Abstract
How complicated is the genetic architecture of proteins – the set of causal effects by which sequence determines function? High-order epistatic interactions among residues are thought to be pervasive, making a protein’s function difficult to predict or understand from its sequence. Most studies, however, used methods that overestimate epistasis, because they analyze genetic architecture relative to a designated reference sequence – causing measurement noise and small local idiosyncrasies to propagate into pervasive high-order interactions – or have not effectively accounted for global nonlinearity in the sequence-function relationship. Here we present a new reference-free method that jointly estimates global nonlinearity and specific epistatic interactions across a protein’s entire genotype-phenotype map. This method yields a maximally efficient explanation of a protein’s genetic architecture and is more robust than existing methods to measurement noise, partial sampling, and model misspecification. We reanalyze 20 combinatorial mutagenesis experiments from a diverse set of proteins and find that additive and pairwise effects, along with a simple nonlinearity to account for limited dynamic range, explain a median of 96% of total variance in measured phenotypes (and >92% in every case). Only a tiny fraction of genotypes are strongly affected by third- or higher-order epistasis. Genetic architecture is also sparse: the number of terms required to explain the vast majority of variance is smaller than the number of genotypes by many orders of magnitude. The sequence-function relationship in most proteins is therefore far simpler than previously thought, opening the way for new and tractable approaches to characterize it.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
The first two result sections were rewritten to more clearly present reference-free analysis and its relationship to existing formalisms. Minor edits were made throughout the main text for improved clarity. A new section was added to Supplementary Information to illustrate the difference between reference-free analysis and other formalisms with numerical examples.





