Abstract
Background We currently lack a robust and reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC), a region heavily implicated in psychiatric disorders. We recently found that the strength of early and local dlPFC single pulse transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely depending on the anatomical subregion probed, with more medial regions eliciting stronger responses than anterolateral sites. Despite these differences in amplitude of response, the reliability at each target is not known.
Objective To evaluate the reliability of EL-TEPs across the dlPFC.
Methods In 15 healthy subjects, we quantified within-session reliability of dlPFC EL-TEPs after single pulse TMS to six dlPFC subregions. We evaluated the concordance correlation coefficient (CCC) across targets and analytical parameters including time window, quantification method, region of interest, sensor-vs. source-space, and number of trials.
Results At least one target in the anterior and posterior dlPFC produced reliable EL-TEPs (CCC>0.7). The medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). ROI size and type (sensor vs. source space) did not affect reliability. Longer (20-60 ms, CCC = 0.62) and later (30-60 ms, CCC = 0.61) time windows resulted in higher reliability compared to earlier and shorter (20-40 ms, CCC 0.43; 20-50 ms, CCC = 0.55) time windows. Peak-to-peak quantification resulted in higher reliability than the mean of the absolute amplitude. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials for a medial dlPFC target.
Conclusions Medial TMS location, wider time window (20-60ms), and peak-to-peak quantification improved reliability. Highly reliable EL-TEPs can be extracted from dlPFC after only a small number of trials.
Highlights
Medial dlPFC target improved EL-TEP reliability compared to anterior targets.
After optimizing analytical parameters, at least one anterior and one posterior target was reliable (CCC>0.7).
Longer (20-60 ms) and later (30-60 ms) time windows were more reliable than earlier and shorter (20-40 ms or 20-50 ms) latencies.
Peak-to-peak quantification resulted in higher reliability compared to the mean of the absolute amplitude.
As low as 25 trials can yield reliable EL-TEPs from the dlPFC.
Competing Interest Statement
Corey Keller holds equity in Alto Neuroscience, Inc. All other authors have nothing to disclose.