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Abstract 

The activity-silent framework of working memory (WM) posits that the neural activity during 

object perception and encoding leaves behind patterned, “activity-silent” neural traces that 

enable WM maintenance without the need for continuous, memory-specific neural activity. The 

presence of such traces in the memory network subsequently patterns its responses to external 

stimulation, which can be used to readout the contents of WM using an impulse perturbation or 

“pinging” approach. The extent to which the neural impulse response is patterned by the WM 

network should be modulated by the physical overlap between the initial memory item and the 

subsequent external perturbation stimulus, with higher overlap increasing WM readout. Here we 

tested this prediction in a delayed orientation match-to-sample task, by either matching or 

mismatching task-irrelevant spatial frequencies between memory items and impulse stimuli, and 

between memory items and probes. Matching frequencies resulted in faster behavioral response 

times, and increased the WM-specificity of the neural impulse response as measured from the 

EEG signal. We found no evidence that matching spatial frequencies resulted in globally 

stronger or different neural responses, but rather in distinct neural activation patterns. The 

beneficial effects of feature matching in our task support the tenets of the activity-silent 

framework of WM, and confirm that impulse perturbation interacts directly with the 

representations that are held in memory. 

 

Keywords: working memory; impulse perturbation; EEG; multivariate pattern analysis 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.12.557327doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.12.557327
http://creativecommons.org/licenses/by-nc/4.0/


 

3 
 

Cognitive neuroscientists attempt to relate to cognitive processes to neural activity that is 

highly complex and multidimensional. Compounding this challenge is the fact that neural 

activity is only part of the picture. Synaptic processes that alter the functional connectivity in the 

brain’s networks also play an important role. Such processes need not correlate strongly with 

neural firing, which makes them difficult to assess with non-invasive measurements. These 

difficulties have recently come to a head in the study of working memory (WM), where a debate 

has arisen about its neural basis (e.g., Masse et al., 2020; Sreenivasan et al., 2014).  

Maintenance of information in WM was long thought to involve persistent neural firing, 

based on evidence of ongoing neuronal spiking during memory maintenance in higher-order 

cortex, including prefrontal and parietal areas (Curtis & D’Esposito, 2003; Funahashi et al., 

1989). However, in more recent years gaps within the persistent activity framework have been 

noted and it has been suggested that WM maintenance happens at least partly within activity-

silent states (e.g., Stokes, 2015), where WM content is maintained via changes in synaptic 

efficacy (Mongillo et al., 2008). Here, during the encoding stage, the neural response to the 

sensory input leaves behind a patterned “silent” neural trace which supports WM maintenance. 

This trace in turn patterns spontaneous neural activity (Sugase-Miyamoto et al., 2008), and can 

be read out by internally generated activity states (Lewis-Peacock et al., 2012; Sprague et al., 

2016), or via the context-dependent neural response to external stimulation (i.e., ‘pinging the 

brain’: Stokes et al., 2013; Wolff et al., 2015; 2017). This may not necessarily be specific to 

WM, but could be a more fundamental property of dynamic network changes, resulting in 

distinct neural response profiles to subsequent input (i.e., dynamic coding: Stokes, 2015; 

Remington et al., 2018; see also Nikolić et al., 2009; Sugase-Miyamoto et al., 2008). 
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The pinging method involves presenting an invariant, task-irrelevant impulse stimulus (or 

alternatively, a TMS pulse; Rose et al., 2016) during the WM delay, while a participant’s 

electroencephalogram (EEG) is recorded (Wolff et al., 2015; 2017). The impulse is thought to 

work analogously to sonar; as a surge of activation is driven through the network, the resulting 

pattern of activity reflects not only the invariant neural response to the impulse stimulus, but also 

the current state of the perturbed network. Given that the impulse response has been found to 

contain information about the contents of WM in various studies (e.g., Duncan et al., 2023; 

Kandemir & Akyürek, 2023; Wolff et al., 2015), this strongly suggests there is overlap between 

the network that responds to the impulse stimulus, and the network that contains WM-specific 

neural traces. Indeed, it has been found that while the neural impulse response to auditory 

stimulation during an auditory WM task contained information about the auditory WM content, 

using the same auditory stimulation in a visual WM task did not result in a WM-specific neural 

response (Wolff et al., 2020b). This implies that the neural impulse response is WM-specific as 

long as the neural processing of the impulse stimulus interacts with the sensory-specific WM 

trace, which should be more likely when WM memoranda and impulse stimulus share sensory 

modalities or other features.1 

However, an alternative account has been put forward by Barbosa and colleagues (2021), 

who suggested that the primary effect of the visual impulse is to improve in the signal-to-noise 

ratio (SNR) of ongoing neural activity (but see Wolff et al., 2021). If this is indeed the only 

function of the impulse, it would mean that the impulse does not actually perturb the memory 

                                                 
1 Wolff et al., 2020b also showed that auditory WM representations can be perturbed by both auditory and 

visual impulses. This may however suggest that auditory information was visualized in their task. Furthermore, the 
modality-matching (i.e., auditory) impulse perturbed auditory representations better than the visual impulse, which 
is in line with our hypothesis. 
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network, but reveals items that are held in activity patterns hidden in noise, rather than activity-

silent representations. 

To assess to what degree the impulse response reflects a WM network-specific response, 

or alternatively, a global neural response (Barbosa et al., 2021), we used two different visual 

impulse and probe stimuli in a delayed match-to-sample task. In our task, the memory items 

were orientation gratings, and participants were asked to judge whether their orientation was 

clockwise or counter-clockwise (CW, CCW) relative to that of a probe stimulus, which was 

presented after a short delay at the end of each trial. Critically, the impulses and probes either 

matched or did not match the memory items on their spatial frequency, which was an integral, 

but task-irrelevant feature (Fig 1a-b). Behavioral and neural findings suggest that objects are held 

in WM with all of their features (Lin et al., 2021; Luck & Vogel, 1997), even when some are 

irrelevant (such as location: Zhou et al., 2022). This is in line with the activity-silent account of 

WM, where any stimulation leaves behind an initial neural trace, whether relevant or not 

(Mongillo et al,. 2008; Nikolic et al., 2009; Stokes, 2015).  

This suggests that the same orientations may be represented within distinct neural traces 

in WM if their task-irrelevant features are different. Relying on this assumption, we 

hypothesized that if the impulse response reflects the perturbed WM network, as suggested by 

Wolff and colleagues (2017), a matching impulse should act like a matched filter and reveal the 

memory content with greater decoding accuracy because it targets the network storing the 

representation more precisely (Figure 1c). Similarly, a matching probe should improve 

behavioral readout by facilitating the transition towards the behaviorally relevant matched filter 

response (Myers et al., 2015; Stokes, 2015; Remington et al., 2018; Nikolic et al., 2009; Sugase-

Miyamoto et al., 2008). However, there should be no effects of spatial frequency matching, if the 
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previously reported WM-specificity of the impulse response is not due to a targeted perturbation 

of a WM-specific neural trace, but rather due to stimulus-induced, global neural noise reduction 

which facilitates the decodability of an active neural code (Barbosa et al., 2021; see also 

Churchland et al., 2010; Pfurtscheller et al., 1979; 1994), for example via phase reset (Wolff et 

al., 2021). 

To preview the results, we show that a matching impulse produced better decoding of 

mnemonic representations from the impulse-evoked multivariate EEG pattern than a 

mismatching impulse, and that a matching probe reduced reaction times during memory recall. 

The stimulus-specific nature of the impulse response supports the idea that WM contents can be 

targeted directly by external perturbation, as predicted by the activity-silent WM framework 

(Stokes, 2015; Wolff et al., 2017). The positive behavioral effect of matching probes further 

suggests that the specificity of the impulse response is unlikely to be an epiphenomenon, but may 

rather reflect WM coding that is optimal for the task at hand (cf. Myers, 2022; Nairne, 2002). 
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Figure 1. Illustration of the trial schematic and hypothesis. a. Experimental manipulation 

showing memory item-impulse spatial frequency (SF) match and mismatch conditions. b. Trial 

schematic. Participants were asked to gaze at the center of the screen. After a variable delay 

period, the memory array, which consisted of a low or high spatial frequency orientation grating 

and a noise patch, were shown on either side of the fixation dot. The task was to remember the 

orientation, and judge whether it was clockwise or counterclockwise oriented relative to the 

probe. During the delay period, a visual impulse was shown. The spatial frequency of impulse 

either matched or did not match the orientation grating. c. Hypothesis. A matching visual 

impulse perturbs WM content better due to its shared spatial frequency-specific neural code.  

 

Results and discussion 

Behavioral performance 
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As expected, accuracy increased, and RT decreased, as a function of the absolute 

difference between the orientation of the memory item and probe (Figure 2a-b). Average 

accuracy was 77.4%, with a standard deviation of 7.6%. Mean probe RT was 549.4 ms, with a 

standard deviation of 95.7 ms.  

A marginally significant difference in accuracy existed between spatial frequency pairs of 

memory item and probe (p = .07; Figure 2c). Accuracy was 77.6% in the match (sd = 7.6%), and 

77.1% in the mismatch (sd = 7.7%) condition. Participants responded faster when the memory 

item’s spatial frequency matched with the probe (p < .01; Figure 2d). Response time was 548.3 

ms (sd = 95.3 ms) in the match condition, and 551.6 ms in the mismatch condition (sd = 95.7 

ms). This provides behavioral evidence that matching a feature between memorandum and probe 

stimulus facilitates WM readout, even when the matching feature dimension is behaviorally 

irrelevant. 
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Figure 2. Behavioral performance. a. The proportion of clockwise responses and b. probe

response time as a function of the angular difference between the memory item and probe. The

inset plot on the top panel shows average accuracy, and the bottom panel shows average probe

response time. c. Mean accuracy of memory item and probe spatial frequency pairs. d. Probe

response time of memory item and probe spatial frequency pairs. Colored and grey dots

represent individual data, black dots reflect averages, and error bars represent 95% confidence

intervals calculated as 1.96 times the standard error of the mean. Transparent lines match

subjects. Whisker plots show median and quartile values, and violin plots show the distribution.

~ shows p < .1, * shows p < .05, ** shows p < .01, and *** shows p < .001 (permutation tests). 

 

Decoding memory item orientation in match and mismatch conditions 
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Cluster-corrected permutation tests showed significant clusters of memory item 

orientation decoding during the encoding period, in both the match (76 – 488 ms, p < .05; Figure 

3a-b left panel) and mismatch conditions (56 – 548 ms, p < .05). Confirming the obvious fact 

that the memory item - impulse spatial frequency pairs can only influence decoding accuracies 

after impulse onset, there were no differences between conditions at any time point before 

impulse onset. The analysis on the whole time window of interest (100 to 400 ms) showed 

significant decoding for both the match and mismatch condition (p < .0001; p < .0001, 

respectively; Figure 3c top panel), with no difference between them. 

Time course decoding after impulse onset showed a significant cluster for the match 

condition (154 – 374 ms, p < .05; Figure 3a-b right panel), as well as a significant difference 

between match and mismatch conditions (278 – 398 ms, p < .05). The mismatch condition failed 

to reach significance. The spatio-temporal analysis on the whole time window of interest (100 to 

400 ms) nevertheless showed significant decoding for both the match and mismatch condition (p 

< .0001; p < .05, respectively; Figure 3c bottom panel), as well as a significant difference 

between them (p < .05). These results provide evidence that the neural impulse response is WM-

specific. 
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Figure 3. Orientation decoding of memory item – impulse spatial frequency (SF) pairs, during

encoding and maintenance. a. Normalized average pattern similarity (mean-centered, sign-

reversed Mahalanobis distance) of the neural dynamics at each time point for both conditions

during encoding (post-memory item presentation; left plot), and during maintenance (post-

impulse presentation; right plot). Colored horizontal bars indicate significant clusters of

orientation decoding. The black rectangles show the onset and offset of the memory item or

impulse stimulus b. Average distance to template of all angle bins (mean-centered, sign-reversed

Mahalanobis distance) of the neural dynamics at each time point for each condition after

memory item presentation, and impulse presentation. c. Orientation decoding relative to memory

onset, and impulse onset in the time window of interest (100 – 400 ms relative to onset). Boxplot,

violin plots, dots, lines, error bars, and asterisks follow Figure 2.  
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Testing for potential multivariate and univariate differences between memory item–

impulse spatial frequency pairs 

We were interested if there were any global differences between matching and 

mismatching impulse stimuli that might be related to the increased decoding of matching 

impulse trials. To this end, we compared several univariate measures of known stimulus-evoked 

neural responses between matching and mismatching impulses, such as event-related potentials, 

across-trial variance reduction, and alpha power reduction, which are all related to one another 

(e.g., Arazi et al. 2017; Wolff et al. 2021). 

There were no statistically significant differences in event-related potentials as measured 

from electrodes closest to the conventional PO7 and PO8 scalp locations (5LC and 5RC; p > .05, 

Figure 4a). There were also no statistical differences in relative variance reduction (Figure 4b), 

nor in relative alpha power reduction (Figure 4c). Impulse presentation reduced variance and 

alpha power in both match and mismatch conditions after impulse offset. Relative variance 

change after impulse onset was significant between 76 – 500 ms in the match condition, and 

between 94 – 500 ms in the mismatch condition (p < .05; Figure 4b left panel). Relative alpha 

power change after impulse onset was significant between 224 – 500 ms in the match condition, 

and between 226 – 500 ms in the mismatch condition (p < .05; Figure 4c left panel). 

Finally, we tested if there is a more subtle, multivariate difference between matching and 

mismatching impulse trials. While the time-course decoding showed no significant 

match/mismatch decoding (Figure 4d left panel), the time window of interest decoder did reach 

significance (p < 0.05, Figure 4d right panel). This suggests that there are no global differences 

between matching and mismatching impulse stimuli that could explain the WM-content 

decoding difference reported above. We nevertheless found a subtle multivariate difference 
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between matching conditions, suggesting that there may be unique neural signatures or patterns 

that are activated in the presence of matching versus mismatching impulses, without changing 

the global response amplitude. 
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Figure 4. Univariate differences and condition decoding of match and mismatch trials. a. 

Impulse-locked event-related potentials in match and mismatch conditions. b. Left panel shows 

relative EEG variance for each time point. Right panel shows relative EEG variance change in 

the time window of interest (100 – 400 ms after impulse onset). c. Left panel shows relative alpha 

power change for each time point after impulse onset. Right panel shows relative alpha power 

change in the time window of interest. d. Left panel shows the decoding accuracy of 

experimental conditions (match vs. mismatch trials) per time point. Right panel shows the 

decoding accuracy of experimental conditions in the time window of interest. Colored rectangles 

on the top side of the left panels show significant clusters. Black rectangles show the onset and 

offset of the impulse. Colors, error bars, box plots, violin plots, dots, asterisks and lines follow 

Figure 2.  

 

Decoding memory item and impulse spatial frequency during encoding and maintenance  

Our final analysis tested whether the task-irrelevant spatial frequency of the memory item 

can be decoded during WM encoding and maintenance. The memory item’s spatial frequency 

was significantly decodable during WM encoding (p < .0001; Figure 5a). During WM 

maintenance, decoding of both the spatial frequency of the memory item and that of the impulse 

was also significant (p < .01, p < .0001, respectively; Figure 5b).  
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Figure 5. Decoding accuracy (%) of the memory item and impulse spatial frequency (SF) during

a. encoding and b. maintenance. Boxplot, dots, error bars, and asterisks follow Figure 2.  

 

Discussion 

By either matching or mismatching the task-irrelevant feature of spatial frequency

between memory item and impulse stimulus, we aimed to manipulate the degree to which the

neural impulse response is patterned by the WM-specific neural trace. We found that matching

the spatial frequency resulted in higher decoding accuracy of the memorized orientations, the

task-relevant feature. This feature-specificity of the neural impulse stimulus provides evidence

that its neural response reflects the stimulus-specific neural trace in WM (Stokes, 2015; Wolff et

al., 2017). 

We did not find univariate differences between matching and mismatching impulse

stimuli. This is in line with the activity-silent WM framework, where the neural impulse

response is patterned by the WM network, depending on the degree that it interacts with it,
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without necessarily changing its absolute activation level (Figure 1c). It has previously been 

found that neural responses to stimuli that match visual WM content are increased (Awh et al., 

2000; Gayet et al., 2017). However, in these studies, the matching visual features were task-

relevant and likely maintained in an active neural code that biases attention towards the 

preferential processing of matching stimuli (Soto et al., 2008). Spatial frequency was task-

irrelevant in our study, and unlikely to have been actively maintained. We believe that the 

increased WM decoding for matching impulse stimuli that we found is therefore unrelated to the 

attentional modulation of perception, which is why we did not observe an increase in neural 

response magnitude for matching impulses. 

This pattern of results speaks against a global, WM-unspecific impulse response, as has 

previously been proposed (Barbosa et al., 2021), and confirm the validity of the impulse 

perturbation approach, which is grounded in the assumption that it directly perturbs the WM-

network, resulting in a WM-specific impulse response. If the impulse response had not been 

found to be WM-specific, this would have entailed that impulse perturbation can only access 

representations held in persistent-activity states, much like traditional methods. However, the 

presently observed increased WM-content decoding of a matching impulse can only be explained 

by a content-specific interaction between the impulse and the current, potentially activity-silent, 

state of the WM network. 

We also observed that if the spatial frequency of the probe stimulus matched that of the 

memory item, behavioral performance improved. This can be explained by a more pronounced 

matched-filter response for matching stimuli, resulting in a quicker transition into the 

behaviorally relevant neural response that discriminates relative probe rotation (Myers et al., 

2015; Sugase et al., 2008). This highlights that the WM-specificity of the impulse response 
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reported here and previously (e.g., Fan et al., 2021; Kandemir & Akyürek, 2023; Wolff et al., 

2017), should not be considered an epiphenomenon of WM-maintenance, but a useful neural 

mechanism for a task-specific WM-trace that is optimized for efficient readout (Myers, 2022; 

Nairne, 2002). 

Furthermore, despite its behavioral irrelevance, spatial frequency of the memory was 

decodable from the impulse response, suggesting that it was more than a coincidental co-

activator of the relevant orientation feature, but also a part of the memory trace itself (but see 

also Serences et al., 2009; Yu & Shim, 2017). This outcome is compatible with the idea that 

multiple features can be part of an object in memory, and that they can be encoded at minimal 

capacity costs (Luck & Vogel, 1997). It must be noted, of course, that in our case these multiple 

features shared basic, common encoding at the same location, so that the present ‘object benefits’ 

(i.e., the decoding of SF at impulse and the reduced response times for matching probes), 

presumably had a stimulus-driven origin, rather than a higher-level one (cf. Balta et al., 2023). 

Our results are in line with sensory recruitment of WM (Emrich et al., 2013; Pasternak & 

Greenlee, 2005; Postle, 2006), which suggests that WM content is maintained in the sensory 

areas that process and represent their constituent features (e.g., line orientation in primary visual 

cortex). The involvement of sensory brain regions in WM is usually tested by decoding the delay 

activity, which can lead to mixed results (Xu, 2018). By measuring the bottom-up neural impulse 

response we can probe sensory cortex without relying on measurable delay activity. Since visual 

cortex is known to process information at different spatial frequencies, the memory items in our 

task should have been processed and represented by the subpopulation of neurons in visual 

cortex that is tuned to their specific spatial frequency. During WM maintenance, within that 

same population, stimulation that perturbs this network most strongly is likely to elicit the 
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strongest memory-specific response. This is indeed what we found, which suggests that the 

orientation columns that process visual information also maintain it. 

It has been proposed that episodic memory plays an important role in WM tasks, and may 

in fact constitute activity-silent WM (Beukers et al., 2021). Here, the contexts of memory items 

are encoded in episodic memory (i.e., the encoding specificity principle, Tulving & Thomson, 

1973), which reduces confusability between items and trials. An overlap between the (silently) 

stored context in episodic memory and the external retrieval probe leads to higher reactivation of 

the context-dependent memory and better recall. In addition to temporal and spatial contexts, 

spatial frequency could be considered a context as well in our task. Our findings thus align quite 

well with this framework, as we found both higher neural reactivation and better recall when 

contexts/spatial frequencies overlapped. Future research may further explore the boundaries, if 

any, between activity-silent WM and (activity-silent) episodic memory. 

 

Conclusion 

We found that matching a task-irrelevant stimulus feature between the WM-item and an 

irrelevant impulse stimulus presented during WM maintenance increased the WM-specific neural 

response, without changing its global response amplitude. Similarly, a matching probe stimulus 

increased WM recall as measured from a reduction in reaction times. These results suggest that 

the WM network maintains a stimulus-specific trace that can be targeted and read-out directly 

via external stimulation, as predicted by the activity-silent WM framework. 

 

Method 

Participants 
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A sample size of 30 was chosen following previous work using similar methodologies 

(Wolff et al., 2017; 2020a; 2020b). In total, 31 participants, most of whom were undergraduate 

students, participated at the University of Groningen in exchange for monetary compensation (8 

euros per hour). One participant was excluded due to excessive EEG noise (more than 40% of 

the trials were contaminated). In the final sample, there were thus 30 participants (18 females [16 

right-handed], 12 males [12 right-handed], mean age = 23.3, range = 16-32). All participants 

reported normal or corrected-to-normal vision and signed an informed consent form prior to 

participation. The study was conducted in accordance with the Declaration of Helsinki (2008). 

 

Apparatus and stimuli 

Participants were individually seated in dimly lit sound-attenuated testing cabins, 

approximately 60 cm from a 27-inch Asus IPS monitor (model VG279QM). The resolution was 

set to 1920 by 1080 pixels, at 16-bit color depth with a 100 Hz refresh rate. OpenSesame 3.2.8 

(Mathôt et al., 2012) with the Psychopy back-end (Pierce et al., 2019) was used for trial 

preparation and data collection, running under the Microsoft Windows 10 operating system. 

Responses were collected with a standard keyboard. 

The stimuli were presented on a grey background (RGB = 128, 128, 128). A black 

fixation point (RGB = 0, 0, 0) was maintained in the center of the screen throughout the trial. 

Memory items and probes were gray sine-wave gratings presented at 20% contrast, with a 

diameter of 5.93° of visual angle (Figure 6a). Spatial frequencies of the memory items, probes, 

and impulse stimuli were either 0.5 cycles/degree (low spatial frequency) or 1.4 cycles/degree 

(high spatial frequency), depending on the experimental condition (Figure 6b). Memory items 

(orientation gratings) were presented on the left or right side of the fixation dot, at an eccentricity 
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of 5.93° of visual angle. A Gaussian noise patch was shown at the same location on the other

side of the fixation dot, matching the contrast and overall luminance of the memory items.

Orientations were randomly chosen from 144 possible unique angles separated evenly between

0° and 179° with 1.25° separation. The angle difference between the memory item and the probe

was chosen from 12 possible unique values, ranging from -40° to 40° (±5°, ± 10°, ± 16°, ± 24°, ±

32°, ± 40°, as in Wolff et al., 2017). Impulse stimuli consisted of three adjacent bull’s eyes

presented at the center of the screen. Each bull’s eye was the same size as the memory items and

probes (i.e., a diameter of 5.93° of visual angle). 

 

Figure 6. Stimulus details in degrees of visual angle (°). a. Size and location of low and high

spatial frequency memory items and impulses. b. Spatial frequencies of memory items and

impulses.  

 

Procedure 

Participants completed a visual working memory task (Figure 1b) while EEG was

recorded. The task was to report whether the probe was rotated clockwise or counterclockwise

relative to the memory item. Each trial began with a fixation cross with random temporal jitter,

such that it was presented for 500-700 ms. Next, the memory item and Gaussian noise patch

were simultaneously presented for 200 ms. After a 900 ms delay, the impulse stimulus was
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shown for 100 ms. After a 500 ms ISI, the memory probe was presented for 200 ms, and 

participants were required to give a speeded response by pressing m or c (counter-balanced 

between participants) within 1000 ms. Trial-wise feedback was provided for 200 ms (a happy 

smiley for the correct response and an unhappy smiley for the incorrect response). There was a 

500 ms inter-stimulus interval between trials. Participants started the experiment with 64 practice 

trials. If they failed to perform above 60% accuracy, they were asked to redo the practice trials of 

the experiment. Participants were given a chance to have a break between each block and each 

session (see below). After each block, the average accuracy that the participant had achieved 

within was shown. The total duration of the study was four hours, including EEG capping. 

 

Design 

The principal variables of interest were whether the spatial frequency of the memory item 

matched that of the impulse and/or that of the probe (Figure 1c). The design was nevertheless 

also randomized and counterbalanced for the location of the memory item (left or right), the 

spatial frequency of the memory item (low or high), the spatial frequency of the impulse stimulus 

(low or high), and the spatial frequency of the probe stimulus (low or high). For each of the 16 

resulting design cells, 144 unique orientations were shown. In addition, each probe difference 

was randomly assigned to those 144 unique orientations, which was counterbalanced within and 

between cells. Therefore, there were 2304 trials in total (16 * 144), which were separated into 

four consecutive sessions. Each session (576 trials) consisted of 24 blocks, and each block 

consisted of 24 trials. After randomization for these 2304 trials was done for each participant, the 

trial order was shuffled and separated into four sessions. The randomization of stimuli and 

conditions was achieved with experimental code written in R 4.0 (R Core Team, 2020). 
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Behavioral data analysis 

Mean accuracy was calculated for each participant across all trials for each condition of 

interest. To visualize the proportion of clockwise responses, counterclockwise responses were 

reverse-signed when the probe was counterclockwise relative to the memory item. Reaction time 

was analyzed similarly, but trials in which no response, a response that was too fast (<150 ms), 

or an incorrect response were given were discarded from the analysis. 

 

EEG acquisition 

The EEG signal was acquired from 64 Ag/AgCI electrodes and one external EOG 

electrode using an equidistant hexagonal layout. The ground electrode was placed on the 

participants’ upper back. Electrodes placed above and below the left eye (EOG and 1L) and the 

temples (1LD and 1RD) were used for bipolar electrooculography. The impedance of all 

electrodes was kept below 10 kΩ. The signal was recorded at 1000 Hz using an ANT Neuro 

Eego Mylab amplifier and the associated software. During recording, the EEG was referenced to 

the electrode 5Z, and no filtering was applied. 

 

EEG preprocessing 

Using EEGLAB 2021 (Delorme & Makeig, 2004), the EEG signal was re-referenced to 

the common average of all electrodes and downsampled to 500 Hz. A high-pass filter of 0.1 Hz 

and a low-pass filter of 40 Hz were applied to the EEG signal. Noisy EEG channels were 

interpolated with the pop_interp function of EEGLAB. As a result, in four participants’ one to 

five EEG channels were replaced through spherical interpolation. Data were epoched relative to 
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impulse onset (-1550 ms to 2000 ms). Following that, independent component analysis was run 

to remove eye-movement-related (blinks and saccades) components from the EEG signal. Trials 

with other EEG artefacts were detected semi-automatically using the ft_rejectvisual function of 

Fieldtrip 2017 (Oostenveld et al., 2011), and excluded from all subsequent analyses.  

Wolff and colleagues’ (2020b) methodology was used for preprocessing EEG data for 

distance-based multivariate pattern analysis (MVPA). For the time-course decoding analysis, a 

sliding window approach was used, since pooling information over time may improve decoding 

accuracy (Grootswagers et al., 2017; Nemrodov et al., 2018). EEG data was downsampled to 100 

Hz by taking the average of every 10 ms. Next, the data for each channel were normalized by 

subtracting the average voltage values within a sliding 100 ms time window from each voltage 

value (prior to each value), to remove stable activity that does not change within the entire time 

window. Therefore, only evoked dynamics were considered in this analysis. 

As a secondary analysis, we pooled information over the entire pre-selected time window 

of interest. Following Wolff et al. (2020a; 2020b) we determined the time window of interest as 

100 to 400 ms relative to the onset of stimulation (memory item, impulse). After downsampling 

the EEG data to 100 Hz, data was normalized by subtracting average voltage values within the 

time window of interest. This resulted in 30 values per channel, and each value was considered 

as a separate dimension (61 channels, excluding the bipolar EOG channels, by 30 values, 1830 in 

total), which were used in the decoding analysis, resulting in a single decoding accuracy value 

per participant. 

 

Orientation decoding 
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Following Wolff and colleagues (2020a; 2020b), Mahalanobis-distance-based MVPA 

was applied to decode memory item orientations. Although memory orientations were 

counterbalanced, given that a different number of trials were discarded from the EEG analysis 

due to artefacts, we used an 8-fold procedure with subsampling to equalize unbalanced 

orientation distributions between conditions. Trials were assigned to the closest of 16 variable 

orientation bins and randomly split into eight folds, seven of which constituted the train set, and 

one of them the test set. The number of trials in each orientation bin in each train set was 

equalized by random subsampling, matching the minimum number of trials in any orientation 

bin. Next, the covariance matrix was computed with the train sets (seven folds), using a 

shrinkage estimator (Ledoit & Wolf, 2003). The activity of each orientation bin in the 

subsampled train trials was averaged. The average bins of the train trials were convolved with a 

half cosine basis set raised to the 15th power in order to pool information across similar 

orientations (Myers et al., 2015). Finally, Mahalanobis distances of each trial in the test fold 

were computed relative to the averaged and basis-weighted angle bins. This resulted in 16 

distances per test trial, which were mean centered. This procedure was repeated for all test and 

train fold combinations.  

Because trials were subsampled, we repeated this procedure 100 times for each of eight 

different orientation spaces (0° to 168.75°, 1.40625° to 170.1563°, 2.8125° to 171.5625°, 

4.2188° to 172.9688°, 5.625° to 174.375°, 7.0313° to 175.7813°, 8.4375° to 177.1875°, 9.8438° 

to 178.5938°, each in steps of 11.25°). For each trial, we thus obtained 800 samples for each of 

the 16 Mahalanobis distances. Distances were averaged per trial, ordered with regard to the 

orientation difference, and sign-reversed, such that larger values reflect larger pattern-similarity 

between the test trial and the averaged orientation bin. The pattern similarity curve was 
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summarized into a single decoding value by taking the cosine vector mean, such that a higher 

value reflects higher pattern similarity.  

 

Spatial frequency decoding 

The spatial EEG activity pattern between 100 to 400 ms after memory item and impulse 

onset was used in spatial frequency reconstruction. The approach was similar to that of 

orientation reconstruction. Since there were only two spatial frequency conditions, the 

Mahalanobis distance of the spatial frequency condition relative to both spatial frequency 

conditions was computed. Following that, the Mahalanobis distance of the same spatial 

frequency condition was subtracted from that of the different spatial frequency condition. 

Positive values were converted to hits, and negative values were converted to misses. Hits and 

misses were averaged and presented as decoding accuracy.  

 

Variance reduction analysis 

EEG data were epoched from -200 to 500 ms relative to impulse onset. Trials were 

divided into two groups with regard to memory item – impulse spatial frequency pair conditions. 

Next, each EEG channel was averaged for each condition per participant, and the variance of 

each channel’s activity was calculated on each time point of the EEG data. The variance of all 

channels was averaged for each time point. Following that, we computed the relative change of 

variance using the following formula: 

(data-base_data)/base_data 

Where base_data was the variance during the baseline period (-200 to 0 ms relative to impulse 

onset) and data was the variance of the whole epoch. 
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The variance difference between match and mismatch conditions was calculated by 

subtracting one condition from another. A cluster-corrected permutation was run on the variance 

difference between conditions. Further, the average variance was estimated between 100 – 400 

ms relative to impulse onset, since this time window was used for decoding memoranda. One 

extra participant was discarded from this analysis because the average variance in one condition 

was 2.5 standard deviations greater than that of the whole sample.  

 

Alpha power reduction analysis 

We also compared alpha power reduction between matching and mismatching impulses. 

Alpha power was first computed by filtering the voltage data of all EEG channels between 8 and 

12 Hz and Hilbert transforming the result using the following code in Matlab: 

abs(hilbert(eegfilt(data, hz, 8, 12))) 

The filter length was 375 ms. The filtered data was subsequently averaged across all channels, 

before computing relative alpha power change after impulse presentation, using the same 

formula as for relative variance change ((data-base_data)/base_data)). Baseline alpha power was 

taken from the filtered data from -500 to -200 ms relative to impulse onset.  

 

Event-related potentials  

To assess whether there was any univariate change in the visual sensory evoked potential 

between impulse conditions, we examined the electrodes closest to the classic PO7 & PO8 scalp 

location (5LC & 5RC). EEG was epoched from -200 to 500 ms relative to impulse onset, 

followed by a baseline correction from -200 ms to 0 ms (presentation of impulse). Trial epochs 
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were then averaged per subject and condition, per time point. The ERP difference between match 

and mismatch conditions was calculated by subtracting one condition from another. 

 

Significance testing 

A permutation T-test with 9999 Monte Carlo permutations was run for the analysis of 

behavioral data (response time and accuracy) using R (R Core Team., 2020), and decoding 

accuracy of pooled data using MATLAB. R was used to preprocess behavioral data and ggplot2 

(Wickham, 2016) to plot outcomes. A cluster-corrected, one-sample permutation T-test with 

100000 permutations was used for all time-course analyses. All tests were two-sided.  
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