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Abstract

Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across
the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the
visual hierarchy. Here we characterize two signatures of neural adaptation in time-varying intracranial elec-
troencephalography (iEEG) data collected while participants viewed naturalistic image categories varying
in duration and repetition interval. Ventral- and lateral-occipitotemporal cortex exhibit slower and prolonged
adaptation to single stimuli and slower recovery from adaptation to repeated stimuli compared to V1-V3. For
category-selective electrodes, recovery from adaptation is slower for preferred than non-preferred stimuli.
To model neural adaptation we augment our delayed divisive normalization (DN) model by scaling the in-
put strength as a function of stimulus category, enabling the model to accurately predict neural responses
across multiple image categories. The model fits suggest that differences in adaptation patterns arise from
slower normalization dynamics in higher visual areas interacting with differences in input strength resulting
from category selectivity. Our results reveal systematic differences in temporal adaptation of neural popu-
lation responses across the human visual hierarchy and show that a single computational model of history-
dependent normalization dynamics, fit with area-specific parameters, accounts for these differences.
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Author summary

Neural responses in visual cortex adapt over time, with reduced responses to prolonged and repeated
stimuli. Here, we examine how adaptation patterns differ across the visual hierarchy in neural responses
recorded from human visual cortex with high temporal and spatial precision. To identify possible neural
computations underlying adaptation, we fit the response time courses using a temporal divisive normaliza-
tion model. The model accurately predicts prolonged and repeated responses in lower and higher visual
areas, and reveals differences in temporal adaptation across the visual hierarchy and stimulus categories.
Our model suggests that differences in adaptation patterns result from differences in divisive normalization
dynamics. Our findings shed light on how information is integrated in the brain on a millisecond-time scale
and offer an intuitive framework to study the emergence of neural dynamics across brain areas and stimuli.
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Introduction

Neural responses in human visual cortex adapt over time, showing reduced responses to prolonged and
repeated stimuli. Adaptation occurs at multiple spatial scales: from single-cell recordings in monkeys (Miller
and Desimone, 1994; Sobotka and Ringo, 1994; Sawamura et al., 2006) to neural population responses
in humans on functional magnetic resonance imaging (fMRI) (Grill-Spector et al., 1999; Kourtzi and Kan-
wisher, 2000; Vuilleumier et al., 2002; Zhou et al., 2018), magneto- and electroencephalography (M/EEG)
(Puce et al., 1999; Schendan and Kutas, 2003; Henson et al., 2004; Noguchi et al., 2004; Todorovic et al.,
2011) and electrocorticography (ECoG) (Zhou et al., 2019; Groen et al., 2022). Adaptation also occurs at
multiple temporal scales, from milliseconds (Sobotka and Ringo, 1996) to minutes (Henson et al., 2000)
or days (van Turennout et al., 2000). Adaptation is thought to facilitate efficient neural coding by allowing
the brain to dynamically recalibrate to changing sensory inputs (Clifford et al., 2007; Weber and Fairhall,
2019; Benda, 2021), but its role in visual processing is not precisely understood. For example, it is unclear
if adaptation patterns and computational mechanisms differ across visual brain areas.

To elucidate these issues, we studied two signatures of adaptation in time-resolved neural responses at
short (sub-second) time-scales. First, neural responses reduce in magnitude when a static stimulus is
viewed continuously, evident in transient-sustained dynamics in the shape of response time courses (Fig.
1A). Second, when two stimuli are viewed close in time, the response to the second stimulus is reduced;
i.e., repetition suppression (RS; Miller et al. 1991; Li et al. 1993; Miller and Desimone 1994; Lueschow et al.
1994; Fig. 1B). Higher visual areas have been found to show slower transients and more slowly decaying
responses than lower visual areas in human ECoG (Zhou et al., 2019; Groen et al., 2022) and in simu-
lated neural fMRI responses (Stigliani et al., 2017; Kim et al., 2023), and fMRI studies suggest that higher
visual areas show stronger RS than lower areas (e.g., V1; Zhou et al. 2018; Fritsche et al. 2020). Fur-
ther, a computational model of delayed divisive normalization (Heeger, 1992, 1993) simultaneously predicts
transient-sustained dynamics and RS in neural population responses measured with ECoG (Zhou et al.,
2019; Groen et al., 2022), implying that both forms of adaptation may reflect divisive normalization mecha-
nisms.

Together, these findings suggest that adaptation signatures differ across the visual hierarchy and that this
may reflect differences in history-dependent normalization. However, in most studies, the stimuli were noise
patches or simple contrast patterns, which primarily drive responses in lower-level areas. Thus, the ob-
served differences across areas may reflect suboptimal stimuli for higher visual areas, rather than system-
atic differences in temporal adaptation. Further, neural adaptation also may vary within an area, depending
on stimulus type. Monkey and human fMRI studies find that in visual areas with increased sensitivity to
stimulus categories such as faces or bodies, preferred stimuli elicit stronger RS than non-preferred stimuli
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Figure 1: Two forms of temporal adaptation observed in neural response time courses A. For a prolonged single stimulus,
adaptation is evident because the neural response, after an initial transient, is followed by a decay plateauing to a sustained response
level. B. For two presentations of an identical image with a brief gap in between the stimuli, adaptation is evident because the neural
response for the second stimulus is reduced.
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(Sawamura et al., 2006; Weiner et al., 2010; Rangarajan et al., 2020). Thus, to compare and model adap-
tation across the visual hierarchy, stimulus effectiveness must be considered.

To disentangle the influence of hierarchy and stimulus on neural adaptation, we quantified transient-sustained
and repetition suppression dynamics of neural responses across multiple visual brain regions in a new set
of intracranial EEG (iEEG) recordings from human participants. Participants were presented with natural-
istic stimuli from distinct image categories, allowing us to assess stimulus preference and its effectiveness
on neural adaptation patterns. By fitting an augmented version of the delayed divisive normalization model
(Zhou et al., 2019; Groen et al., 2022) that considers stimulus category preference, we propose explanations
for differences in adaptation patterns.

Our results yield three insights. First, we demonstrate systematic differences in neural adaptation be-
tween lower and higher human visual areas: lower areas show faster transient-sustained dynamics and
faster recovery from repetition suppression. Second, we reveal stimulus-specific differences in recovery
from RS in category-selective electrodes: preferred stimuli elicit stronger repetition suppression than non-
preferred stimuli. Third, our augmented DN model accurately predicts neural responses to different stimulus
categories along the visual hierarchy. Based on the observed model behavior, we propose that observed
differences in neural adaptation patterns reflect differences in divisive normalization dynamics.

Results

We collected iEEG recordings while participants viewed single and repeated naturalistic images from six
stimulus categories (Fig. 2A), with variable stimulus duration and inter-stimulus-intervals (ISI) (Fig. 2B).
By aggregating responses across four patients, we identified 79 visually responsive electrodes which we
separated into one lower-level visual group (V1-V3) and two higher-level ventral-occipital cortex (VOTC) and
lateral-occipital cortex (LOTC) groups using retonotopic atlases (Fig. 2C). Some electrodes in VOTC and
LOTC were category-selective, showing higher sensitivity to one stimulus class (Fig. 2C; see Materials
and Methods, Data selection). We computed a single average time-resolved broadband response for each
temporal stimulus condition and stimulus class, resulting in 72 response time-courses per electrode.

To model neural response dynamics across visual areas and stimuli, the time courses were fitted using
a delayed divisive normalization (DN) model. The model takes as input a stimulus time course and pro-
duces as output a predicted neural response (Fig. 3A). To take into account category-selectivity, we allowed
the model to scale the input stimulus time course as a function of category (Fig. 3B, see Materials and
Methods, Computational modeling). Incorporating category-dependent scaling improves model predictions
in all visual areas (Fig. 3C).

Below, we first characterize transient-sustained dynamics and repetition suppression in lower and higher
visual areas and then examine repetition suppression within category-selective electrodes. Along with the
neural data, we present DN model predictions to demonstrate how the observed differences result from
divisive normalization dynamics.

Higher visual areas exhibit slower and prolonged responses to single stimuli

Neural time courses to duration-varying stimuli in V1-V3, LOTC and VOTC exhibit different transient-sustained
dynamics (Fig. 4A, top panel). In all areas, responses show an initial transient, which for short durations is
the only part of the response, while for longer durations, a subsequent lower-amplitude sustained response
emerges. However, electrodes in V1-V3 show faster and shorter transients with relatively low sustained
responses, while VOTC and LOTC have slower and wider transients with higher sustained responses.

To quantify these differences in response shapes across visual areas, we computed two metrics which
capture different characteristics of the time courses. First, responses rise more slowly in higher visual areas
as reflected by the time-to-peak, which is shortest for V1-V3, intermediate for VOTC and longest for LOTC
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Figure 2: Experimental design and electrode positions A: Stimuli consisted of natural images belonging to one of six image
categories (bodies, buildings, faces, objects, scenes and scrambled). The face exemplar shown here is masked for privacy purposes.
B: Subjects were presented with two different trial types. Duration trials (left) consisted of a single stimulus with one of six durations,
ranging from 17-533 ms. Repetition trials (right) comprised two stimulus presentations of 134 ms each with one of six ISIs ranging
from 17-533 ms. Subjects fixated on a small cross and were instructed to press a button whenever it changed color. C: Electrodes with
robust visual responses were identified in V1-V3 (n = 15), VOTC (n = 17) or LOTC (n = 47). Electrodes not included in the dataset are
shown in black. Electrodes were considered category-selective if the average response for one image category was higher than for the
other image categories (d’ > 0.5, see Eq. 1, Materials & Methods, n = 26). Apparent misalignments between electrode positions and
the brain surface in C result from the fact that the electrodes here are displayed on the reconstructions of the average brain surface;
electrode assignment was performed in each participant’s native T1 space (Supp. Fig. 7). L = lateral, M = medial, D = dorsal, V =
ventral, A = anterior, P = posterior. The brain surfaces and electrode positions can be reproduced by mkFigure2.py.

(Fig. 4B, circle markers). Second, compared to V1-V3, responses for VOTC and LOTC show a broadening
of the transient as reflected by the full-width at half-maximum (Fig. 4C, circle markers). This difference
becomes more pronounced as the stimulus duration lengthens for LOTC and to a lesser degree for VOTC.
These metrics indicate a slower rise and a slower decay of the response, resulting in a prolonged, more
slowly adapting response in higher visual areas.

The DN model accurately captures the broadband responses for the duration trials across all visual ar-
eas (Fig. 4A, lower panel). It also predicts the differences in response shapes, that is the slower rise (Fig.
4B, triangle markers) and the wider transients (Fig. 4C, triangle markers) in LOTC compared to V1-V3, with
intermediate values for VOTC.

To assess whether the differences in transient-sustained dynamics across areas are affected by stimu-
lus selectivity, we quantified these dynamics separately for each electrode’s preferred category (eliciting the
maximum response) and for all remaining stimulus categories combined (non-preferred stimuli). The neural
and DN model time courses consistently exhibit the same area-specific differences regardless of whether
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Figure 3: Modeling neural responses using delayed divisive normalization with category-dependent input strength A:
Schematic depiction of the delayed divisive normalization (DN) model, originally proposed by Heeger (1992, 1993) and first pre-
sented in this form in Zhou et al. (2019). The model is defined by a linear-nonlinear-gain control structure, taking as input a stimulus
time course and producing a predicted neural response as output. The linear computation consists of a convolution with an impulse
response function (IRF), h1, parameterized as a gamma function with τ1 as a free parameter. The nonlinear computation consists of
rectification, exponentiation with a free parameter, n, and division by a semi-saturation constant σ, which is summed with a delayed
copy of the input that is also rectified and exponentiated. The delay is implemented as a convolution of the linear response with an
exponentially decaying function, h2, with a time constant, τ2. B: To capture category-selectivity in neural responses, a scaling factor
for each image category is introduced to the DN model, which allows the input drive to vary depending on stimulus category by scaling
the height of the stimulus time course. The schematic depicts an example scaling for a face-selective electrode. C. Cross-validated ex-
plained variance (coefficient of determination) across all stimulus conditions for the DN (omitting category scaling) and the augmented
DN model (including category-scaling) plotted per visual area (V1-V3, VOTC and LOTC). The DN model which includes category-
specific scaling of the stimulus time course better predicts neural responses across all visual areas. Averages indicate means, and
error bars indicate SE across electrodes. Panel C can be reproduced by mkFigure3.py.

preferred (Supp. Fig. 1A-C) or non-preferred (Supp. Fig. 1D-F) stimuli were shown. This suggests
that the transient-sustained dynamics in higher visual regions are not stimulus-dependent, but rather reflect
intrinsically slower temporal integration.

Stronger RS and a slower recovery in higher visual areas for repeated stimuli

Viewing repeated stimuli results in repetition suppression in all visual areas (Fig. 5A, top panel), whereby
responses to the second stimulus are most suppressed at shortest ISIs and show a gradual recovery as ISI
increases. Across conditions, there also appear to be differences in RS between lower and higher visual
areas. However, quantifying differences in the degree of recovery in these response time courses is not
straightforward: the response to the first stimulus continues after its offset (see Fig. 4A), and as demon-
strated above, this continued response is longer in higher visual regions (Fig. 4C). This problem is especially
evident for short ISIs: at 17 ms ISI, response amplitudes measured after onset of the second stimulus are
higher in LOTC and VOTC than in V1-V3 (Fig. 5A), but this could result from weaker RS of the second
stimulus, the continued neural responses to the first stimulus, or a combination.

To disentangle these responses, we estimated the response to the second stimulus in isolation (see Mate-
rials and Methods, Summary metrics) while correcting for the ongoing activity caused by the first stimulus
(Fig. 5B, Neural data). This shows that recovery from RS qualitatively differs between visual areas: V1-
V3 shows less suppression and recovers faster than VOTC and LOTC. We quantified the level of RS in
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Figure 4: Slower rise and prolonged responses in higher visual areas A: Top, Average, normalized broadband iEEG responses
(80-200 Hz) for electrodes assigned to V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47) to single stimuli (gray). Responses are shown
separately per duration from shortest (17ms, left) to longest (533 ms, right). Bottom, DN model predictions for the same conditions.
The shapes of the neural time courses differ between visual areas and are accurately captured by the DN model. Time courses were
smoothed with a Gaussian kernel with standard deviation of σ = 10; the shaded regions indicate 68% confidence interval across 1000
bootstrapped timecourses (see Materials & Methods, Bootstrapping procedure and statistical testing). B-C: Summary metrics plotted
per visual area derived from the neural responses (circle marker) or model time courses (triangle marker). Time-to-peak (B) computed
to the longest duration (533 ms). Full-width at half maximum (C), computed for each stimulus duration. Data points indicate medians
and error bars indicate 68% confidence interval across 1000 samples derived from the bootstrapped timecourses. Bootstrap test,
∗ = p < 0.05 (two-tailed, Bonferroni-corrected). This figure can be reproduced by mkFigure4.py.

these responses by computing their Area Under the Curve (AUC) divided by the AUC of the first stimulus
response (see Supp. Fig. 2). Neural responses show overall stronger RS for shorter compared to longer
ISIs (Fig. 6A, left), but also relatively more RS in VOTC and LOTC than in V1-V3. Responses in V1-V3
are nearly fully recovered at the longest ISI of 533 ms, while VOTC and LOTC are still suppressed. Sum-
mary metrics of the average recovery across ISIs (Fig. 6B, circle markers) and long-term recovery (Fig.
6C, circle markers) confirm that there is less RS and faster recovery in V1-V3 compared to VOTC and LOTC.

Fitting these responses with the DN model again shows accurate predictions: the model captures the overall
gradual recovery from RS with longer time lags, closely mimicking the neural data (Fig. 5A, lower panel and
Fig. 5B, DN model). The DN model also predicts stronger RS (Fig. 6A, right), reflected in average level
of suppression (Fig. 6B, triangle markers) and faster recovery (Fig. 6C, triangle markers), for higher than
lower visual areas, although it underestimates the average suppression in VOTC and LOTC, possibly due to
a slight over-prediction of the recovery for shorter ISIs.

Given prior reports of stimulus-specific differences in RS depending on a neural population’s stimulus se-
lectivity (Sawamura et al., 2006), we also quantified RS separately for preferred and non-preferred stimuli in
all areas. In both neural responses and model predictions, the differences in RS between areas are most
pronounced for preferred stimuli (Supp. Fig. 3), and comparatively less strong for non-preferred stimuli
(Supp. Fig. 4). This suggests that the repetition suppression effects in higher visual areas are partly
stimulus-dependent.
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Figure 5: Qualitative differences in repetition suppression across visual areas A: Top, Average, normalized broadband re-
sponses for electrodes assigned to V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47) to repeated visual stimuli (gray). Responses are
shown separately per ISI from shortest (17 ms, left) to longest (533 ms, right). Bottom, DN model predictions for the same data. Time
courses differ between visual areas which is captured by the DN model. B. Estimated, normalized response to the second stimulus for
V1-V3, VOTC and LOTC. For each visual area, the left panel shows the neural data and the right panel shows the model prediction.
Recovery from adaptation gradually increases as the ISI becomes longer, and the rate of recovery is higher for V1-V3 compared to
VOTC and LOTC in both the neural data and the DN model. This figure can be reproduced by mkFigure5 6.py.

Differences in adaptation reflect slower normalization in higher visual areas

We showed that lower and higher visual areas show different adaptation patterns, as evident from transient-
sustained dynamics and recovery from repetition suppression, which are both accurately captured by the
DN model. To better understand the neural computations underlying these response profiles, we examined
the temporal dynamics of two components of the DN model: the input drive (i.e. the numerator) and the
normalization pool (i.e. the denominator).

To explain differences in transient-sustained dynamics, we considered the model prediction for the longest
duration (533 ms, Fig. 7A), because it has the most pronounced sustained response difference across
areas. The DN model captures transient-sustained dynamics in neural responses because the input drive
dominates the prediction early in the response, resulting in a transient, followed by the normalization pool,
resulting in a response decay to sustained levels. The model suggests that lower visual areas exhibit rel-
atively fast dynamics in both the numerator and the denominator, resulting in a fast initial rise and a fast
subsequent decay of the response. These dynamics occur at a lower pace in higher visual areas, where
both the input drive and normalization pool rise more slowly. This results in broader response shapes, which
are most pronounced for LOTC and to a lesser degree for VOTC.

To explain differences in recovery from RS, we again examined the longest temporal condition (ISI of 533
ms, Fig. 7B), because differences in adaptation between lower and higher visual areas were most distinct at
this ISI. The DN model captures suppression of repeated stimuli by adapting the dynamics of the normaliza-
tion pool. After the offset of the first stimulus, the normalization pool decays and approaches the minimum
possible value of the denominator, which is set by σn. If the normalization pool has not reached this mini-
mum value at the start of the second stimulus, suppression occurs due to the lingering normalization from
the first stimulus. Thus, the difference in RS between visual areas is a result of slower dynamics of the
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Figure 6: Stronger RS and slower recovery rate from adaptation in higher visual areas A: left, Recovery from adaptation for
V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47), computed as the ratio of the Area Under the Curve (AUC) between the first
and second response. The fitted curves express recovery as a function of the ISI (see Materials and Methods, Summary metrics).
Higher visual areas show stronger RS and slower recovery from adaptation. Right, model predictions for the same data. The model
captures area-specific recovery from adaptation. B-C: Summary metrics plotted per visual area derived from the neural responses
(circle markers) or model time courses (triangle markers). Average recovery (B) from adaptation for each area, computed by averaging
the AUC ratios between the first and second stimulus over all ISIs. The long-term recovery (C) reflects the amount of recovery for an
ISI of 1s, obtained by extrapolating the fitted line. Higher visual areas show stronger RS and a slower recovery rate which is accurately
predicted by the DN model. Data points indicate medians and error bars indicate 68% confidence interval across 1000 samples derived
from the bootstrapped timecourses. Bootstrap test, ∗ = p < 0.05 (two-tailed, Bonferroni-corrected). This figure can be reproduced by
mkFigure5 6.py.

normalization pool in VOTC and LOTC, leading to more lingering normalization at the start of the second
stimulus presentation and consequently stronger RS and slower recovery.

The differences in temporal adaptation across areas are also reflected in the fitted parameter values (Fig.
7C). Both τ1 (time constant of the IRF) and n (exponentiation) are higher in VOTC and LOTC, reflecting the
slower dynamics of the input drive and normalization pool, which give rise to the area-dependent differences
in transient-sustained dynamics and RS; τ1 controls the width of the transient, reflected by the time to peak,
whereas n controls the decay of the transient response. Thus, these parameters affect the full-width at half
maximum and degree of recovery from RS for single and repeated stimuli, respectively. However, τ2 and σ
also affect the width and decay of the transient and fitted parameters (to some degree) trade off. Therefore,
parameter differences across the visual hierarchy however should be interpreted with caution. Nonethe-
less, our results suggest that adaptation differences between lower and higher visual areas could arise from
underlying differences in temporal normalization dynamics.
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normalization pool. B. Same as A for a repeated stimulus with an ISI of 533 ms. The stronger RS for higher visual areas results
from lingering normalization at the start of the second stimulus, which is stronger for VOTC and LOTC compared to V1-V3. C. Fitted
DN model parameters per visual area, from left to right: h1 (time constant of the IRF), h2 (time constant of the exponential decay),
n (exponent) and σ (semi saturation constant). Data points indicate medians and error bars indicate 68% confidence interval across
1000 samples derived from the bootstrapped timecourses. This figure can be reproduced by mkFigure7.py.

Stronger RS for preferred image categories in category-selective electrodes

The results indicated that transient-sustained dynamics are slower in higher than lower visual areas regard-
less of stimulus preference, whilst repetition suppression differences across areas are most pronounced for
preferred stimuli (Supp. Fig. 3). To further investigate how adaptation is influenced by stimulus preference,
we directly compared responses within a subset of electrodes in higher visual regions that exhibit strong
category-selectivity.

We identified a subset of category-selective electrodes in LOTC and VOTC by calculating a sensitivity mea-
sure (d') on the response per stimulus category averaged across all stimulus durations (see Materials and
Methods; for electrode positions and counts see Fig. 1C and Table 4, respectively). We then calculated
average broadband responses separately for the preferred and non-preferred categories for each ISI and
calculated recovery from RS similar as before. RS occurs for both preferred and non-preferred stimuli (Fig.
8A, top panel), but more strongly for preferred stimuli (Fig. 8B, Neural data). Model simulations show that
the DN model also captures these differences, including the overall shape of the neural time courses (Fig.
8A, bottom panel) and stronger RS for preferred stimuli (Fig. 8B, DN model).

Quantifying the recovery from RS for the different stimulus types shows that the stronger RS for preferred
image categories which is most pronounced for longer ISIs (Fig. 8C, left), which is accurately captured
by the model, although it slightly overestimating the degree of recovery for non-preferred stimuli for shorter
ISIs (Fig. 8C, right). Preferred stimuli show slower long-term recovery of RS (Fig. 8D, circle markers) in
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Figure 8: Differences in recovery from adaptation across stimuli in category-selective areas A. Top, Average, normalized
broadband responses of category-selective electrodes (threshold d' = 0.5, n = 26) of trials during which preferred (blue) or non-preferred
(red) stimuli were presented in repetition (gray). Responses are shown separately per ISI from shortest (17 ms, left) to longest (533 ms,
right). Bottom, DN model predictions for the same data. Time courses differ for preferred and non-preferred stimuli which is captured
by the DN model. B. Estimated, normalized response to the second stimulus for trials containing preferred and non-preferred stimuli.
Per visual area, the left panel shows the neural data and the right panel shows the model prediction. The rate of recovery is higher
for non-preferred compared to preferred stimuli. C: Recovery from adaptation computed as the ratio of the AUC between the first and
second response derived from the neural data (left) or DN model predictions (right). The fitted curves express the degree of recovery
as a function of the ISI (see Materials and Methods, Summary metrics). Responses derived from trials containing preferred stimuli
show a stronger degree of RS and the DN model is able to capture stimulus-specific recovery from adaptation. D: Long-term recovery
from adaptation derived from the neural responses (circle marker) or DN model (triangle marker), reflecting the amount of recovery
for an ISI of 1s. Responses for trials presenting preferred stimuli show stronger RS and a slower recovery rate. Data points indicate
medians and error bars indicate 68% confidence interval across 1000 samples derived from the bootstrapped timecourses. Bootstrap
test, ∗ = p < 0.05 (two-tailed). This figure can be reproduced by mkFigure8.py.
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Figure 9: Stronger RS for preferred stimuli in category-selective areas due to slower normalization dynamics and stronger
input drive A. DN model predictions for repeated preferred (blue) or nonpreferred (red) stimuli with an ISI of 533 ms. B. The input
drive (solid lines) and normalization pool (dashed lines) plotted separately for a preferred (left) and nonpreferred (right) stimulus. The
stronger RS for preferred stimuli is a result of the higher lingering normalization at the start of the second stimulus, due to a larger input
drive resulting in a delayed component amply surpassing the semi-saturation constant. Model time courses represented bootstrapping
averages (n=1000) across category-selective electrodes (threshold d' = 0.5, n = 26). This figure can be reproduced by mkFigure9.py.

both the neural data and the DN model (Fig. 8D, triangle markers). These differences were robust in both
data and model and became even more pronounced when increasing the threshold for category-selectivity
selection (see Supp. Fig. 5 and Supp. Fig. 6 for a threshold of d' of 0.75 and 1, respectively, resulting in
fewer selected electrodes).

Lingering normalization and stronger input drive result in stronger adaptation and
slower recovery rate for preferred stimuli

Our results suggest that preferred stimuli elicit stronger RS than non-preferred stimuli in category-selective
electrodes in VOTC and LOTC. The DN model explains this from the balance between the two components
that make up the model denominator (Fig. 9). As before, RS for both stimulus types results from lingering
normalization at the start of the second stimulus. For preferred stimuli, the input drive is strong, and there-
fore the lingering normalization amply surpasses the value of the semi-saturation constant, σn. Because
dynamics are slow, the lingering normalization is (relatively) high at the start of the second response, re-
sulting in strong RS. For non-preferred stimuli, the lingering normalization is much smaller in comparison to
σn, due to the weaker input drive. While there is still lingering activity at the start of the second stimulus,
σn comprises a much larger part of the denominator, marginalizing the effect of the lingering normalization.
Since σn is the same for the first and second stimulus, less RS is observed.

In short, the differences in adaptation between preferred and non-preferred stimuli in category-selective
electrodes can be explained by the balance between the normalization pool components, which depends
on the initial input drive, in combination with the slower dynamics in higher visual areas.

Discussion

Our aim was to examine how neural adaptation differs across human visual cortex and to pinpoint the under-
lying neural computations using a model of delayed divisive normalization. We demonstrate that, compared
to V1-V3, higher visual areas have more prolonged responses for single stimuli and stronger repetition sup-
pression for repeated stimuli. The DN model accurately predicts the neural response time courses and their
adaptation profiles in both lower and higher visual areas by means of a category-dependent scaling on the
input stimulus time course. The model fits show that differences in temporal adaptation across areas can be
explained by slower dynamics of both the input drive and normalization pool for higher visual regions. We
additionally find that neural responses in category-selective electrodes exhibit stronger RS for preferred than
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non-preferred stimuli, which the DN model explains from the balance of the normalization pool components
in combination with slower dynamics in these regions.

Slower time-scales of neural processing in higher visual areas

We observed prolonged responses with slower transient-sustained dynamics in higher visual areas. This is
consistent with the idea that time scales of temporal processing become longer when ascending the visual
hierarchy, as suggested based on brain responses to both single (Groen et al., 2022; Zhou et al., 2018)
and repeated stimulus presentations (Fritsche et al., 2020; Weiner et al., 2010; Zhou et al., 2018, 2019), as
well as the pattern of responses to intact and scrambled natural movies (Hasson et al., 2008; Honey et al.,
2012). Increasing temporal windows across the cortical hierarchy may have several computational benefits.
First, Heeger (2017) proposed that such a hierarchy is useful for prediction over multiple timescales. Sec-
ond, temporal windows may be tuned to the temporal regularities of the input features, as demonstrated in
both theoretical Chaudhuri et al. (2015) and empirical work (Hasson et al., 2008; Honey et al., 2012). Dif-
ferent types of image feature are likely to exhibit different temporal regularities in natural viewing conditions:
low-level features (e.g., orientation, edges, and contrast) change each time an observer moves their eyes,
thereby benefiting from shorter processing windows, while high-level features (e.g., holistic representations
of faces and objects) are likely to be stable over longer viewing durations, and areas tuned to that informa-
tion may therefore be tuned to longer timescales.

In addition to a hierarchy within unimodal areas (e.g. visual or auditory cortex), there may also be a hi-
erarchy of time scales in multimodal processing, with shorter time windows in unimodal regions and longer
time windows in association cortex (e.g. lateral prefrontal cortex or the default model network), which has
been observed across several acquisition modalities, species and task states (e.g. Lerner et al. 2011). It
is believed that this hierarchy of timescales plays a key role in both integrating and segregating sensory
information across time. Regions with shorter timescales may favour temporal segregation, reflected by
shorter neural responses, whereas higher areas are involved in temporal integration, reflected by longer
neural responses. This balance of temporal integration and segregation may enable the segmentation of
continuous inputs (for a review see Wolff et al. 2022), benefiting perception and cognition. Whether similar
distinctions can be made between lower and higher regions within unimodal areas in visual cortex, and how
this contributes to perception, warrants future investigation.

Slower recovery from RS in higher visual areas

We found differences in the overall degree of repetition suppression and recovery rate from RS between
lower and higher visual areas. These results differ from a prior study (Groen et al., 2022), which found
that the degree of RS and the recovery rate from RS did not differ between early visual and lateral-occipital
retinotopic regions, ranging from V1 to IPS. Here we find stronger RS as well as higher recovery rates in
VOTC and LOTC compared to V1-V3. We attribute the difference between studies to the difference in stimuli,
simple contrast patterns in Groen et al. (2022) vs naturalistic stimuli in this study. Simple contrast patterns
strongly drive responses in lower visual areas (V1-hV4, Kay et al. 2013; Zhou et al. 2018), but not higher
areas that are selective for complex, naturalistic stimuli (Sayres and Grill-Spector, 2008; Arcaro et al., 2009;
Silson et al., 2016). The reduced responses in higher areas to simple contrast patterns could have made it
more difficult to accurately measure RS. In addition to eliciting weaker responses, sub-optimal stimuli may
have also led to less RS in higher areas, making the adaptation patterns more similar to early areas. This
explanation is supported by our current observations of similar RS between areas for non-preferred stimuli
(Supp. Fig. 4), as well as less RS for non-preferred stimuli within category-selective electrodes (Fig. 8).
Furthermore, stimulus type influences not only the magnitude of neural responses but also their temporal
stability (Marks and Goard, 2021) as well as their oscillatory components (Hermes et al., 2015), which could
also affect RS patterns.

An fMRI study on short-term adaptation by Fritsche et al. (2020) found stronger RS for higher visual regions,
consistent with our findings, but did not observe differences in recovery rate between visual areas despite
using complex stimuli, differing from our findings. One reason for the discrepancy with our findings could
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be the way (recovery from) adaptation was computed. As the sluggish nature of the BOLD signal makes
it difficult to estimate independent fMRI responses to stimuli presented close in time, Fritsche et al. (2020)
used stimulus pairs consisting of either repeated, identical stimuli, or two distinct stimuli, and quantified RS
as the difference in the maximal response to identical versus non-identical stimulus pairs. In contrast, we
measured iEEG responses only to repeated representations of the same image, and measured recovery
from RS as the difference in response AUC between the first and second stimulus representation.

Differences in temporal dynamics between for ventral and lateral occipital cortex

We separated our electrodes into two higher-level groups covering ventral and lateral occipito-temporal cor-
tex, respectively. Previous work has shown differences in the temporal dynamics between these regions
using an encoding framework where neural responses were modelled in separate sustained and transient
channels (Stigliani et al., 2019). VOTC responded to both transient and sustained visual inputs, while LOTC
predominantly responded to visual transients. The authors suggested that VOTC regions are mainly involved
in processing of static inputs while LOTC regions process dynamic inputs. In contrast, our data show a more
sustained response in LOTC compared to VOTC (Fig. 4C). These sustained responses could indicate that
LOTC accumulates information over relatively longer time periods, in line with work suggesting that LOTC
regions may also be involved in more stable information processing (Honey et al., 2012).

While Stigliani et al. (2019) showed that VOTC and LOTC both exhibit transient responses, they also ob-
served differences in the dynamics of transient processing across the two visual streams. In LOTC, the
onset and offset of the visual stimulus elicited equal increase in neural responses, suggesting that these
areas process information regarding moment-to-moment changes in the visual input. In VOTC, the transient
responses for the onset and offset of the stimulus were surprisingly asymmetric and were mostly dominated
by stimulus offset. The authors hypothesized that this reflected memory traces maintained by these regions
after the stimulus is no longer visible. In our data, we did not observe strong stimulus offset responses. This
may be due to several reasons, such as differences in data type (fMRI vs. ECoG), brain areas sampled, or
experimental design. Further research is needed to elucidate the differences in temporal dynamics between
these higher-level regions and how they relate to the timescales of the visual input.

Stimulus-specific differences in temporal dynamics in category-selective areas

We found stronger RS for preferred than non-preferred stimuli in category-selective regions, consistent with
findings from fMRI (Weiner et al., 2010), single-cell recordings (Sawamura et al., 2006; Williams and Olson,
2022) and ECoG (Rangarajan et al., 2020). The DN model shows that these stimulus-specific adapta-
tion differences could result from the balance in normalization pool components in combination with slower
normalization dynamics in these areas. The strong input drive for preferred stimuli causes more lingering
normalization so that when the second stimulus arrives, there is a reduced response.

Several other models have been proposed describing neural causes of stimulus-dependent differences in
adaptation (for a review see Grill-Spector et al. 2006), including a fatigue and a sharpening model. The
fatigue model postulates that all neurons that show an initial response to a stimulus show a proportionally
equivalent response reduction when that same stimulus is repeated, thereby predicting the largest reduction
for preferred stimuli, which aligns with our findings. Such a neural mechanism may have several advantages,
including novelty detection (for a review see Ranganath and Rainer 2003), prevention of neural response
saturation by increasing dynamic range (Nelson, 1991), and reduction of redundancies (Muller et al., 1999).
The sharpening model assumes that only a proportion of neurons showing an initial response will exhibit RS
to a subsequent presentation of the same stimulus, resulting in a sparser representation of the visual input.
Consequently, this model predicts largest response reduction for non-preferred stimuli and minimal change
in response to preferred stimuli. While this model is less plausible given our results, previous work has sug-
gested that the neural patterns associated with the fatigue model can also be predicted by the sharpening
model depending on the distribution of stimulus tuning of the underlying population (Weiner et al., 2010).
Moreover, a recent study investigated adaptation using EEG and suggested that both mechanisms operate
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in parallel during different time windows, with fatigue strongly contributing during the initial stage of process-
ing and sharpening occurring later in time (∼ 200 ms, Rideaux et al. 2023).

We note that these different models (divisive normalization, fatigue and sharpening) are not mutually ex-
clusive and could describe similar underlying neural processing and result in similar neural response pre-
dictions. Future studies, including data collection on the single- or multi-unit level, are needed to determine
which mechanisms are at play during stimulus-specific adaptation.

Limitations and future work

First, since electrode positioning was determined based on clinical constraints, the number of electrodes lo-
calized to individual retinotopic maps was limited. Therefore, our comparisons focused on coarse groupings
of the visual areas: early (V1-V3) versus ventral (VOTC) vs lateral (LOTC) maps. For fine-grained com-
parison between visual areas across the cortical hierarchy (say V1 vs V2), different methods are needed.
Second, the current model form does not explicitly represent the computations in each stage of processing,
and so the model is agnostic to the origin of the divisive signals. Third, the behavioral task participants
performed was orthogonal to the temporal stimulus manipulations. This design was purposeful to reduce
variability in top-down signals from trial to trial and between participants. Nonetheless, neural adaptation
is important for behavior such as priming (Cave, 1997; McMahon and Olson, 2007), and the link between
them cannot be directly studied without a task that is relevant to the stimulus.

Several approaches could be undertaken to tackle some of these limitations, including collecting and fit-
ting behavioral measurements of adaptation with the DN model, or measuring transient-sustained dynamics
and RS in neural data from animals to allow a more systematic comparison across the visual hierarchy.
Another approach is to study adaptation in Artificial Neural Networks (ANNs). ANNs have recently come
forward as a powerful new tool to model sensory processing (Yamins and DiCarlo, 2016; Richards et al.,
2019; Doerig et al., 2023). These models are image-computable, are trained to process naturalistic stimuli,
consist of units whose activations are inspired by biological neuronal signals, and output predictions that can
be compared with human behavior. Future studies could examine the link between adaptation phenomena
and behavior by implementing biologically plausible adaptation in ANNs. Such paradigms could aid in better
understanding how different adaptation mechanisms may benefit perception.

Materials and Methods

The methods for collecting and preprocessing the ECoG data have been recently described by Groen et al.
(2022). For convenience, the following sections were duplicated with modifications reflecting differences
from the previous method: ECoG recordings, Data preprocessing and Electrode localization.

Subjects

Intracranial EEG data were collected from four participants who were implanted with subdural electrodes for
clinical purposes at the New York University Grossman School of Medicine (New York, USA). The study was
approved by NYU Grossman School of Medicine IRB, and prior to the experiment participants gave informed
consent. All participants had normal or corrected-to-normal vision and were implanted with standard clinical
strip, grid and depth electrodes. One participant was additionally implanted with a high-density research
grid (HDgrid), for which separate consent was obtained. Detailed information about each participant and
their implantation is provided in Table 1 and Supplementary Figure 7.

iEEG recordings

Recordings were made using a Neuroworks Quantum Amplifier (Natus Biomedical) recorded at 2048 Hz,
band-pass filtered at 0.01–682.67 Hz, and then downsampled to 512 Hz. An audio trigger cable, connecting
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the laptop and the iEEG amplifier, was used to record stimulus onsets and the iEEG data. Behavioral
responses were recorded by an external number pad that was connected to the laptop through a USB port.
Participants initiated the start of the next run by pushing a designated response button on the number pad.

Stimuli

Stimuli consisted of natural color images presented on a gray background belonging to one of the follow-
ing six categories: bodies, buildings, faces, objects, scenes and scrambled (Fig. 2A). Images (568 x 568
pixels) were taken from a set of stimuli used in prior fMRI studies to localize functional category-selective
brain regions (Silson et al., 2019, 2022). In total the dataset consisted of 288 images with 48 images per
category. Bodies consisted of pictures of hands (24 images) and feet (24 images) taken from a variety of
viewpoints. Buildings consisted of a large variety of human-built structures (including houses, apartment
buildings, arches, barns, mills, towers, skyscrapers, etc). Face images were taken from frontal viewpoints
and were balanced for gender (24 male, 24 female) and included a variety in race and hairstyle. Objects
consisted of both man-made items (24 images, e.g., household items, vehicles, musical instruments, elec-
tronics and clothing) and natural items (24 images, e.g., fruits/vegetables, nuts, rocks, flowers, logs, leaves,
and plants). Scene images were equally divided between indoor, outdoor man-made and outdoor natural
scenes (16 images each). Faces, bodies, buildings and objects were cropped out and placed on gray-scale
backgrounds. Scrambled images consisted of an assembly of square image patches created by taking the
cropped object images and randomly swapping 48 × 48 pixel ‘blocks’ across images and placing them on
a gray scale background. Stimuli were shown on a 15 inch MacBook Pro laptop with a screen resolution
of 1280 x 800 pixels (33 cm x 21 cm), which was placed 50 cm from the participant’s eyes (at chest level),
resulting in stimuli subtending 8.5 degrees of visual angle. Stimuli were presented at a frame rate of 60 Hz
using Psychtoolbox-3 (Brainard and Vision, 1997; Pelli and Vision, 1997; Kleiner et al., 2007).

Experimental procedure

Participants viewed two different types of trials (Fig. 2B). Duration trials showed a single stimulus for one
of six durations, defined as powers of two times the monitor dwell time (1/60): 17, 33, 67, 134, 267 and
533 ms. Repetition trials contained a repeated presentation of the same image with fixed duration (134
ms) but variable inter-stimulus interval (ISI), ranging between 17-533 ms (same temporal step sizes as the
duration trials). These temporal parameters were identical to previous studies (Zhou et al., 2018, 2019;
Groen et al., 2022), but here naturalistic color images were presented instead of grayscale noise patterns.
Each participant underwent 2-6 runs of 144 trials each, including 72 duration trials and 72 repetition trials,
which each contained 12 stimuli from each of the six stimulus categories. Trial order was randomized, with
an inter-trial-interval (ITI) randomly chosen from a uniform distribution between 1.25-1.75s. Participants
were instructed to fixate on a cross at the center of the screen and press a button when it changed from
black to white or vice versa. Fixation cross changes occurred independently of the stimulus sequence on
randomly chosen intervals between 1-5 s. In between runs participants were allowed a short break. Stimuli
were divided into two sets, one for even and one for odd runs, with each set containing 72 of the 144 stimuli.
The number of odd/even run pairs determined the number of repetitions for a specific trial-type. Detailed
information about the amount of data collected for each participant is provided in Table 1. Three participants
(p12-14) additionally viewed repetition trials in which the second image differed from the first (either different
exemplar from the same category or a different category). These trials are included in the dataset (see Data
Availability) but not further analyzed for the purpose of this study.

ECoG data analysis

Data preprocessing

Data was read into MATLAB 2020b using the Fieldtrip Toolbox (Oostenveld et al., 2011) and preprocessed
with custom scripts available at https://github.com/WinawerLab/ECoG_utils. The raw voltage time se-
ries from each electrode, obtained during each recording session, were inspected for spiking, drifts or other
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artifacts. Electrodes were excluded from analysis if the signal exhibited artifacts or epileptic activity, deter-
mined based on visual inspection of the raw data traces and spectral profiles, or at the clinician’s indication.
Next, data were divided into individual runs and formatted according to the iEEG-BIDS format (Holdgraf
et al., 2019). For each run, the data were re-referenced to the common average computed separately
for each electrode group (e.g. grid or strip electrodes, see bidsEcogRereference.m) and a time-varying
broadband signal was computed for each run (see bidsEcogBroadband.m): First, the voltage-traces were
band-pass filtered by applying a Butterworth filter (passband ripples < 3 dB, stopband attenuation 60 dB) for
10 Hz-wide bands ranging between 50-200 Hz. Bands that included frequencies expected to carry external
noise were excluded (60, 120 and 180 Hz). Next, the power envelope of each band-pass filtered time course
was calculated as the square of the squared magnitude of the analytic signal. The resulting envelopes were
then averaged across bands using the geometric mean (see ecog extractBroadband.m), ensuring that the
resulting average is not biased towards the lower frequencies. The re-referenced voltage and broadband
traces for each run were written to BIDS derivatives directories.

Electrode localization

Pre- and post-implantation structural MRI images were used to localize intracranial electrode arrays (Yang
et al., 2012). Electrode coordinates were computed in native T1 space and visualized onto pial surface
reconstructions of the T1 scans, generated using FreeSurfer (Fischl, 2012). Boundaries of visual maps
were generated for each individual participant based on the preoperative anatomical MRI scan by aligning
the surface topology with two atlases of retinotopic organization: an anatomically-defined atlas (Benson
et al., 2014; Benson and Winawer, 2018) and a probabilistic atlas derived from retinotopic fMRI mapping
(Wang et al., 2015) (Supp. Fig. 7A). Using the alignment of the participant’s cortical surface to the fsaverage
subject retrieved from FreeSurfer, atlas labels defined on the fsaverage were interpolated onto the cortical
surface via nearest neighbor interpolation. Electrodes were then matched to both the anatomical and the
probabilistic atlas using the following procedure (bidsEcogMatchElectrodesToAtlas.m): For each electrode,
the distance to all the nodes in the FreeSurfer pial surface mesh was calculated and the node with the
smallest distance was determined to be the matching node. The matching node was then used to assign
the electrode to one of the following visual areas in the anatomic atlas (hereafter referred to as the Benson
atlas): V1, V2, V3, hV4, VO1, VO2, LO1, LO2, TO1, TO2, V3a, V3b, or none; and to assign it a probability
of belonging to each of the following visual areas in the probabilistic atlas (hereafter referred to as the Wang
atlas): V1v, V1d, V2v, V2d, V3v, V3d, hV4, VO1, VO2, PHC1, PHC2, TO2, TO1, LO2, LO1, V3b, V3a, IPS0,
IPS1, IPS2, IPS3, IPS4, IPS5, SPL1, FEF, or none. After localization, all electrodes were assigned to one of
three visual electrode groups: early (V1-V3), ventral-occipital (VOTC) and lateral-occipital (LOTC), according
to the following rules (Table 2): electrodes were assigned to V1-V3 if located in V1, V2, V3 according the
Benson atlas or if located in V1v, V1d, V2v, V2d, V3v, V3d according to the Wang atlas. Electrodes were
assigned to VOTC if located in hV4, VO1 VO2 according to either the Benson or Wang atlas. Electrodes
were assigned to LOTC if electrodes were located in any of the remaining retinotopic atlas areas (with
exception of SPL1 and FEF). Electrodes that showed robust visual responses according to the inclusion
criteria (see Data selection) but were not matched to any retinotopic atlas region (i.e. that obtained the label
‘none’ from the retinotopic atlas matching procedure described above), were manually assigned to one of
the three groups based on visual inspection of their anatomical location and proximity to already-assigned
electrodes (e.g. being located on the same electrode strip extending across the lateral-occipital surface,
or penetrating the same cortical region as nearby depth electrodes being assigned to V1-V3). Detailed
information about the subject-wise electrode assignment is provided in Table 3. A schematic layout of the
electrodes assigned to the visual regions pooled across all four participants is shown in Figure 2C.

Data selection

Python scripts used for data selection can be found at https://github.com/ABra1993/tAdaptation_ECoG.
git. Two consecutive data selection steps were performed: 1) trial selection and 2) selection of visually-
responsive and category-selective electrodes.
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Trial selection Trial selection was performed on the broadband time courses for each electrode separately
(analysis selectEpochs.py). We first computed the maximum (peak) response within each trial, after which
the standard deviation (SD) of these maximum values over all trials was computed. Trials were excluded
from analysis if the maximum response was > 2 SD. Across participants, on average 3.25% of epochs
(min: 1.81%, max: 3.80%) were rejected. Next, broadband time courses were converted to percentage
signal change by point-wise dividing and subtracting the average prestimulus baseline (100 to 0 ms prior to
stimulus onset) across all epochs within each run (analysis baselineCorrection.py).

Electrode selection Electrode selection was performed separately for the analyses focusing on compar-
ison of temporal dynamics across visual areas (Fig. 4, 5, 6 and 7) and analyses focusing on comparison
across stimuli in category-selective regions (Fig. 8 and 9).

Selection of visually-responsive electrodes. For the comparisons across areas, electrodes were included
when showing a robust broadband response based on the following two metrics computed onto the dura-
tion trials (analysis selectElectrodes.py): the z-score (z − score = µ

σ ) where the mean and deviation are
computed across time samples and the onset latency of the response computed over the average stimulus
duration. The onset latency was determined during the 150 time samples (∼300 ms) time window after stim-
ulus onset. First, responses were z-scored, after which the onset latency was defined as the first time point
at which the response passed a threshold (0.85 std) for a duration of at least 60 time samples (∼120 ms).
Electrodes were included in the final selection when i) a response onset could be determined and ii) if the
z-score > 0.2. Based on the selection methods described above, on average 37% (min: 14%, max: 57%)
of the electrodes assigned to a visual group either according to the Benson or Wang atlas were included.

Selection of category-selective electrodes Electrodes were considered category-selective if they preferen-
tially responded to a given image category over other image categories (excluding scrambled) computed for
the duration trials. Category-selectivity of an electrode was measured as d':

d′ =
Xcat −Xother√

σ2
cat+σ2

other

2

(1)

where Xcat and σcat represent the mean response and standard deviation for one image category over
time, while Xother and σother represent the mean response and standard deviation over time for the other
image categories. Category-selective electrodes generally exhibit a low z-score for the non-preferred im-
age categories, possibly leading to exclusion from analysis when considering only the z-score computed
over all categories (see above). Therefore, for the comparison across stimuli in category-selective regions,
electrodes were included if i) a onset latency for the averaged response over all categories for the duration
trials was present, ii) if d' passed a threshold of 0.5, 0.75 or 1. The reason for using a range of threshold
values was to verify whether the observed data patterns depend on the chosen threshold, whereby a lower
threshold allows inclusion of electrodes which show weaker selectivity for a specific image category (anal-
ysis selectElectrodes.py). Detailed information about the number of category-selective electrodes included
is provided in Table 4 and a schematic layout of the category-selective electrodes is shown in Fig. 2C for a
d' threshold of 0.5 (see Supp. Fig. 8A and Supp. Fig. 8B for a threshold of 0.75 and 1.0, respectively).

Data summary

The data preprocessing, electrode localization and data selection procedures outlined above resulted in 79
electrodes with robust visual responses over either V1-V3 (n = 17), VOTC (n = 15) or LOTC (n = 47). A
subset of these electrodes showed selectivity for specific image categories where the number of category-
selective electrodes depended on the threshold of d' (n = 26, n = 12, n = 6 for a threshold of 0.5, 0.75 and
1 respectively). After averaging the time series within trial types, there were 72 response time courses per
electrode: 12 temporal conditions (6 durations and 6 ISIs) times 6 image categories. The time series from
these 72 conditions were used to investigate the temporal profile of neural adaptation and constituted the
data for model fitting.
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Computational modelling

Model fitting

Computational models and associated model fitting procedures were implemented using custom Python
code available at https://github.com/ABra1993/tAdaptation_ECoG.git. Models were fitted separately
to individual electrodes, after which parameters or metrics derived from these fits were averaged within visual
areas using a bootstrapping procedure described below. Models were fitted using a nonlinear least-squares
algorithm (scipy.optimize.least squareas, SciPy, Python), with bounds on the parameters. The starting
points, and upper and lower bounds that were used for fitting can be found at modelling utils paramInit.py.

Models

Delayed normalization model
The broadband time courses for each individual electrode were fitted with a delayed divisive normalization
(DN) model previously described conceptually in the appendices of Heeger (1992, 1993) and implemented
in Zhou et al. (2019) and Groen et al. (2022). In the DN model, an input drive is divisively normalized by
its own delayed activation history, implemented as a low-pass filter on the input drive (DN.py). The model
takes a stimulus time course as input and produces a predicted neural response time course as output, by
applying a series of transformations which take the form of a Linear-Nonlinear-Gain control (LNG) structure,
corresponding to filtering (L), exponentiation (N), and normalization (G). The model contains four free pa-
rameters of interest: τ1, n, σ and τ2 (Fig. 3A). In addition, two nuisance parameters are fitted, including a
shift (delay in response onset relative to stimulus onset) and electrode-specific scale (i.e. gain of response)
to take into account differences in overall response latency and amplitude between electrodes. In the fol-
lowing, we will drop the time index for brevity, and denote free parameters between parentheses.

The input drive, rinput drive, is computed by first convolving a stimulus time course (s = 0 when stimulus
is absent, s = 1 when the stimulus is present) with an impulse response function (IRF), h1(τ1), yielding a
linear response prediction:

rL = s ∗ h1(τ1) (2)

where h1 is defined as:
h1(τ1) = te−t/τ1 (3)

The parameter τ1 is a time constant and determines the peak (i.e. function peaks when t = τ1). The
input drive is obtained by converting the linear response to a nonlinear response by applying a full-wave
rectification and an exponentiation with n:

rinput drive = |rL|n (4)

The normalization pool, rnormalization, is computed by summing a saturation constant, σ, and a convolution
of the linear response with a low-pass filter followed by rectification, where both terms are exponentiated
with n:

rnormalization(σ, n) = σn + |rL ∗ h2(τ2)|n (5)

with the low-pass filter taking the form of the following decaying exponential function with a time constant τ2:

h2(τ2) = e−t/τ2 (6)

In summary, the delayed divisive normalization is applied as follows:

rDN (σ, n) =
rinput drive

rnormalization
=

|rL|n

σn + |rL ∗ h2(τ2)|n
(7)

The computation of the temporal dynamics by the DN model as described in Equation 7 has the form of
a canonical divisive normalization (Carandini and Heeger, 2012), where the normalization pool (i.e. the
denominator) consists of a delayed version of the numerator, yielding an output that is characterized by a
transient response rise followed by a decay to a sustained response level.
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Augmented DN model with category-selective stimulus strength
The DN model, as described in the previous section, only receives information about the presence or ab-
sence of a stimulus over time. While previous studies (Zhou et al., 2019; Groen et al., 2022) scaled the
stimulus time course to represent variations in stimulus contrast, they did not incorporate information about
the content of a stimulus, e.g., the category it belongs to. Here, we incorporated stimulus content into the
model by including six additional free parameters, i.e. one for each image category, which adjust the height
of the input stimulus time course according to category preference (Fig. 3B), referred to as categorical scal-
ing factors, i.e. s = s× sf where sf ∈ sfbodies, sfbuildings, sffaces, sfobjects, sfscenes, sfscrambled (csDN.py).

Model evaluation

Model performance was quantified as the cross-validated coefficient of determination (modelling modelFit.py).
A 12-fold cross-validation was performed on 72 input broadband time courses, whereby parameters were
fitted on 66 conditions and testing was done on the remaining 6 conditions. Within each fold, test data
were selected in a pseudo-random manner whereby each image category was always present in one of the
six test samples (but these were drawn randomly from the 12 temporal conditions). Comparison of model
performance between the DN model which either omits or includes category-dependent scaling confirms
that scaling the stimulus course improves model accuracy in all visual areas (Fig. 3C). Due to the fact that
model accuracy is computed on the left-out data, this result is not guaranteed simply due to adding more
free parameters to the DN model. Model parameter values and summary parameters were estimated based
on a separate fit to the full dataset.

Note that for electrodes assigned to VOTC the cross-validated explained variance is lower compared to
the other visual groups when considering the DN model which omits category scaling. This is likely due to
the fact that a large proportion of the electrodes in VOTC show strong category-selectivity, which results in
poor model fits for image categories which elicit weaker responses (Supp. Fig. 9).

Summary metrics

To quantify adaptation and associated temporal dynamics, we computed the following summary metrics
from the neural time courses and the model predicted time courses:

Time-to-peak The time interval between stimulus onset and the maximum (peak) of the response time
course. This metric was computed based on response or model predictions for the longest stimulus duration
of 533 ms.

Full-width at half maximum The time from when the response has risen to half of its maximum until it
has decayed to half of its maximum. This metric was computed on the neural response or model prediction
for all stimulus durations separately.

Recovery from adaptation for repeated stimuli The response magnitude of the second stimulus divided
by the first. To obtain a robust estimate of the response to the first stimulus, we averaged together the
response time courses for the 134 ms duration stimulus (same duration as the ISI stimuli) and each of the
ISI stimuli from trial onset up to the onset of the second stimulus. We then subtracted this average time
course from each of the ISI varying stimulus responses, yielding an estimate of the response of the second
stimulus corrected for the response to the first stimulus (Supp. Fig. 2A, see also Groen et al. 2022).
Subsequently, the recovery from adaptation is defined as the AUC for the second response proportional to
the AUC of the first response.

Overall adaptation for repeated stimuli Overall adaptation was computed as the recovery (see above)
averaged over all ISIs.
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Long-term recovery The amount of recovery (see above) predicted for an ISI of 1 second. To compute
this value, a log curve was fitted through recovery values over all ISIs (Supp. Fig. 2B):

y = c+ a · log(x) (8)

where y is the recovery, x is the ISI and [c, a] are two free parameters. When the ISI is 1 second, y = c
(because log(1) = 0 ), so c quantifies long-term recovery from neural adaptation. Note that this function
is a heuristic applied to short to medium time scales. For very long ISIs, it will make unreasonably large
predictions.

Bootstrapping procedure and statistical testing

When computing the summary metrics outlined above, we repeatedly (n bootstraps) sampled k electrodes
with replacement and calculated the mean, followed by computing the summary metric over the averaged
timecourse. The median and 68% confidence interval were then computed over the samples derived from
the bootstrapped timecourses. Statistical significance was determined by a two-tailed sign test (statistical
significance, α = 0.025), whereby the difference between two bootstrap distributions was computed and
the minimal amount of instances where differences were either positive or negative were divided by n. We
applied a Bonferroni correction for the number of pairwise comparisons made in the analyses comparing
different visual areas (i.e. statistical significance, α = 0.025/3 = 0.008, Fig. 4 and 6).

Data and code availability

All code used for the purpose of this paper can be found at the GitHub repositories mentioned above. The
iEEG data will be made publicly available by adding it to the ‘Visual ECoG dataset’ (Groen et al., 2022) on
OpenNeuro (https://openneuro.org/datasets/ds004194). Code used to generate the figures is available
at https://github.com/ABra1993/tAdaptation_ECoG.git.
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Supplementary information

Subject Age Sex Implantation Runs Trials Repetitions
sub-p11 19 F grid, HDgrid, strip, depth 6 864 3
sub-p12 42 M grid, strip, depth 4 576 2
sub-p13 22 F grid, strip, depth 4 576 2
sub-p14 32 F strip, depth 2 288 1

Table 1: Overview of patient data included in this dataset Columns refer to the following: Subject, subject code in dataset.
Age, age of patient at time of recording in years. Sex, gender of the participant. Implantation, type of electrodes implanted. Grid,
standard clinical grid; HDgrid, high-density grid; strip, standard clinical strip; depth, depth electrodes. Runs, number of runs where
a run is defined as a period of sequential stimulus presentations with no breaks in between. Trials, number of trials collected where
half consisted of duration and half consisted of repetition trials (e.g. for sub-p11, there were 432 duration and 432 repetition trials).
Repetitions, number of times a stimulus set was repeated (separate stimuli were used for even and uneven runs).

Visual area Matching probabilistic areas Matching retinotopic areas
V1-V3 V1d, V1v, V2d, V2v, V3d, V3v V1, V2, V3
VOTC hV4, VO1, VO2 hV4, VO1, VO2
LOTC TO1, TO2, LO1, LO2, V3a, V3b, IPS TO1, TO2, LO, V3a, V3b

Table 2: Overview of visual areas included in this dataset Columns refer to the following: Visual areas, visual areas to which
electrodes are assigned, V1-V3, early visual cortex; VOTC, ventral-occipital cortex; LOTC: lateral-occipital cortex. Matching proba-
bilistic areas, visual areas according to the maximum probability atlas by Wang et al. (2015). Matching retinotopic areas, visual areas
according to an anatomically defined atlas by Benson et al. (2014) and Benson and Winawer (2018).

Subject Electrodes Visual areas Matching areas Visually responsive electrodes
(V1-V3, LOTC, VOTC)

Probabilistic atlas Retinotopic atlas According to atlas Manually assigned
sub-p11 252 VOTC, LOTC hV4, VO1, TO1, LO1, LO2, V3a, V3b LO1, LO2, V3b 38 0
sub-p12 76 VOTC, LOTC hV4, VO1, LO1, V3b hV4, LO2 5 2
sub-p13 116 V1-V3, VOTC, LOTC V2, VO2, TO1, TO2, LO2 V2d, TO1 7 3
sub-p14 94 V1-V3, VOTC, LOTC V2, VO2, TO1, TO2, LO2 V1v, V3d, V3v, hV4, LO1, V3a, V3b 23 1

Table 3: Overview of electrodes included and visual areas covered in this dataset Columns refer to the following: Subject,
subject code in dataset. Electrodes, total number of electrodes. Visual areas, visual areas to which electrodes are assigned, V1-V3,
early visual cortex; VOTC, ventral-occipital cortex; LOTC: lateral-occipital cortex. Matching areas, visual areas included according to
the maximum probability atlas by Wang et al. (2015) (left column) or a retinotopic atlas developed by Benson et al. (2014) and Benson
and Winawer (2018) using a Bayesian mapping approach (right column). Visually responsive electrodes, the number of electrodes
assigned according by one of the atlases (left column) or assigned manually (right column) to V1-V3, VOTC or LOTC.

d' threshold Image categories Total
Bodies Buildings Faces Objects Scens

0.5 3 1 5 15 2 26
0.75 1 0 5 5 1 12
1 1 0 4 1 o 6

Table 4: Overview of category-selective electrodes Columns refer to the following: d' threshold, threshold for an electrode to be
considered category-selective (see Eq. 1, Materials & Methods). Image categories, number of electrodes selected per image category.
Total, total number of category-selective electrodes for the specified d' threshold.
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Supplementary Figure 1: Slower rise and prolonged responses in higher visual areas for single stimuli for preferred and
non-preferred stimuli (previous page). A: Top, Average, normalized broadband iEEG responses (80-200 Hz) for electrodes assigned
to V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47) to single, preferred stimuli (gray). Responses are shown separately per duration
from shortest (17ms, left) to longest (533 ms, right). Bottom, DN model predictions for the same conditions. The shapes of the neural
time courses differ between visual areas and are accurately captured by the DN model. Time courses were smoothed with a Gaussian
kernel with standard deviation of σ = 10; the shaded regions indicate 68% confidence interval across 1000 bootstrapped timecourses
(see Materials & Methods, Bootstrapping procedure and statistical testing). B-C: Summary metrics plotted per visual area derived
from the neural responses (circle marker) or model time courses (triangle marker). Time-to-peak (B) computed to the longest duration
(533 ms). Full-width at half maximum (C), computed for each stimulus duration. Data points indicate medians and error bars indicate
68% confidence interval across 1000 samples derived from the bootstrapped timecourses. Bootstrap test, ∗ = p < 0.05 (two-tailed,
Bonferroni-corrected). D-F: Same as A-C for trials showing non-preferred stimuli. This figure can be reproduced by mkFigure4.py.

A B

Supplementary Figure 2: Extract degree of recovery from repetition suppression A. Top, the broadband time course of an
example electrode averaged over all repetition trials plotted separately for each ISI. Bottom, an estimate of the response to the first and
second stimulus. A robust response to the first stimulus is obtained by averaging the response time courses for the 134 ms duration
stimulus and each of the repetition stimuli from trial onset up to the onset of the second stimulus. The estimate of the response to the
second stimulus is computed by subtracting the average time course of the first stimulus from the ISI varying stimulus responses. B:
The recovery from neural adaptation is computed and defined as the Area Under the Curve (AUC) of the second pulse proportional to
AUC of the first pulse, as a function of the ISI. This figure can be reproduced by mkSuppFigure2.py.
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Supplementary Figure 3: Differences in recovery from repetition suppression across visual areas for preferred stimuli
A. Estimated, normalized response to the second stimulus for V1-V3, VOTC and LOTC. For each visual area, the left panel shows
the neural data and the right panel shows the model prediction. Recovery from adaptation gradually increases as the ISI becomes
longer, and the rate of recovery is higher for V1-V3 compared to VOTC and LOTC in both the neural data and the DN model. B:
left, Recovery from adaptation for V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47), computed as the ratio of the Area Under the
Curve (AUC) between the first and second response. The fitted curves express the degree of recovery as a function of the ISI (see
Materials and Methods, Summary metrics). Higher visual areas show stronger RS and slower recovery from adaptation. Right, model
predictions for the same data. The model is able to capture area-specific recovery from adaptation. B-C: Summary metrics plotted
per visual area derived from the neural responses (circle marker) or model time courses (triangle marker). Average recovery (B) from
adaptation for each area, computed by averaging the AUC ratios between the first and second stimulus over all ISIs. The long-term
recovery (C) reflects the amount of recovery for an ISI of 1s, obtained by extrapolating the fitted line. Higher visual areas show stronger
RS and a slower recovery rate which is accurately predicted by the DN model. Data points indicate medians and error bars indicate
68% confidence interval across 1000 samples derived from the bootstrapped timecourses. Bootstrap test, ∗ = p < 0.05 (two-tailed,
Bonferroni-corrected). This figure can be reproduced by mkFigure5 6.py.
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Supplementary Figure 4: Differences in recovery from repetition suppression across visual areas for non-preferred stimuli
A. Estimated, normalized response to the second stimulus for V1-V3, VOTC and LOTC. For each visual area, the left panel shows the
neural data and the right panel shows the model prediction. Time courses were obtained using a bootstrapping procedure (n = 1000,
see Materials & Methods, Bootstrapping procedure and statistical testing). Recovery from adaptation gradually increases as the ISI
becomes longer, and the rate of recovery is higher for V1-V3 compared to VOTC and LOTC in both the neural data and the DN model.
B: left, Recovery from adaptation for V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47), computed as the ratio of the Area Under the
Curve (AUC) between the first and second response. The fitted curves express the degree of recovery as a function of the ISI (see
Materials and Methods, Summary metrics). Higher visual areas show stronger RS and slower recovery from adaptation. Area-related
differences are less pronounces compared to preferred stimulus trials (Supp. Fig. 1). Right, model predictions for the same data. The
model is able to capture area-specific recovery from adaptation. B-C: Summary metrics plotted per visual area derived from the neural
responses (circle marker) or model time courses (triangle marker). Average recovery (B) from adaptation for each area, computed
by averaging the AUC ratios between the first and second stimulus over all ISIs. The long-term recovery (C) reflects the amount of
recovery for an ISI of 1s, obtained by extrapolating the fitted line. Higher visual areas show stronger RS and a slower recovery rate
which is accurately predicted by the DN model. Data points indicate medians and error bars indicate 68% confidence interval across
1000 samples derived from the bootstrapped timecourses. Bootstrap test, ∗ = p < 0.05 (two-tailed, Bonferroni-corrected). This figure
can be reproduced by mkFigure5 6.py.
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Supplementary Figure 5: Differences in recovery from adaptation across stimuli in category-selective areas A. Top, Aver-
age, normalized broadband responses of category-selective electrodes (threshold d' = 0.75, n = 12) of trials during which preferred
(blue) or non-preferred (red) stimuli were presented in repetition (gray). Time courses were obtained using a bootstrapping procedure
(n = 1000, see Materials & Methods, Bootstrapping procedure and statistical testing). Responses are shown separately per ISI from
shortest (17 ms, left) to longest (533 ms, right). Bottom, DN model predictions for the same data. Time courses differ for preferred and
non-preferred stimuli which is captured by the DN model. B. Estimated, normalized response to the second stimulus for trials containing
preferred and non-preferred stimuli. Per visual area, the left panel shows the neural data and the right panel shows the model predic-
tion. The rate of recovery is higher for non-preferred compared to preferred stimuli. C: Recovery from adaptation computed as the ratio
of the AUC between the first and second response derived from the neural data (left) or DN model predictions (right). The fitted curves
express the degree of recovery as a function of the ISI (see Materials and Methods, Summary metrics). Responses derived from
trials containing preferred stimuli show a stronger degree of RS and the DN model is able to capture stimulus-specific recovery from
adaptation. D: Long-term recovery from adaptation derived from the neural responses (circle marker) or DN model (triangle marker),
reflecting the amount of recovery for an ISI of 1s. Responses for trials presenting preferred stimuli show stronger RS and a slower
recovery rate. Data points indicate medians and error bars indicate 68% confidence interval across 1000 samples derived from the
bootstrapped timecourses. Bootstrap test, ∗ = p < 0.05 (two-tailed). This figure can be reproduced by mkFigure8.py.
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Supplementary Figure 6: Differences in recovery from adaptation across stimuli in category-selective areas A. Top, Aver-
age, normalized broadband responses of category-selective electrodes (threshold d' = 1, n = 6) of trials during which preferred (blue)
or non-preferred (red) stimuli were presented in repetition (gray). Responses are shown separately per ISI from shortest (17 ms, left)
to longest (533 ms, right). Bottom, DN model predictions for the same data. Time courses differ for preferred and non-preferred stimuli
which is captured by the DN model. B. Estimated, normalized response to the second stimulus for trials containing preferred and
non-preferred stimuli. Per visual area, the left panel shows the neural data and the right panel shows the model prediction. The rate
of recovery is higher for non-preferred compared to preferred stimuli. C: Recovery from adaptation computed as the ratio of the AUC
between the first and second response derived from the neural data (left) or DN model predictions (right). The fitted curves express the
degree of recovery as a function of the ISI (see Materials and Methods, Summary metrics). Responses derived from trials containing
preferred stimuli show a stronger degree of RS and the DN model is able to capture stimulus-specific recovery from adaptation. D:
Long-term recovery from adaptation derived from the neural responses (circle marker) or DN model (triangle marker), reflecting the
amount of recovery for an ISI of 1s. Responses for trials presenting preferred stimuli show stronger RS and a slower recovery rate.
Data points indicate medians and error bars indicate 68% confidence interval across 1000 samples derived from the bootstrapped
timecourses. Bootstrap test, ∗ = p < 0.05 (two-tailed). This figure can be reproduced by mkFigure8.py.
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Supplementary Figure 7: Electrode positions for individual participants, overlaid on a retinotopic atlas (previous page).
Electrode positions for subject p11 (A), subject p12 (B), subject p13 (C) and subject p14 (D) overlaid on a pial surface reconstruction
with colour-coded predicted visual locations. A surface node in the pial mesh was assigned a colour if it had a non-zero probability of
being in a visual region according to a max probability map from Wang et al. (2015). If the electrode had a nonzero probability of being
in multiple regions, the region with the highest probability was assigned. For visualization purposes, some retinotopic maps have been
merged (e.g., dorsal and ventral parts of V1). L = lateral, M = medial, D = dorsal, V = ventral, A = anterior, P = posterior.
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Supplementary Figure 8: Electrode positions A. Electrodes with robust visual responses were assigned to early (V1-V3, n = 17),
VOTC (n = 15) or LOTC (n = 47) retinotopic areas. Electrodes that were not included in the dataset are shown in black. Electrodes were
considered category-selective if the average response for a given image category was higher compared to the other image categories
(d' > 0.75, see Eq. 1, Materials & Methods, n = 12). B. Same as A for a threshold of d' for category-selectivity of 1.0 (n = 6). The brain
surfaces and electrode positions can be reproduced by mkFigure2.py. L = lateral, M = medial, D = dorsal, V = ventral, A = anterior, P
= posterior.
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Supplementary Figure 9: DN model without category-dependent input strength has poor fits for non-preferred image
categories DN model prediction (red) of the neural response (black) of an example electrode, given a stimulus timecourse (light blue),
with (top panel) and without (bottom panel) category-specific scaling. Model prediction for the least preferred image category (faces)
results in an overestimation of the neural response, resulting in a strongly negative coefficient of determination (blue arrow).This figure
can be reproduced by mkSuppFigure9.py.
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