisher, 1930). At equilibrium, 67 

this model suggests quite small loads (only about 5% for humans) (Charlesworth, 2013). But again, at the 68 

molecular level at which new mutations actually occur, a DNA change in a protein is far more likely to 69 

simply reduce general functionality than to slightly modify a higher-order trait, suggesting that 70 

unconditionally deleterious mutations represent a substantial portion, if not the vast majority, of new 71 

mutations (Karczewski et al., 2020). 72 
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Lastly, load could be cleared faster than it arises even for �� � 1 if epistasis among deleterious mutations 73 

was on average synergistic (Kimura & Maruyama, 1966; Kondrashov, 1995a, 1995b). Synergistic epistasis 74 

allows one selective death to remove greater than one deleterious mutation on average, by increasing 75 

variance in fitness above that predicted in the absence of epistasis from variance in mutation number. 76 

Unfortunately, empirical data has not supported significant synergistic epistasis, suggesting that the 77 

average interaction between new deleterious mutations is close to multiplicative (Kouyos et al., 2007). 78 

The central unresolved problem is that when �� � 1, deleterious mutations fix at a higher rate than they 79 

revert (Kondrashov, 1995b), creating an endless series of deterioration. Some proportion of these 80 

mutations may affect traits under stabilizing selection or relative fitness traits, but some portion has an 81 

absolute impact, such that the system is constantly degraded.  82 

This fundamental issue shows up in studies that attempt to model and/or infer differences in load between 83 

populations. Such studies take a variety of questionable strategies to deal with the tendency for even their 84 

large control populations to degrade. For example, some studies periodically re-normalize simulated 85 

fitness data to cosmetically remove ongoing degradation (e.g. compare Fig. S2 to Fig. 2 in (Simons et al., 86 

2014)). Others use �� � 1, e.g. (Kyriazis et al., 2021). Others treat one-locus models (Gravel, 2016; Koch 87 

& Novembre, 2017; Lohmueller et al., 2008; Simons et al., 2014), despite the fact that independent 88 

evolution even of unlinked sites breaks down for �� � 1 (Matheson & Masel, 2023). The lack of a sound 89 

baseline model is an obstacle to reliable inference. 90 

Indefinite deterioration can be prevented by design by using a finite sites model, but this makes load far 91 

higher than an 87% fitness reduction. Consider two alleles at each locus, one beneficial and one 92 

deleterious, with some equilibrium probability of encountering each. Sites with small selective differences 93 

will often be found in the deleterious state. When parameterized for humans, this model predicts a load 94 

with one hundred “lethal equivalents” in the exponent, prompting the expression that we should have 95 

‘died one hundred times over’ (Kondrashov, 1995a).  96 
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When not all deleterious mutations can be purged, which ones fix will depend on their selection 97 

coefficient. A ‘drift barrier’ (Ohta, 1973; Sung et al., 2012) describes the minimum magnitude of 98 

deleterious mutation that can be reliably purged. Overwhelmingly high deleterious mutation rates will 99 

increase background selection even in the absence of linkage (Matheson & Masel, 2023), lowering the 100 

effective population size down to a point where a greater fraction of deleterious mutations will fix, 101 

including those of larger effect sizes. 102 

Our hypothesis is that biological populations are not at equilibrium, and that nothing stops or reverts 103 

Ohta’s ratchet, i.e. the steady accumulation of slightly deleterious mutations. Instead, we hypothesize that 104 

the reason that populations persist in the face of ongoing mutational degradation is that rarer, large-effect 105 

beneficial mutations compensate for the fitness lost through many small-effect deleterious fixations. This 106 

view arises naturally from an infinite sites model with a distribution of fitness effects. Deleterious 107 

mutations with smaller s (Kimura, 1962) and beneficial mutations with larger s (Haldane, 1927) are more 108 

likely to fix. An illustrative example of this hypothesis is many proteins accumulating small deleterious 109 

mutations that slightly inhibit folding, that are compensated for by a novel or improved or overexpressed 110 

chaperone protein (Fares et al., 2002). This illustrates how, while the flux of beneficial fixations will more 111 

than cancel out the flux of deleterious fixations, this does not imply detailed balance at individual loci. 112 

Empirical evidence of this pattern of asymmetric adaptation to deleterious load has been observed in 113 

influenza (Koelle & Rasmussen, 2015), illustrating how finite sites models of detailed balance poorly 114 

describe biological populations undergoing adaptation within a vast genotype space of the possible.   115 

Whitlock (2000) previously developed this idea, and found that populations remained stable down to a 116 

critical effective population size of barely over 100. However, this optimistic result ignored the effects of 117 

linkage disequilibrium. The flux of fixations of beneficial mutations is lower than it would be if they were 118 

evolving independently; it is reduced both by clonal interference (negative linkage disequilibrium with 119 

other beneficial mutations) (Hill & Robertson, 1966) and by background selection (positive linkage 120 
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disequilibrium with deleterious mutations) (Assaf et al., 2015; Good & Desai, 2014; Pénisson et al., 2017). 121 

These same factors also cause more deleterious mutations to fix. 122 

The full complexities of multilocus linkage disequilibrium can be captured only by simulation. Most 123 

forward time simulation methods hold a product such as sN constant, and rescale N to be smaller and s to 124 

be larger in order to accelerate computation (Haller & Messer, 2017). The problem with this is that it 125 

reduces the number of segregating mutations, and so understates the impact of linkage disequilibria. We 126 

instead model the evolution of load in populations with a census population size of 20,000, which we find 127 

gives rise to a realistic level of human neutral diversity (��~7500), allowing linkage disequilibrium to 128 

emerge appropriately. We introduce two new simulation techniques to overcome the computational 129 

challenges of such an approach: ‘linkage blocks’ that avoid the need to track every single segregating site 130 

in order to perform fitness calculations, and binary indexed trees that allow both birth-death and selection 131 

processes to occur in O(log N) time. While linkage blocks allow us to rapidly compute individual 132 

fitnesses without real-time tracking of every mutation, we still need information about all fixed mutations 133 

at the end of the run, in order to determine the degree of asymmetry of effect sizes between fixed 134 

beneficial and deleterious mutations. To obtain this, we use tree-sequence recording (Kelleher et al., 135 

2018), which increases our runtime substantially, while still being much faster than basing fitness 136 

calculations on individual mutations. 137 

Our goal is to determine whether beneficial mutations are sufficient to recover fitness lost to Ohta’s 138 

ratchet in the crucial case of realistic mutation rates and linkage disequilibrium. Our metric is fitness flux, 139 

i.e. the mean rate of change in relative fitness in the population (Gravel, 2016; Mustonen & Lässig, 2010). 140 

If asymmetric adaptation is sufficient to explain population persistence in the face of accumulating 141 

deleterious mutations, then we expect to see positive fitness flux even in simulated populations with 142 

conservatively low estimates for the rates of beneficial mutations and their effect sizes. We also use our 143 

model to predict the consequences of a recent increase in the human mutation rate for human populations 144 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.01.555871doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.01.555871
http://creativecommons.org/licenses/by/4.0/


(Muller, 1950), and the consequences of a high deleterious mutation for variation in fitness within 145 

populations. 146 

Methods 147 

Our individual-based forward-time simulations were written in C. Each individual has two characteristics: 148 

a genome, and a fitness value derived from it. Each individual’s genome is represented as two haplotypes, 149 

each an array of L non-recombining ‘linkage blocks’, divided into 23 chromosomes. Each linkage block 150 

consists of a floating-point variable ��, which summarizes the fitness effects of all mutations that occurred 151 

in the history of that linkage block, such that �� �  ∏ �1 � �	�	 . We assume a multiplicative form of co-152 

dominance and no epistasis, such that �	 �  ∏ ���,���
�
� ∏ ���,���

�
�  where ��,� and ��,� refer to the effect of 153 

linkage block � in haplotypes 1 and 2, respectively. Note that this computationally convenient choice is 154 

not precisely equivalent to a typical codominance model, where 1 �  �	  is the fitness of a homozygote and 155 

1 �  �	�	  is the fitness of a heterozygote. While co-dominance is unrealistic for strongly deleterious 156 

mutations, which are often highly recessive, it is reasonable for the small-effect deleterious mutations 157 

which drive Ohta’s ratchet (Agrawal & Whitlock, 2011; Simmons & Crow, 1977; Yang et al., 158 

2017). 159 

In addition to independent assortment of chromosomes, recombination occurs at hotspots between linkage 160 

blocks via crossing-over events between homologous chromosomes. We simulate exactly two 161 

recombination events per chromosome per meiosis, matching data for humans (Pardo-Manuel De Villena 162 

& Sapienza, 2001), although we don’t explicitly simulate a centrosome. Representing a genome as a set 163 

of ‘linkage blocks’ is a good approximation of population genetics in non-microbial species (Good et al., 164 

2014; Neher et al., 2013; Weissman & Hallatschek, 2014). Realistic values of L in humans are in the 165 

range of  10�-10� (Altshuler et al., 2008; Belmont et al., 2005; Coop et al., 2008; Pratto et al., 166 

2018; Wall & Pritchard, 2003). Once 
 � 50 � 23 � 1150, results converge (Supplementary Figure 167 
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1), so for computational efficiency we use 
 � 50 � 23. This simplification should overestimate the 168 

effect of linkage between selected mutations, which is conservative with respect to the ability of 169 

beneficial mutations to counteract load.                                                                  170 

Following recombination, we sample the number of new deleterious mutations in the gamete from a 171 

Poisson distribution with mean �� . Our distribution of fitness effects is based on a large empirical study 172 

of Europeans (Kim et al., 2017), who fitted a gamma distribution for 2���� with mean �224.33, shape 173 

parameter  � 0.169 and scale parameter # � 1327.4. After drawing a value of 2���� from this 174 

distribution, we rescale to �� using their inferred �� � 11,823. We use the �� value drawn from this 175 

distribution as our �	  value. We sample the number of new beneficial mutations from a Poisson 176 

distribution with mean �� , and fitness effects drawn from an exponential distribution with mean ��  177 

(again, this is the fitness effect in the heterozygote). We explore a range of values for ��  and ��  that we 178 

consider a priori plausible: ��  ~ 0.0001-0.01 and ��  ~ 0.001-0.01. 179 

We simulate a Moran model with constant population size N. An individual chosen uniformly at random 180 

dies each time step and is replaced by a child produced by two parents, who are chosen with probability 181 

proportional to their fitness �	 . Each generation consists of N time steps. The fitnesses of the population 182 

are stored in an unsorted array — in a naïve implementation, exchanging an element to represent a birth 183 

and death would be rapid, but sampling proportional to fitness would be O(N).  The current fastest 184 

forward-time genetic simulation tools for large population sizes (e.g. both fwdpy (Thornton, 2014, 185 

2019)) and SLiM (Haller & Messer, 2022) preprocess cumulants each generation in a Wright-Fisher 186 

model; this speeds up sampling from the fitness array, and while the processing algorithm is O(N), it only 187 

needs to be performed once per generation. We instead use a binary indexed tree (Fenwick, 1994) to 188 

sample fitnesses efficiently according to the cumulative probability distribution — both updating and 189 

sampling from the tree are O(log N). Our scheme is expected to have similar efficiency but is intended to 190 

be useful for future expansions of this approach to absolute fitness and more complex life history models 191 
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(Bertram & Masel, 2019; Matheson et al., 2023), e.g. to allow better treatment of reproductive 192 

compensation (Ober et al., 1999).  193 

We initialize the population with mutationless individuals, then conduct a ‘burn-in’ phase during which 194 

variation increases to stable levels (Supplementary Figure 2). We end the burn-in phase 500 generations 195 

after a linear regression of the variance in fitness over the last 200 generations produces a slope less than 196 

an arbitrarily chosen low value of 0.007 �⁄  that we visually confirmed to perform well (e.g. 197 

Supplementary Figure 2). The length of the burn-in phase does not strongly depend on N (Supplementary 198 

Figure 3). 199 

We calculate the net fitness flux from each simulation as the slope of the regression of log mean 200 

population fitness on time after burn-in (Supplementary Figure 2, black slope following dashed line). To 201 

numerically solve for a specified net fitness flux for Figure 1, we varied ��  while holding ��  constant. 202 

Our algorithm finds values of ��  that bracket the target net fitness flux, and then uses a bisection method 203 

until it finds a value of ��  that is within '0.00005 of the target. In practice, there was little stochasticity 204 

in the regression slope (which averages out stochasticity in the timecourse), and so this relatively 205 

deterministic method performed well. 206 

Although the census population size N is a parameter of our model, the effective population size �� is not, 207 

but rather emerges over the course of a given simulation. To estimate it, we used the tree-sequence 208 

recording tools from the tskit package (Kelleher et al., 2018), and used msprime (Baumdicker et al., 209 

2022) to retroactively add neutral mutations after each simulation. We did this only for one parameter 210 

combination involving realistically high N, due to the significant computational cost of this procedure; 211 

this was 23 chromosomes, 50 linkage blocks per chromosome, � � 20,000, �� � 2, �� � 0.002, and 212 

�� � 0.0025. These parameter values produce only a small excess of adaptation above that needed to 213 

counter Ohta’s ratchet (Figure 1). We calculate �� using neutral heterozygosity under an infinite-alleles 214 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.01.555871doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.01.555871
http://creativecommons.org/licenses/by/4.0/


model. The choice of neutral mutation rate will not affect estimated ��; we arbitrarily chose 1.0 �  10�� 215 

per linkage block, or 1.15 � 10�� per haploid genome. This produced ��~7500, on the order of 216 

effective population sizes inferred for ancestral human populations (Tenesa et al., 2007). For 217 

comparison, similar simulations with �� � 0 (i.e. with background selection alone and declining relative 218 

fitness), produce ��~16,000 (Matheson & Masel, 2023). 219 

Tree sequence recording also tracks all non-neutral mutations, so that we can identify those that fixed and 220 

thus determine the degree of asymmetry in the effect sizes of fixed mutations. Note that without tree-221 

sequence recording, this information would be inaccessible due to the way we summarize the fitness of 222 

many mutations within linkage blocks. However, using tree-sequence recording for all non-neutral 223 

mutations significantly increases the computation time of simulations. When we are solving for the 224 

parameters that produce a target value of net fitness flux, we therefore do not use tree sequence recording. 225 

Results 226 

Achieving positive mean population fitness flux depends primarily on the mean beneficial effect size, not 227 

on the beneficial mutation rate (Figure 1), in agreement with prior theoretical work (Weissman & Barton, 228 

2012). The black line in Figure 1 shows the parameter values for which there is exactly zero change in 229 

fitness. The entire range of ��  shown in Figure 1 is likely conservative, while the dashed red lines show 230 

the range for ��
  (the mean beneficial effect in heterozygotes) that we deemed a priori plausible. In the 231 

absence of environmental change, population persistence is possible for ��
 � ~0.001 � 0.003, 232 

depending on assumptions about �� . While there is great uncertainty in the true values of these 233 

parameters, this range seems entirely plausible.  234 
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 235 

Figure 1. Relatively rare and mild beneficial mutations are sufficient to counteract a deluge of 236 
slightly deleterious mutations accumulating under Ohta’s ratchet. Black line shows combinations of 237 
beneficial mutation parameters that produce zero net fitness flux. All populations simulated with N = 238 
20,000, genome-wide deleterious mutation rate of 2, and 23 chromosomes with 50 linkage blocks per 239 
chromosome. Any combinations of beneficial mutation rate and mean heterozygote effect size below the 240 
black line produce net degradation. Red dashed lines show plausible upper and lower estimates of the 241 
mean effect size of new beneficial mutations in humans that we chose a priori. 242 

 243 

The reason that such low beneficial mutation rates are sufficient for population persistence is that each 244 

beneficial mutation that fixes has a much greater magnitude selection coefficient than each deleterious 245 

mutation that fixes (Figure 2). Beneficial fixations are larger on average than new beneficial mutations, 246 

and deleterious fixations are much smaller on average than new deleterious mutations. Even in 247 

simulations that improve in fitness on average, deleterious fixations outnumber beneficial fixations.  248 
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 249 

Figure 2. Effect sizes of fixed beneficial and deleterious mutations are strongly asymmetrical. The 250 

distribution of effect sizes of fixed mutations is shown after 5000 generations, in a population of N = 251 

20,000 with individuals having 23 chromosomes, 50 linkage blocks per chromosome, with a beneficial 252 

mutation rate of 0.002 per generation and mean beneficial effect size of 0.0025. 253 

 254 

We next consider the net fitness flux available for adaptation to a changing environment, above and 255 

beyond that required to counterbalance Ohta’s ratchet. Figure 3A shows how baseline (�� � 0) 256 

adaptation rate depends on both ��  and ��
  within our parameter value range. Figures 3B-D show how 257 

adaptation slows in the presence of ��  of 2, 5, and 10. Resistance to degradation remains reasonably 258 

robust, but the net fitness flux available for adaptation to a changing environment falls by ~13%, ~26%, 259 

and ~39%, respectively.  260 
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 261 

Figure 3.  Deleterious mutations appreciably but modestly slow adaptation, visualized as the number of 262 

generations required for population mean fitness to increase by 10%. Black boxes indicate simulations 263 

with net fitness flux � 0. 264 
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 265 

Population geneticists have raised concerns about the increase in mutation rate (Lynch, 2016; Muller, 266 

1950), in particular due to increased age at paternity (Crow, 1997). The mean paternal age in the U.S. 267 

increased from 27.4 to 30.9 years of age between 1972 and 2015 (Khandwala et al., 2017; Kong et al., 268 

2012), which is expected to correspond to a 12 percent increase in mutation rate. We simulated a 269 

corresponding increase the mutation rate for both deleterious and beneficial mutations of 10 percent, for a 270 

reference population with � � 20,000, �� � 0.002, �(� � 0.0025 and all other parameters the same as in 271 

Figure 1. Surprisingly, populations with increased mutation rates took only 127 generations to increase 272 

their fitness by 10%, compared to 151 generations for the baseline population. In other words, because 273 

beneficial fitness flux is more sensitive to ��  than deleterious fitness flux is to �� , increasing the total 274 

mutation rate helps the population adapt faster. The counter-intuitively increased rate of adaptation 275 

directly contradicts dysgenic fears about the consequences of elevated mutation rates on mean population 276 

fitness load. 277 

While high human ��~2 � 10 has only a moderate impact in reducing adaptation rate by 13-39%, its 278 

impact on variance in load among individuals within a population (Figure 5) is substantial. Perhaps 279 

unsurprisingly in light of Fisher’s Fundamental Theorem, high steady state variance in fitness among 280 

individuals within a population seems to be an inevitable consequence of high �� . With fitness being log-281 

normally distributed, Figure 5 expresses this variance in terms of the fold-difference between two 282 

individuals that are one standard deviation apart. This variance is relatively insensitive to ��  and �� , but 283 

depends dramatically on �� . Figure 5 suggests that differences in deleterious load cause two randomly 284 

sampled humans to have a typical difference in fitness (in the historical human environment) of 15%-285 

40%. 286 
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 287 

Figure 5. Higher deleterious mutation rates result in substantially more within-population variation in 288 

fitness at the end of a simulation, shown here as the standard deviation of fold-difference in fitness. 289 
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Beneficial parameters have little effect on within-population variation in fitness, increasing it mostly only 290 

at the highest beneficial mutation rates and mean effect sizes we consider. 291 

 292 

Discussion 293 

We address the puzzle of how populations persist given the threat posed by realistically high deleterious 294 

mutation rates. Unlike many previous solutions, we allow that many slightly deleterious mutations do in 295 

fact accumulate (Ohta’s ratchet), but argue that this does not lead to population deterioration because a 296 

smaller number of beneficial fixations of greater size successfully counteracts many more small-effect 297 

deleterious fixations. We demonstrate the plausibility of this asymmetric compensation scenario under 298 

realistic values for deleterious mutation rate and sizes, recombination rate, and beneficial mutation size, 299 

and conservative values for the beneficial mutation rate. While population persistence is achieved, the 300 

need to counterbalance deleterious mutations does exact an appreciable toll in terms of a 13-39% 301 

reduction in the speed of adaptation to a changing environment. Our model of realistic deleterious 302 

mutation rates logically entails high variance in fitness (in ancestral environments) within human 303 

populations.  304 

While our explanation for population viability requires only conservatively low beneficial mutation rates, 305 

detailed balance would require much higher �� . E.g. in an asexual model with �� � 2, � � 0.01, and 306 

� � 10,000, an analytic approximation suggests that more than 30% of new non-neutral mutations would 307 

need to be beneficial to counteract deleterious load (Goyal et al., 2012), which is implausibly high. As 308 

reviewed in the Introduction, solutions that ignore the fundamentally damaging nature of mutations at the 309 

molecular level, e.g. to focus instead on quantitative traits, involve unrealistically high beneficial 310 

mutation rates.  311 

Synergistic epistasis has often been invoked as the solution to mutation load and its accumulation, but 312 

most models invoke a quantitatively extreme form of synergistic epistasis, truncation selection (Crow & 313 
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Kimura, 1979; Kondrashov, 1982). However, empirical assays of de novo deleterious mutations in bacteria 314 

and eukaryotic microbes do not show any synergistic epistasis on average (Elena & Lenski, 1997; Kouyos 315 

et al., 2007), let alone truncation selection. Worse, mutation accumulation experiments often show 316 

decreases in the rate of decay of fitness, consistent with antagonistic epistasis among deleterious 317 

mutations (Francisca & F., 2007; Maisnier-Patin et al., 2005; Perfeito et al., 2014). On the other hand, 318 

experimental evolution studies consistently find diminishing returns epistasis (which corresponds to 319 

synergistic epistasis if viewed from the perspective of deleterious mutations) between new beneficial 320 

mutations (e.g. (Barrick et al., 2009)). These apparently contradictory observations can be reconciled in 321 

multiple ways. One hypothesis is that mutations have massively multidimensional interactions across the 322 

genome and a given mutation’s fitness effects are uncorrelated across interactions (idiosyncratic epistasis 323 

(Lyons et al., 2020)). Another hypothesis is that mutational effects are multiplicative (or antagonistic or 324 

idiosyncratic) between functional modules, while being synergistic within modules (Rice, 1998; Wei & 325 

Zhang, 2019). Theory has not yet been developed to show whether these more nuanced forms of epistasis, 326 

compatible with data, could purge mutation load fast enough to avoid population degradation. 327 

Sexual selection might also assist with purging load (Grieshop et al., 2021; Whitlock & Agrawal, 2009). 328 

While human monogamy reduces the scope for sexual selection, increased variance in fitness caused by 329 

assortative mating under mutual mate choice might still help prevent mutational degradation (Hooper & 330 

Miller, 2008; Kvarnemo, 2018).   331 

Our hypothesis of asymmetric deleterious and beneficial fixations parallels known features of molecular 332 

adaptation. For examples, many mutations that each jeopardize the stable folding of a protein can be 333 

ameliorated at once by the evolution of chaperones (Fares et al., 2002; Gros & Tenaillon, 2009). Many 334 

poorly splicing introns can be ameliorated by the evolution of a better spliceosome (Wu & Hurst, 2015).  335 

A pattern of many small mutations, each of which cannot be effectively cleared, being counteracted by 336 

compensatory mutations with global effects, has previously been predicted by drift barrier theory (Fares 337 
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et al., 2002; Frank, 2007; Gros & Tenaillon, 2009; Lynch, 2007, 2010a; Rajon & Masel, 2011; Sung et al., 338 

2012; Wu & Hurst, 2015; Xiong et al., 2017). Drift barrier theory, as put forward by Lynch (2007), is 339 

illustrated in blue in Figure 6. Drift barrier theory emphasizes the causal importance of census population 340 

size in producing a ratcheting effect that leads to increased molecular and organismal complexity. 341 

Effective population size (with respect to the minimum size of a deleterious mutation that can be reliably 342 

purged) is posited to be driven (albeit not exclusively) by census population size, which is in turn driven 343 

by life history traits such as body size (Lynch, 2007, see Chapter 4). A low effective population size that 344 

cannot purge small DNA insertions leads to a bloated genome, whose complexity is posited to lead to 345 

larger body size and/or increased ecological specialization, reducing census population size, which closes 346 

the causal loop. Increased mutation rate is seen primarily as a consequence of relaxed selection against 347 

mutator alleles. 348 

349 

Figure 6. A feedback loop of ratcheting complexity can be driven either by census size  and 350 

ecology (drift barrier theory, blue) or by high deleterious mutation rate  (our view, orange and 351 

pink). The drift barrier ratchet requires low census population size , whereas our ratchet requires high 352 

deleterious mutation rate . Drift barrier theory emphasizes a causal link from  to  via relaxed 353 

selection against mutators (Lynch, 2007), whereas we emphasize background selection as a causal driver 354 

n 

es 
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in the opposite direction, i.e. from ��  to ��. Mutational meltdown (Lande, 1994; Lynch et al., 1995) is 355 
shown for completeness (green), since most of its elements are already invoked. 356 

 357 

Our results suggest a shift in perspective, placing causal emphasis on a high deleterious mutation rate 358 

instead of on a low census population size. Indeed, a mutational ratchet cycle (Figure 6, orange) can occur 359 

even when census population size is high. First, a sufficiently high deleterious mutation rate accelerates 360 

Ohta’s ratchet (the inevitable accumulation of slightly deleterious mutations), because background 361 

selection (among unlinked sites) substantially reduces �� once �� � 1 (Charlesworth, 2012; Matheson & 362 

Masel, 2023). As with drift barrier theory, the resulting deluge of slightly deleterious fixations increases 363 

genome size, but the feedback loop from there does not go through census �. Instead, larger genomes 364 

create a larger target size for deleterious mutations, directly increasing �� .  365 

The mutational ratchet described above (Figure 6 orange) drives ��  up to a high enough level to power 366 

the complexity ratchet (Figure 6, pink) that is the focus of this manuscript. Similarly to drift barrier 367 

theory, molecular complexity ratchets up when slightly deleterious mutations cannot be purged or 368 

reversed in a manner that achieves detailed balance, but must instead be compensated for by large effect 369 

changes that frequently occur at a higher level of organization. However, our view in Figure 6 (orange 370 

and pink) bypasses the census population size and ecological factors that are central to the drift barrier 371 

view (blue). This difference is made clear by the conditions required for each view. The drift barrier view 372 

requires low � but can occur at low ��  so long as ��� is low. Our view requires �� � 1 and can occur 373 

even for high census �. 374 

Only some populations, like bacteria, are able to achieve a detailed balance solution to load problems that 375 

enables them to retain simple, efficient genomes. Previous hypotheses have focused on the size of such 376 

populations as the crucial divider between species that are able to purge load within a small, simple 377 

genome vs. species forced into ratcheting molecular complexity in search of innovative molecular 378 

solutions to stay ahead of perpetual degradation. But large bacterial populations also have deleterious 379 
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mutation rates below 1, which provides an alternative explanation as to how they maintain streamlined 380 

genomes. The pressure of mutation load might therefore be a primary driver behind molecular complexity 381 

across the entire tree of life. 382 

Understanding how mutation load might be stabilized in humans and similar species is a precondition for 383 

addressing a long-standing concern of geneticists: that load might be increasing in modern humans 384 

because of recent changes to human lifestyles or technology. For example, if mutation rate, beginning 385 

already at a critically high level, increases further due to increased paternal age, or if selection against 386 

deleterious mutations is relaxed due to modern medicine, the perception has been that load should 387 

increase, potentially with disastrous consequences (Crow, 1997; Lynch, 2016). Intriguingly, our results 388 

suggest that the approximate increase in mutation rates in human populations due to increased paternal 389 

age have the opposite effect, improving rather than degrading population mean fitness. 390 

However, high ��  has profound consequences for understanding within-population differences among 391 

individuals. While a genotype whose load used to cause a ~30% reduction in fitness in ancient human 392 

environments might now have a lesser impact on fitness, it likely still has a significant impact on health. 393 

Indeed, variation in self-reported health has a substantial genetic component (Romeis et al., 2000), and 394 

load, as assessable from whole-genome sequencing, can be used to predict medically relevant phenotypes 395 

(Fiziev et al., 2023; Vy et al., 2021). High genetic variance among individuals is a hidden confounding 396 

variable in a vast range of studies (Harden, 2021), including many studies of human health. Our 397 

theoretical assessment implies necessarily high variance in human mutation load. This should trigger a 398 

significant reassessment across all public health studies grounded in correlational analysis (Harden, 399 

2021). 400 

We have shown that populations are able to survive the constant accumulation of mildly deleterious 401 

mutations (Ohta’s ratchet) by acquiring a smaller number of larger-effect beneficial mutations. Mutation 402 

load may therefore not threaten population persistence, but this does still suggest that load is a crucial 403 
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evolutionary factor with diverse effects. These include driving the evolution of molecular and organismal 404 

complexity, and maintaining high rates of fitness variance within populations.  405 

Code Availability 406 

Simulation code available at github.com/MaselLab/MutationLoad. 407 
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