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ABSTRACT13

The human cerebellum is activated by a wide variety of cognitive and motor tasks. Previous functional
atlases have relied on single task-based or resting-state fMRI datasets. Here, we present a functional
atlas that integrates information from 7 large-scale datasets, outperforming existing group atlasses. The
new atlas has three further advantages: First, the regions are hierarchically organized across 3 levels,
allowing analyses at the appropriate level of granularity. Second, we provide both asymmetric and
symmetric versions of the atlas. The symmetric version, which is obtained by constraining the boundaries
to be the same across hemispheres, is especially useful in studying functional lateralization. Finally, the
atlas allows for precision mapping in individuals: The integration of the probabilistic group atlas with an
individual localizer scan results in a marked improvement in prediction of individual boundaries. Overall,
the new atlas is an important resource for the study of the interdigitated functional organization of the
human cerebellum in health and disease.
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INTRODUCTION14

Decades of neuroimaging have shown cerebellar activation in a broad range of tasks, including motor,15

social, and cognitive tasks - yet its contribution to these different functions remains elusive [1, 2]. A16

major obstacle to understanding the cerebellar contribution is that the cerebellum consists of a mosaic of17

functional regions, specialized for distinct roles [3]. It is still common to use the anatomical subdivision18

into different lobules [4, 5] to define regions of interest, even though lobular boundaries do not align with19

boundaries in functional specialization [3].20

There are several existing maps based on resting-state or task-based functional Magnetic Resonance21

Imaging (fMRI) data [6, 7, 3] that parcel the cerebellum into functional regions. These functional atlases22

outperform anatomical parcellations at predicting functional boundaries on an independent task set, with23

a task-based parcellation based on a large multi-domain task battery (MDTB) being particularly powerful24

[3]. Nonetheless, parcellations based on single datasets usually show some distinct weaknesses: For25

example, the MDTB parcellation[3] does not delineate the foot or mouth motor region very well, likely26

because of the absence of those movement types from the task set. Any single dataset and analysis27

approach will necessarily emphasize some features over others. To address these shortcomings, we have28

recently developed a Bayesian Hierarchical method that combines information across datasets into a29

single parcellation [8]. In this study, we apply this model to seven large task-based datasets to derive a30

novel cerebellar functional atlas.31

Another important limitation of existing group atlases is that they ignore the large inter-individual32

variability in functional brain organization [9, 10, 11, 12, 13]. This problem is particularly relevant33
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for the cerebellar cortex, where many functionally heterogeneous regions are packed into a relatively34

small volume [14, 3, 15]. Multiple groups have therefore pursued a precision mapping approach, using35

localizing data to define functional regions at the individual level [10, 11, 12, 15]. To enable such precise36

and fine-grained analysis, the new atlas is based on a probabilistic framework, which allows the user to37

use even limited individual data to optimally tailor the atlas to an individual [8, 16]. We evaluated this38

approach carefully by showing the utility of the personalized parcellation at predicting boundaries and39

functional specialization in the same individual in different tasks, as compared to both the group atlas,40

and a parcellation solely based on individual data.41

The cerebellum plays a key role in lateralized functions (i.e., language; [17]) and shows lateralized42

developmental trajectories [18]. The study of lateralization, however, is complicated by existing functional43

atlases, as they have asymmetric boundaries with ambiguities in correspondence between between left44

and right regions. We therefore developed a version of the atlas with symmetric boundaries and matching45

hemispheric parcel pairs. Importantly, we did not constrain the functional profiles to be the same across46

hemispheres, enabling us to study functional lateralization. The comparison to an asymmetric version of47

the atlas also allowed us to assess whether this symmetry constraint is adequate, or to what degree the48

spatial organization is truly asymmetric.49

Finally, questions about cerebellar function will benefit from being tested at different levels of50

granularity. For many anatomical and patient studies, it is often most appropriate to summarize measures51

in terms of broad functional domains (e.g., motor vs. social-linguistic-spatial regions), whereas more52

detailed functional studies require the definition of finer region distinctions (e.g., separate hand, foot,53

and tongue regions within the motor domain or separation between social and linguistic domains). We54

therefore created the atlas with a hierarchical organization of functional regions where the boundaries of55

the broad domains remain the same at each level of granularity.56

RESULTS57

Different fMRI datasets reveal a similar, but not identical, cerebellar organization58

A common functional atlas across different datasets only makes sense, if we assume that there is a robust59

functional organization that remains the same across tasks. However, the cognitive state of the brain (rest60

or specific tasks) likely influences how different functional regions work together. Therefore, parcellations61

based on different datasets may highlight different functional boundaries. As a first step, we therefore62

sought to characterize similarities between parcellations based on single datasets, using task-based and63

resting-state data. We trained our probabilistic parcellation model [8] on each dataset in isolation and then64

compared the resultant parcellations (Fig. 1a).65

The parcellations overall showed clear similarities, but also some dataset-specific differences. A66

strong boundary between motor regions in lobule I-VI and cognitive regions in lobule VII was present67

in all parcellations. On the other hand, the ability to distinguish regions among the motor and cognitive68

regions differed between datasets. For example, the somatotopic dataset only tested individual body69

movements, and therefore resulted in a clear somatomotor map, but did not delineate cognitive regions in70

lobule VII well. In contrast, the Demand dataset delineated regions involved in working memory and71

executive functions, but did not lead to a clear somatomotor map. Parcellations based on resting-state data72

(HCP) showed consistent boundaries in regions related to the default network (lobules VII) but appear to73

delineate other regions (e.g. motor) less finely.74

To quantify these similarities, we calculated the adjusted Rand Index (ARI) between parcellations at75

different levels of parcel granularity (10, 20, 34, 40 and 68 regions). The indices were averaged across76

granularities and normalized by the within-dataset ARI (Fig. 1c, see methods). Overall, the resultant77

reliability-adjusted ARIs were positive across all dataset pairs (One-sample t-test of the between-dataset78

ARIs averaged across granularities t27 = 17.885, p = 1.696× 10−16), indicating that there are clear79

commonalities across all different task and resting state datasets [20, 10, 21].80

To assess the similarity of the resulting parcellations better, we visualized the reliability-adjusted81

ARIs using multi-dimensional scaling (Fig. 1b). Unsurprisingly, task-based datasets that test similar82

task domains (i.e., working memory and multi-demand dataset) resulted in similar parcellations. The83

Somatotopic and the resting-state (HCP) parcellation occupied two other, opposing poles in the space of84

parcellations.85

Parcellations based on datasets that included a large range of cognitive tasks (MDTB, MDTB-Highres,86

and IBC) occupied a middle position, suggesting that such parcellations can well capture stable features87
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Figure 1. Building a functional atlas of the cerebellum across datasets. a, Parcellations (K=68)
derived from each single dataset. The probabilistic parcellation is shown as a winner-take-all projection
onto a flattened representation of the cerebellum [19]. Dotted lines indicate lobular boundaries. b,
Projection of the between-dataset adjusted Rand Index (ARI) of single-dataset parcellations into a
2d-space through multi-dimensional scaling (see methods: Single-dataset parcellations and similarity
analysis of parcellations). c, Within-dataset reliability of parcellation, calculated as the mean ARI across
the 5 levels of granularity (10, 20, 34, 40 and 68 regions). Errobars indicate SE of the mean across
granularity pairs). d, Reliability-adjusted ARI between each single-dataset parcellations and the MDTB
(task-based) and HCP (resting parcellation) parcellation. Errorbars indicate standard error of the mean
across levels of granularity, ** p < 0.01, *** p < 0.0001. e, DCBC evaluation of the symmetric and
asymmetric atlas averaged across granularities evaluated on the group map (left) or on individual maps
derived with that atlas (right). f, DCBC evaluation of the symmetric group map and of individual maps
derived from the model with 10, 20, 34, 40, and 68 regions.
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of functional boundaries across tasks. Indeed, when we compared the ARI for each specific task-based88

parcellations, we found that they were more similar to the parcellation derived from the MDTB dataset89

than to one derived from the HCP dataset (paired t-test: t149 = 9.605, p = 2.672× 10−17; Fig. 1d).90

Testing each set of task-based parcellations separately confirmed that all, except for the Nishimoto91

parcellations (t24 =−0.838, p = 0.410) were significantly more similar the MDTB than the HCP (resting-92

state) parcellations (MDTB-Highres: t24 = 16.404, p = 1.523× 10−14; IBC: t24 = 3.513, p = .0017;93

WM: t24 = 4.727, p = 8.318×10−5; Demand: t24 = 3.262, p = .0033; Somatotopic: t24 = 12.538, p =94

5.015×10−12). As indicated by the opposing poles occupied by Somatotopic dataset and HCP resting-95

state dataset (Fig. 1b), this difference was largest for the Somatotopic dataset, suggesting that rest and96

single-limb movements reveal quite dissimilar boundaries.97

In sum, this analysis shows that the resting-state parcellation captures many task-based boundaries,98

but also differs from a parcellation that delineates somatotopic motor regions. This is in line with previous99

observations that resting-state data do not always reveal motor regions of the cerebellum clearly [7, 22].100

In practice we found that the inclusion of resting-state data into the fused atlas tended to prevent a clear101

delineation of somatomotor regions. For the final atlas we therefore decided to rely on task-based data102

only given the goal here of comprehensively mapping motor and non-motor cerebellar regions.103

Dataset fusion improves prediction of functional boundaries104

To verify that the fusion of datasets through our framework systematically improved on single-dataset105

parcellations, we adopted a leave-one-dataset-out approach. We trained the fusion parcellation on all106

task-based datasets except one and tested its ability to predict the functional boundaries within that left-out107

dataset. This ability was quantified using the Distance-Controlled Boundary Coefficient (DCBC) which108

compares the correlation between within-parcel voxel-pairs to the correlation between voxels-pairs across109

a boundary, while controlling for spatial distance [23]. We found that the fused group atlas outperformed110

single dataset parcellations averaged across granularities (t110 =−4.466, p = 1.936×10−5; Fig. 1e left).111

In addition to providing a winner-take all group map, our framework can also provide individual112

parcellations by integrating subject-specific data (see methods: individual precision mapping). This ability113

critically depends on the group atlas not only having appropriate boundaries, but also quantifying the114

uncertainty across participants adequately. We found that individual parcellations based on the fused atlas115

outperformed those derived from single dataset (t110 =−2.564, p = .0171; Fig. 1e right), confirming the116

superiority of the fused atlas, both when using a winner-take-all projection or a probabilistic parcellation117

to derive individual maps [8].118

Comparing symmetric and asymmetric atlasses119

To enable the study of hemispheric specialization, we initially constrained our atlas to have spatially120

symmetric regions across the left and right cerebellar hemispheres, while allowing different functional121

profiles. To determine how much this constraint forced the group map to deviate from the true functional122

organisation, we also estimated an asymmetric version of the atlas without using the symmetry constraint123

(see methods, Symmetry constraint).124

We compared the ability of the asymmetric and the symmetric atlas to predict functional boundaries,125

again adopting a leave-one-dataset-out approach. For the group DCBC, we found a small, but significant126

difference between the asymmetric and symmetric atlas across levels of granularity (10-68 regions;127

t110 =−2.344, p = .0201) (Fig. 4B). This advantage was larger at the individual level (t110 =−5.023, p =128

1.981×10−6). Overall, however, the predictive power of the symmetric atlas was only 5% (group) or129

14% (individual) smaller than the asymmetric versions. Given the many practical uses of the symmetric130

atlas for controlling for region size and location in lateralization studies, we provide both symmetric and131

asymmetric versions of the final atlas.132

Basemap for hierarchical atlas outperforms existing parcellations133

Instead of choosing a fixed number of regions, we used three nested levels of resolution, linked in a134

hierarchical scheme. This allows the user to analyze their data at different levels of granularity in a135

consistent fashion. To decide on the “base map” of this hierarchy, we examined the predictive performance136

of the fusion atlas across the tested levels of granularity at the group and individual levels (Fig. 1f). We137

found that the performance of the group map saturated early, reaching its best value at 20 regions. However,138

this peak was not significantly different from the finest granularity of 68 regions (t110 = 2.783, p = .0063).139

In contrast, the ability to predict boundaries in the individual increased monotonically, with the finest140
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granularity outperforming the next lower granularity of 40 regions (t110 = 7.584, p = 1.143×10−11). We141

therefore based the hierarchical atlas on the map with the finest granularity of 68 functional regions.142

The fused atlas based on all datasets significantly outperformed existing parcellations in predicting143

boundaries tested on all datasets. Across all subjects of all evaluation datasets, both the symmetric and144

the asymmetric atlas base map resulted in a higher average DCBC than existing anatomical (Lobular:145

[5]), task-based (MDTB: [3], and resting-state parcellations (7 and 17 regions: [7]; 10 regions: [6]), all146

t110 > 3.545, p < 5.788×10−4 (see Supplemental Fig. S1)147
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Figure 2. Cerebellar functional atlas at three levels of granularity. a, Medium granularity with 32
regions; 16 per hemisphere. The colormap represents the functional similarity of different regions (see
methods: parcel similarity and clustering). b, Fine granularity with 68 regions; 34 per hemisphere. c,
Coarse granularity with 4 functional domains. The symmetric version of the atlas is shown, for the
asymmetric version, see Fig. 4. d, Hierarchical organization based on the functional similarity of regions,
depicted as a dendrogram. The label of each region indicates the functional domain (M,A,D,S), followed
by a region number (1-4), and a lower-case letter for the subregion (a-d).

We then clustered the 34 regions per hemisphere of the basemap into 16 regions per hemisphere148

according to the functional similarity between regions (see methods: parcel similarity and clustering).149

Finally, we organized these 16 regions into 4 broad functional domains. Based on their functional150

activation profiles, we denoted these four functional domains as motor (M), action (A), multi-demand (D),151

and social-linguistic-spatial (S) (Fig. 2c). At the medium level, we numbered the regions within each152

domain from medial to lateral (Fig. 2d). Finally, the finest level was annotated with a lowercase letter153

(a-d). In the following description of the regions, we will focus on the medium level, as it provides a good154

compromise between precision and succinctness.155

Characterization of functional regions156

Each functional region is characterized by its response profile across datasets and it’s spatial distribu-157

tion across individuals. In describing the functional profile, we focused on responses estimated from158

subject-specific regions in the MDTB dataset (see methods: Functional profiles for the MDTB dataset),159

supplemented by more domain-specific datasets for the motor and demand regions (Somatotopic, Demand,160

WM).161

Motor regions162

Regions that exhibited a clear preference for movements of a specific body part were grouped into the163

motor domain. All regions had a superior (lobules I-VI) and an inferior (lobule VIII) aspect. We also164

found a third representation of these body-part-specific regions in the posterior vermis, consistent with165

recent results at the individual subject level [22].166
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M1 encompassed the oculomotor vermis, which responded most strongly to saccades (Fig. S2). Even167

when correcting for the number of saccades, the area was further activated when participants had to read168

text (Theory-of-Mind), watch a movie (animated movie), or search for visual stimuli (spatial map and169

visual search), likely due to the attentional demands of these tasks. Previous work has shown that this170

region also has a clear retinotopic organization [24]. M2 comprises a lateral and a vermal part. The lateral171

section showed strong responses to tongue movements in the somatotopic dataset. In contrast, the vermal172

component was activated by multiple different bodily movements, but otherwise was functionally most173

similar to the lateral M2. The M3 regions were selectively activated movement of the ipsilateral hand174

(Supplemental Fig.S2). Finally, M4 was most activated by movements of the lower body, including flexion175

and extension of the foot (Highres-MDTB), as well as contraction of the gluteal muscles (Somatotopic).176

Action regions177

Directly adjacent to the motor regions lie the action regions, which were activated during action observation178

and motor imagery tasks. A1 and A2 both comprised spatially separate superior and inferior sections. A1179

can be found medially to the hand region in lobule VI and at the border of VIIIa/VIIIb. A2 lies laterally180

adjacent to the superior hand region M3, and at the border of lobule VIIIa/VIIIb. In contrast, A3 primarily181

occupies the inferior cerebellum (Fig. S3), located at the border of lobules VIIIa/VIIIb.182

Although both motor and action regions activated during movement execution, only the action regions183

activated when observing actions without execution: In the MDTB dataset, they showed strong responses184

to an action observation task (video actions in Fig. S2). A1 appeared to be particularly involved where185

spatial simulation is required (strong responses during spatial map and mental rotation tasks). Meanwhile,186

A2 seems to be a classic action observation region, with little response to tasks that do not involve action187

observation or execution. In contrast, A3 was also activated during imagined movements (motor imagery).188

Multiple-demand regions189

Tasks involving executive control consistently activated regions in lobules VI and VII. Based on work190

by Duncan et al. [25], we labelled these regions the multi-demand domain (D for short). D1 occupied191

the most medial portion of Crus I and II. Further out in the hemispheres, the demand region formed192

a ”shell” around the more central social-linguistic-spatial domain (Fig. S4b). Here, D3 formed the193

outermost layer and D2 the innermost, with D1 being interspersed between. The regions (especially D2)194

also had a repeated representation in lobule IX (Fig. S3). This is consistent with a 3-fold representation195

[7]. Intriguingly, we found also a vermal section of D3, both in lobule IV and IX. D4 was the smallest196

identified region. Functionally most similar to D1, it occupied the most lateral portion of the demand197

regions.198

Consistent with the characteristics of the cortical multi-demand system [26], all regions showed199

significant activation during executive tasks (n-back, switch and stop tasks), and increased activity200

especially with high difficulty. Nonetheless, there was some functional specialization across the regions.201

In the MDTB dataset, D1 appeared to be involved strongly in spatial tasks, such as the mental rotation,202

and spatial map task. D1 and D4 were strongly engaged in the n-back task. In contrast, D2 and D3 were203

specifically activated by the digit span task tested in the WMFS data set - with D2 more active during204

backwards recall and D3 showing strong increases with working memory load.205

social-linguistic-spatial regions206

The regions in hemispheric lobules Crus I and Crus II, located laterally to the D1 region, were activated by207

tasks involving social and linguistic processes. They also showed high activity during rest, consistent with208

the description of this area as the cerebellar node of the default network [7]. We identified four regions,209

each spanning both sides of the horizontal fissure, with S1 being the most medial and S4 most lateral210

(Fig. 2). S3 overlapped substantially with S2 and S4 and therefore could only be reliably differentiated211

from these two regions at the level of the individual (see 5a). In the volume (Supplementary Fig. S4)212

S1 occupies the depth of the horizontal fissure, and S4 the most lateral tips of Crus I and II. A third213

representation of S2 and S4 can be found in lobules IX. S1 and S2 also occupy sections in the inferior214

vermis (VIIIb and IX, Supplementary Fig. S4). While all regions shared some overall similarity in their215

response profile, there were clear inter-regional and inter-hemispheric differences. The mean evoked216

responses for the MDTB dataset (Supplementary Fig. S2) showed right S1 to be primarily involved in217

linguistic processing, with highest activation during verb generation. S2 was strongly engaged in social218

processing, with highest activity during a theory-of-mind task on the right and during an animated movie219
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on the left. S2, S3, and S4 showed high levels of activity during rest. S4 and S5 appeared to be particularly220

involved in imagination and specific forms of self-projection (Supplementary Fig. S5a,b), showing the221

highest activation during the spatial and the motor imagery tasks, which require the participant to imagine222

themselves walking through their childhood home and playing a game of tennis, respectively. In contrast223

to S4, S5 was also active during a spatial working memory task (Spatial Map) and did not appear to224

be engaged in linguistic processes (Verb generation)(Supplementary Fig. S5c,d). S5 was also activated225

by the action observation task, such that it functionally takes up an intermediate position between the226

social-linguistic-spatial and action domain. When comparing these regions to the recently described227

subdivision of the default network [27], S4 and S5 appear more similar to default network A (associated228

with remembering and scene construction), and S2-S3 to default network B (theory of mind) .229

Cerebral connectivity patterns characterize distinct regions230

Each cerebellar region can also be characterized by the regions in cerebral cortex that it is most functionally231

correlated with. To determine these regions we estimated an effective connectivity model, aiming to232

explain the data in each cerebellar voxel as a linear combination of cortical regions [28]. For the task-based233

dataset, we used the condition-averaged profiles, for the resting state data, the preprocessed time-series.234

We fitted the models individually per subject and dataset. To validate these connectivity models, we tested235

them in how well they could predict the cerebellar activity patterns for each other dataset, using only the236

corresponding cortical activity patterns (see methods: Cortical connectivity).237
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Figure 3. Cerebro-cerebellar connectivity models. a, Matrix shows the correlation between observed
and predicted cerebellar activity patterns for each test dataset (rows). Connectivity models were trained
on each training datasets (columns) separately. Evaluation was cross-validated across subjects when
training- and test-dataset were identical. b, Correlation between observed and predicted activity patterns,
averaged across test-datasets. The Fusion model used the average connectivity weights across all
task-based datasets (excluding the HCP resting-state data). c, Average connectivity weights between each
cerebellar region (row), and each of the 15 resting-state networks as described in [29].

.

The average correlation between the predicted and the observed activity patterns (Fig. 3a) were238
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significantly higher than zero for all training / test combinations. One notable exception was the model239

estimated on the Somatotopic dataset, which generally performed more poorly in predicting the other240

data sets. Connectivity models generally showed the highest predictive accuracy on the dataset they were241

trained on, even though this evaluation was cross-validated across subjects.242

Averaged over all evaluation datasets (Fig. 3b), the model trained on the MDTB dataset performed best243

- with the other models being nearly equivalent in their performance (with the exception of Somatotopic244

dataset). To fuse across datasets, we simply averaged the connectivity weights across models. We found245

that average prediction performance was slightly better if it did not include the HCP dataset (.396 vs. .394,246

t102 =−1.51, p = 0.1349). The final Fusion model (last bar in Fig. 3b) significantly outperformed the247

best individual connectivity model (MDTB, t102 =−7.340, p = 5.322×10−11). Taking into account the248

noise ceiling of this prediction given by the reliability of the cerebellar and the cortical data (see methods:249

Cortical connectivity), the model achieved a prediction accuracy of R = 0.6840, meaning that it predicted250

on average 47% of the explainable variance.251

The weights of these connectivity models for each individual region (Supplemental Figure S6, S7,252

S8) clearly showed connectivity with the expected cerebral regions in the contralateral hemisphere. For253

example, the left cerebellar hand region showed the highest connectivity with the hand region of the right254

primary motor cortex and somatosensory cortex, and vice versa for the right cerebellar hand region (Fig.255

S6c).256

To summarize these weight maps in terms of standard cortical networks, we averaged the weights257

within the 15 resting-state networks described in [29] (3c). This analysis showed the expected connectivity258

between M1 and visual and dorsal attention networks, between M2-M3 and the Somatomotor and premotor259

networks, D1-D4 to the dorsal Attention network A and control networks, and S1-S5 to language and260

default networks.261

Functional lateralization and boundary asymmetry262

The symmetric version of our atlas forced the boundaries between parcels to be the same across hemi-263

spheres. Nonetheless, the functional profiles for the left and right parcels were estimated separately264

(see methods: Symmetry constraint). Therefore, hemispheric differences in functional specialization265

were captured by the model. To investigate these differences, we correlated the functional profiles of266

corresponding left and right voxels (Fig. 4c). We observed low functional correlations between left and267

right hand regions (M3). This was mainly caused by task sets that isolated left- vs. right-hand movements.268

Such task-dependence can be clearly seen in the foot motor region (M4), which appear functionally269

symmetric in the MDTB-Highres dataset, which included bilateral foot movements, and functionally270

asymmetric in the somatotopic dataset included separate left and right movement conditions S9).271

In contrast, the multi-demand regions consistently show high functional correlations across left and272

right hemispheres for all datasets, even though the task sets included different executive functions and273

working memory tasks, using verbal and non-verbal material. While there might be some functional274

lateralization within this domain, our results suggest that their response profiles are largely symmetric and275

that it may be difficult to find strongly lateralized tasks in this functional domain. In contrast, the social-276

linguistic-spatial regions showed much lower functional correlations with substantial differences between277

left and right response profiles. Therefore, some functions are clearly lateralized in the cerebellum,278

reflected in different functional profiles for left and right regions.279

Additionally, is also possible that boundaries between functional regions themselves are asymmetric.280

We therefore estimated an asymmetric version of the atlas with the same functional profiles per region, but281

without the constraint on symmetry. Overall, the asymmetric atlas was similar to the symmetric atlas (Fig.282

4a). However, closer inspection revealed some key differences between the left and right hemispheric283

parcels of the asymmetric atlas, with the biggest difference observed among the social-linguistic-spatial284

and multiple-demand regions. When we compared the region size between the left and right regions in285

the asymmetric atlas (supplementary Fig. S10), S3 and S4 had larger regions on the right, while S2, A2,286

and D1 were bigger on the left.287

Finally, we calculated an index of boundary symmetry (see methods: Boundary symmetry) by288

correlating the parcel probabilities from the asymmetric and symmetric atlas. We found high boundary289

symmetry in motor and demand regions and low boundary symmetry in social-linguistic-spatial regions.290

Specifically, among the motor regions the oculomotor vermis M1 and the hand region M3 (Fig. 4c) showed291

high boundary symmetry. All demand regions showed high boundary symmetry with the exception of D2.292
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Figure 4. Functional lateralization and Boundary asymmetry in the cerebellum. a, Symmetric atlas
winner-take-all map; b, Asymmetric atlas winner-take-all map; c, Functional lateralization quantified as
the correlations of the functional responses of anatomically corresponding voxel of the left and right
hemisphere, averaged across subjects and within each functional region. d, Boundary symmetry
calculated as the correlations of the probabilistic voxel assignments between the symmetric and
asymmetric version of the atlas.

In the social-linguistic-spatial regions, we observed generally low boundary symmetry, indicating that for293

these regions an asymmetric atlas may be most appropriate.294

Individual precision mapping through integration of localizer data295

The fusion atlas reveals several finely inter-digitated regions that have not been well described before296

and that have only been localized at the single-subject level using large quantities of individual data [15].297

However, with the probabilistic framework, the atlas can be used to identify these regions in individual298

participants even with more limited data. In this section, we will describe the approach of personalizing299

the atlas to individuals, i.e., using the atlas for precision mapping [10, 11, 12].300

We first characterized the spatial pattern of inter-individual variability to understand where in the301

cerebellum individual localization would offer the greatest utility. For each voxel, we calculated the302

Pearson’s correlation between the functional profiles of all possible pairs of subjects in the MDTB303

dataset (methods:Inter-Individual variability). While motor regions showed consistent functional profiles304

across subjects (e.g. hand regions M3 and eye regions M1 in Fig. 5b), the social-linguistic-spatial305

regions were more variable. Only voxels in the core of the S1 region were relatively consistent across306

individuals; the lateral regions, and especially the boundary to the multi-demand regions demonstrated307

large inter-individual variability. Consistent with the observed strong inter-individual variability in the308

social-linguistic-spatial regions, our atlas shows considerable overlap in the group probability maps for309

region S1 and S2 (Fig. 5c). Hence, the study of these regions in Crus I and II and their differentiation310

from demand regions will benefit most from precision mapping of individuals.311

For individual functional localization, a common approach is to acquire functional data from the312

individual to define individual regional boundaries [30, 31, 32]. However, a substantial amount of313

functional data is necessary for deriving a parcellation that performs convincingly better than a group map314

[8, 14, 3]. We quantified this problem here by using 10min-160min of imaging data from the first session315

9/30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2024. ; https://doi.org/10.1101/2023.09.14.557689doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.14.557689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Inter-individual correlation

a

b

0.0 1.0 0.0 0.4

Group probability maps
Subject 06 Subject 09 Subject 12

S2S1

c

d e

10 40 80 120 160
Functional localizer [min]

Group

Individual data
Individual data

Individual +
Group

Individual +
Group0.08

0.10

0.12

0.14

0.16

Bo
un
da
ry
co
effi

ci
en
t

Group

10 40 80 120 160
Functional localizer [min]

0.52

0.56

0.60

0.64

Pr
ed
ic
tio
n
Er
ro
r

Figure 5. The functional atlas improves individual precision mapping. a, Individual parcellations
from three participants, using 320min of individual data. b, Map of the average inter-subject correlations
of functional profiles. Correlations are calculated between any pair of subjects in the MDTB dataset,
corrected for the reliability of the data (see methods: Inter-individual variability). c, Group probability
map for regions S1 and S2 (left and right combined) show the overlap of regions. d, DCBC evaluation
(higher values indicate better performance) on individual parcellations (blue line) derived on 10-160min
of individual functional localizing data, compared to group parcellation (dashed line) or the combination
of group map and individual data (orange line). e, Equivalent analysis using prediction error (see
methods, lower is better).

of the MDTB data set to derive individual parcellations. We then evaluated these parcellations on how316

well they separated functional regions (DCBC; Fig.5d) and predicted the functional profiles (prediction317

error; Fig. 5e). We found that 20 min of individual data were necessary to be just as good as our new318

symmetric group atlas, and 40 min to significantly outperform the group map on both criteria (DCBC:319

t23 = 2.981, p = 0.0067, Prediction error: t23 =−2.869, p = 0.0087).320

The probabilistic framework, however, allowed us to optimally combine evidence from the individual321

data with the probabilistic group map (see methods: Individual precision mapping). The final estimate of322
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the model using only 20 min of functional localization data outperformed both the individual data (DCBC:323

t23 = 11.468, p = 5.43× 10−11; Prediction error: t23 = −9.098, p = 4.414× 10−9) and the group map324

(t23 = 3.395, p = 0.0025). The integrated estimate even improved individual parcellations based on as325

much as 160 mins of data (DCBC: t23 = 5.838, p = 5.989×10−6, Prediction error: t23 =−3.798, p =326

9.288×10−4). Thus the new atlas offers both the advantage of a consistent group map, as well as the327

possibility to obtain precision individualized mapping of brain organization.328

DISCUSSION329

Summary330

In this study, we developed a comprehensive functional atlas of the human cerebellum featuring several331

important advances: First, using a Hierarchical Bayesian Model, we integrated data across seven large332

task-based datasets, thereby achieving a more complete coverage of functional domains. Second, by333

enforcing boundary symmetry but letting functional responses vary between hemispheres, our symmetric334

atlas version is particularly suited to study functional lateralization in the cerebellum. Third, the atlas335

is hierarchically organized, allowing for a consistent description of the cerebellum at different levels of336

granularity. Finally, the probabilistic group atlas can be combined with a short localizer scan to improve337

functional precision mapping of individuals, paving a way to a detailed analysis of small subregions in338

the future.339

Three-fold organization of the human cerebellum340

Consistent with previous studies [7, 33, 15], we found overall a three-fold spatial organization of the341

cerebellum. For most regions, we found a primary representation located between lobule I and Crus I, a342

secondary representation between lobule Crus II and lobule VIIIb, and a tertiary representation in lobule343

IX or X. The ordering of the regions was mirrored around the horizontal fissure, such that the demand344

region formed a shell around the social-linguistic-spatial regions, and the action and motor regions a shell345

around the demand regions. While regions S2-S4 appeared on the flatmap [19] to be spatially contiguous,346

the volumetric view revealed S4 that these regions too have anatomically distinct primary and secondary347

representations, separated by the horizontal fissure. This observation exemplifies the importance of348

considering how regions are distributed on a fully unfolded cerebellar cortical sheet [34] instead of solely349

relying on the crude approximation that is offered by our flatmap visualization [19].350

The group atlas also shows a third representations of cognitive regions in lobule IX. No third motor351

representation was found in the cerebellar hemispheres. Instead, a third representation of the motor352

regions in the inferior vermis has recently been described at the individual level using deep phenotyping353

approaches [22]. Our atlas, which included these data within its training set, now clearly shows this354

representation both at the group and the individual level S3.355

Damage to the primary motor representations leads to more severe deficits than damage to the356

secondary motor representation [35]. Based on this observation, it has been speculated that there are357

functional differences between the three representations [33]. So far, however, a definite demonstration of358

distinct response profiles among the three representations has remained elusive. Two lines of evidence cast359

doubt on a strong functional dissociation between these representations. First, our analysis of functional360

regions generally grouped the three representations together, implying a significant degree of shared361

functional profiles across datasets. Second, tracing studies have shown that a single axon from the inferior362

olive can branch into multiple climbing fibers [36] and innervate different regions in non-contiguous363

lobules [37]. Similarly, most ponto-cerebellar mossy fibres project to multiple lobules [38]. This suggests364

that all three representations, despite their spatial separation, may receive very similar, or even shared,365

climbing fiber and mossy fiber inputs. Therefore, it is not clear whether the multiple representations of the366

same functional region can be functionally distinguished. To facilitate further investigations, we provide367

an atlas version, in which each region is subdivided into a superior (lobule I - Crus I), inferior (Crus II -368

VIIIb), tertiary (lobule IX - lobule X), and vermal sections (vermis VII - vermis X). With one exception369

(S5), this subdivision separates the spatially non-contiguous aspect of each region.370

New functional insights371

Although the spatial pattern of most regions adheres to a three-fold organization, our new atlas reveals that372

several regions deviate from this principle, suggesting a more complex cerebellar functional organization.373

First, not all functional regions have all three representations, for example A3 and S5 only have an inferior374
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representation, whereas M1 only has a superior representation (supplementary Fig. S3a). Second, some375

regions with a primary and secondary representations are spatially connected in the volume (e.g., S1,376

supplementary Fig. S3a). It is presently unclear whether further details will suggest a parsimonious377

organization or, alternatively, as has evolved in the studies using intensive within-individual mapping,378

spatial complexity will emerge [15].379

Furthermore, while our atlas confirms the well-known functional regions of the cerebellum, it also380

uncovers regions that have not been reported or only recently identified. We describe two new regions381

in lobules VIII and IX, notably A3 which is engaged during spatial simulation and S5 which activates382

when constructing an imagined scene or engaging in specific forms of self-projection . Furthermore, the383

atlas revealed 5 medial-to-lateral organized regions in Crus I and II. A similar detailed subdivision has384

only been achieved at the individual level using several hours of scan time [27, 15]. This work showed385

that the default network can be divided into two parts, one that is associated with remembering and scene386

construction (network A), the other that is associated with social function (network B). Our atlas captures387

this distinction, with S4 showing some correspondence with default network A, and S2 and S3 with388

default network B.389

However, it is not clear a-priori that there should be 1:1 correspondence between the regions identified390

in this atlas and cerebral resting-state networks. Our atlas is based on data that is task-based and comes391

from the cerebellum only. It therefore offers a different and complementary approach to resting-state392

atlases, in which the networks are defined on the cerebrum, and the cerebellum subsequently labeled393

according to the best-matching network [7].394

Individual precision mapping395

Studying finely inter-digitated regions is difficult when using a group-level atlas. Inter-individual vari-396

ability is generally high in the cerebellum [39], and our analysis (Fig. 5d) shows that the location and397

arrangement of the multi-demand and social-linguistic-spatial regions are especially variable across398

individuals. These results stress the importance of using an individualized approach when studying399

cognitive regions of the cerebellum [40, 41, 42].400

The classic approach to individual localization is to run a short localizer scan (often 10 minutes) [31],401

based on the assumption that these individual-level boundaries reflect the subject’s organization better402

than boundaries defined by a group map, or through localization using resting-state network estimates403

[43]. However, experience suggests that substantial amount of scan data are required to predict individual404

functional data better than the group map. We confirm this by showing that the probabilistic group405

map provided by our new atlas is as good as 20 min of individual data (Fig. 5d), rendering individual406

localization based on only 10 minutes of data suboptimal. Increasing the individual scan time [15] often407

is not feasible, especially in the clinical context.408

Similarly to the Bayesian model proposed by Kong et al. [16], our new atlas offers an alternative,409

by optimally integrating even limited individual data ( 10 minutes) with the probabilistic group map.410

This integration yields a probabilistic map of regions in the individual that is better than both group and411

individual map.412

To apply this approach to a new subject in a new study, one needs to acquire some independent413

individual localization data (see below). Our framework can then be used to train a new dataset-specific414

emission model that characterizes - for each cerebellar region - the average group response on the tasks415

contained in that localizer scan. The final individual parcellations are obtained by combining the data416

likelihood with the probabilistic group map (see methods: Group and individual parcellations). This417

method enables the use of individual functional localization in studies for which the time with each418

individual is restricted. Even for longer localizer scans, our approach leads to significant improvement419

than using the individual data alone.420

An important consideration for a precision mapping approach remains the decision of whether to use421

task-based or resting-state data, and - if using the former - which localizer tasks to include. For many422

purposes, it seems advisable to include a set of anchor tasks able to activate each region of interest. We423

observed that task-based datasets that focused on a narrow functional domain resulted in precise estimates424

of boundaries for regions of that domain at the expense of region boundaries for other domains (Fig. 1a).425

In addition to tasks that tap into the domain of interest, it is likely beneficial to include tasks that426

activate spatially neighboring regions. For example, when aiming to study the language regions of the427

cerebellum[31], adding tasks that activate the neighboring multi-demand regions may help to obtain a428
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more precise estimate of the functional boundary between social-linguistic-spatial and multi-demand429

regions, which appear especially variable. The development of a principled approach to design optimal430

task-sets for functional localization remains an important question for future research.431

Lateralization432

The cerebellum’s importance in lateralized higher-order functions, particularly language, has reignited433

interest in lateralization studies of the cerebellum [18]. Studies of hemispheric specialization are most434

easily performed using a functional atlas that has regions matched in size and location across hemispheres,435

while as closely as possible representing functional boundaries. Prior studies that examined hemispheric436

differences in cerebellar development [18] or neurochemistry [44] had to rely on anatomical parcellations,437

even though these are not good descriptions of functional subdivisions [3]. Our symmetric atlas addresses438

this gap, and we show that the symmetry constraint had only a relatively small impact on its ability to439

identify functional subdivisions.440

Cerebro-cerebellar connectivity441

For each of the cerebellar regions, our framework also provides a cerebral connectivity pattern. We442

showed that a model that integrates data across diverse task-based dataset outperforms our previous model443

that was only trained on the MDTB dataset [28]. These patterns of cerebral connectivity not only provide444

an additional description of the identified regions but have two further practical applications.445

First, being able to identify a cerebellar region by its cerebral pattern of connectivity allows the use of446

resting-state data to localize these regions in single individuals [7, 15]. This enables the extension of the447

atlas to patient groups and young children and allows users to leverage the broadly available resting-state448

datasets.449

Secondly, the independent identification of the cerebral regions that communicate with each cerebellar450

region is an important prerequisite for further studies that investigates the functional differences between451

cerebral and cerebellar areas within the same functional module [45]. We therefore believe that the new452

atlas will provide an important resource for the study of the human cerebellum going forward.453

METHODS454

Datasets and data organization455

We used seven task-based and one resting-state fMRI datasets (see Supplemental Table 1). Each of the456

first four datasets comprised a broad battery of tasks tapping into cognitive, motor, perceptual, and social457

functions: (1) The Multi-Domain Task Battery dataset (MDTB, [3]), (2) a high-resolution version of the458

MDTB (High-res MDTB; not yet published), (3) the Nakai & Nishimoto dataset [46], and the (4) The459

Individual Brain Charting (IBC) dataset [47, 48]. We also included three further datasets to obtain a460

better description of the motor and executive functions: (5) the working memory (WM) dataset [45] which461

included finger movements and a forward / backwards digit span task; (6) the Multi-Demand dataset [26]462

which included a no-go, n-back, and task-switch task ; and (7) the Somatotopic dataset [22] which probed463

foot, hand, glutes, and tongue movements. Finally, we used the resting-state fMRI dataset Unrelated 100464

subjects, which is made publicly available in the Human Connectome Project (HCP) S1200 release [49].465

The task-based datasets were preprocessed as described in [8]. For each run and condition, we466

estimated one contrast image, and divided it by the root-mean-square-error from the first-level GLM467

to obtain a normalized activation estimate for each condition. These values served as the input data468

for all subsequent analyses. No smoothing or group normalization was applied at this stage. For the469

HCP resting-state data, we used minimally preprocessed time series [50]. The preprocessing pipeline470

included correction for spatial distortion and head motion, registration to the structural data, cortical471

surface mapping, and functional artifact removal [50, 51]. This resulted in 1200 time points of processed472

time series per imaging run per cerebellar voxel of the standard MNI152 template [52]. To obtain resting-473

state functional connectivity (rs-FC) fingerprints of the cerebellar voxels, we used a group Independent474

Component Analysis (ICA). We applied the group-ICA implemented in FSL’s MELODIC [53] with475

automatic dimensionality estimation to the temporally concatenated functional data of all subjects, sessions476

and runs, and selected the top 69 signal components. We then regressed the 69 group network spatial477

maps into each subject’s data, resulting in 69 subject-specific network time courses. The cerebellar rs-FC478

fingerprints were calculated as Pearson’s correlations of the cerebellar voxel time series with each cortical479

network time course.480
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Using a unified code framework (available at github.com/diedrichsenlab/Functional_481

Fusion), the data were then extracted in two atlas spaces. For the cerebellum, we computed the non-482

linear morph into the Symmetric MNI152NLin2009aSym template (http://nist.mni.mcgill.483

ca/?p=904). The functional data were resampled to 2mm isotropic resolution and a cerebellar gray484

matter mask with 18290 voxels was applied. After masking, a smoothing kernel of 2mm was applied. For485

the cortical-cerebellar connectivity models, the same data were projected onto individual surfaces, which486

are aligned to the symmetric freesurfer32LR template [54].487

Hierarchical Bayesian parcellation framework488

To integrate different dataset into a unified probabilistic parcellation atlas, we utilized a newly developed489

Hierarchical Bayesian Framework [for full details 8]. In short, the framework integrates different fMRI490

datasets, Ys,n, recorded in different sessions (n) from different subjects (s). The model assigns each of the491

possible brain locations in each individual to one of K functional parcels, with Us
k,i = 1 indicating that the492

ith voxel is part of the kth parcel. The model estimates the expected value of these parcel assignments,493

which provides a probabilistic parcellation for that individual.494

The model consists of two parts: First, a collection of dataset-specific emission models that specify495

the probability of each observed dataset given the individual brain parcellation, p(Ys,n|Us). Here, we496

used a van-Mises-Fisher mixture model, in which each parcel had a mean vector vn
k for each session, and497

a separate concentration parameter for each session [κn, Model Type 2, see 8]. Each emission model498

therefore had the parameters θ
n
E = {vn

1, ...,v
n
k ,κ

n}499

The second component, the arrangement model, specifies the group probability of each brain location500

belonging to a specific parcel. Here we used a model that treated each voxel independently, with501

p(Us
k,i) = softmax(ηk,i). The KxP arrangement model parameters θ A = {η1,1, ...} could therefore be502

estimated by averaging across all the individual probability maps.503

The parameters of the spatial arrangement models and the emission models were estimated together504

using an EM-algorithm. We used 5000 different random starting values to avoid local minima. For505

computational reasons, the initial fitting and evaluation was done using a 3mm isotropic voxel resolution -506

the final selected model was upsampled to 2mm and used as a starting value to refit to the higher resolution507

data.508

Symmetry constraint509

To achieve spatially symmetric parcellations, we developed a version of the arrangement model, where510

parcels 1...K/2 were restricted to the left hemisphere, and parcel K/2 + 1, ...,K to the right. The511

assignment of voxels to parcels was symmetric - that is if the left hemisphere voxel was assigned to512

parcel 1, the corresponding right hemispheric voxel was assigned to parcel K/2+1. As a consequence,513

symmetric brain locations were assigned to corresponding parcels. The mean functional profiles vn
k ,514

however, were estimated separately for the left and right hemispheric parcels. This allowed us to derive a515

spatially symmetric parcellation of the cerebellum, while still capturing the functional specialization of516

each hemisphere.517

To construct a corresponding asymmetric atlas, we removed the symmetry constraint, now allowing518

left and right-hemispheric voxels to be assigned to non-matching parcels. However, to retain the same519

number of regions, we retained the constraint that one half of the regions were in the left, the other half520

in the right hemisphere. To make the asymmetric atlas comparable to the symmetric version, we also521

used the fitted emission models (mean functional profiles) from the symmetric model, only refitting the522

arrangement model without the symmetry constraint. This resulted in an asymmetric version of the atlas523

in which the regions had the same functional profiles as in the symmetric version.524

Group and individual parcellations525

After fitting the parameters {θ A,θ
1
E , ...,θ

N
E}, the model can be used to derive both a group and individual526

parcellation maps. The probabilistic group parcellation is based only on the arrangement model, which527

directly specifies pgroup = p(U) for each voxel and parcel. Each individual parcellation is based on some528

individual training data, Yn
s . The data-only parcellation only depends on the corresponding emission529

model, with pdata,s ∝ p(Yn
s |Us). In contrast, the full individual parcellation integrates the probability from530

both emission and arrangement model pindiv,s ∝ p(Yn
s |Us)p(Us), using Bayes rule. For visualization and531

evaluation, both group and individual probabilistic parcellation were transformed into hard parcellations532

by assigning each voxel the parcel with the highest probability.533
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Individual precision mapping534

Our model provides a probabilistic group map (spatial arrangement model) and a probabilistic estimate of535

parcel membership based on a specific individual data set (using a dataset-specific emission model). By536

integrating these using Bayes rule, an optimal estimate of brain organization for a new individual can537

be obtained [8]. For the analysis presented in Fig. 5, we used 1-16 runs of data from the first task set of538

the MDTB dataset as training. The individual maps were then evaluated on the second task set, which539

contained 8 overlapping and 9 novel tasks [3].540

To apply this approach to new subjects with individual localizing data that is different from the541

task sets included in our atlas, the user would first estimate a new emission model from the data of all542

individuals in the study. This new dataset-specific emission model can be used to localize regions in new543

individuals, given their data.544

Single-dataset parcellations and similarity analysis of parcellations545

To compare the differences between parcellations derived from different datasets, we trained the model on546

each dataset separately, estimating parcellation maps with 10, 20, 34, 40 and 68 regions. As an index of547

parcellation similarity, we calculated the adjusted Rand Index (ARI) between the winner-take-all voxel548

assignments of the resulting parcellations. The ARI was calculated across all 5 levels of granularity,549

resulting in a 5x5 matrix of ARIs for each dataset pair. Different datasets are differently reliable which550

could affect the similarity of two datasets. We therefore estimated the reliability of the parcellation by551

averaging the ARIs between different levels of granularity within each dataset, with the idea that reliable552

datasets should result in parcellations that are consistent across granularities. We then divided the ARI553

(also average across levels of granularity) between two datasets by the geometric mean of the two average554

within-dataset ARIs. This index served as a reliability corrected measure of correspondence between555

parcellations.556

Statistical tests to compare the the similarity of two data set pairs were performed using a paired t-test,557

using reliability-corrected ARIs for the unique 25 different granularity pairs as independent observations.558

Finally, we used classic multi-dimensional scaling to visualize the structure of similarities between559

different parcellations. We calculated the first two eigenvectors of the square matrix of adjusted between-560

dataset similarities. The space defined by these two vectors optimally reproduces the overall similarity561

structure, with the dissimilarity (1-ARI) between two datasets reflected in the Euclidean distance between562

the two.563

DCBC evaluation564

To assess how well a given parcellation can predict functional boundaries in the cerebellum, we utilized the565

Distance-Controlled Boundary Coefficient (DCBC) [23]. This metric compares the correlation between566

voxel-pairs within a parcel to the correlation between voxel-pairs across a boundary, while accounting567

for spatial distance. Our evaluation included both the group parcellation (DCBC group) and individual568

parcellations (DCBC individual) obtained from this group atlas.569

Both group and individual DCBC were calculated in a cross-validated fashion, leaving out the test570

dataset during training of the overall model. The group DCBC was calculated by deriving a winner-take-all571

parcellation from the group probability map and evaluating the ability of these group-based boundaries to572

predict functional boundaries in each individual.573

To calculate the DCBC for individual parcellations, we used a localizer-like approach for individual574

precision mapping (see methods: individual precision mapping): One half of the test dataset served575

as the localizer data. First, we estimated a dataset-specific emission model for the localizer dataset576

across all subjects. Then, we used the localizer data from one specific subject to estimate the individual577

boundaries (see methods: group and individual parcellations). Hard-parcellated individual boundaries578

were derived using a winner-take-all approach on the subject’s resultant individual probability map. These579

were then tested for their ability to predict functional boundaries in the second half of the subject’s data.580

We then reversed the role of the two halves of the test set averaged performance across the two within-581

subject cross-validation folds. To make the evaluation of group-based and individual-based boundaries582

comparable, we also calculated the group DCBC by splitting each subject’s data in half and then averaging583

the performance across the two halves after individual DCBC calculation. A higher DCBC value indicates584

better performance of the parcellation.585
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Prediction error evaluation586

To assess the ability of a given parcellation to predict functional responses individual held out data, we587

calculated a prediction error. Using the same localizer-like approach as for the individual DCBC, we first588

derived the individual parcellations from one half of each dataset, and converted these to winner-take589

all maps. We then used the data from N −1 subjects of the second half to estimate the mean functional590

profiles (vk) for each region. For each voxel in the Nth subject, we then used the profile of the assigned591

region as a prediction and calculated the prediction error as one minus the cosine similarity of prediction592

and data vector. When averaging these results across voxels, we weighted each cosine error by the length593

of the data vector to ensure that voxels with high signal strength would influence our evaluation more594

than noisy voxels [8].595

Parcel similarity and clustering596

To develop a hierarchically organized system of maps, we started with the symmetric map with 68 parcels597

(34 per hemisphere) as our base. For clustering we derived a functional similarity index between parcels.598

We first averaged the estimated mean response vectors for each parcel and session vn
k across the left and599

right hemisphere, and then calculated the cosine similarity between each pair of parcels. We then took the600

weighted average of these cosine-similarities across sessions and datasets, with the weight of each session601

set to product if the dispersion parameter κn and number of subjects for that session Nn.602

We then iteratively merged the smallest parcels into the functionally most similar parcel, until603

all parcels had at least one voxel win the winner-take-all assignment, resulting in 32 parcels (16 per604

hemisphere). When merging parcels, we summed their probability maps to obtain the probability of a605

voxel to belong to the combined parcel. The emission models for the combined model were then refit606

to the data, keeping the probabilities in the arrangement model fixed. In a last step, we grouped the 32607

parcels (again, based on their functional profiles) into 4 domains. The labels for each parcel then followed608

the organization of Domain-Region-Hemisphere-Subregion.609

The colormap for our functional atlas was based on the weighted cosine similarity of the functional610

profiles (see above). We used classical multi-dimensional-scaling to represent these similarities in a611

3-dimensional space. This arrangement was then projected into RGB space, with 5 anchor points ensuring612

a consistent coloring across maps. As a result, the similarity of color of different parcels can be directly613

interpreted as an approximation of their functional similarity across task datasets.614

Functional lateralization and Boundary symmetry615

To study lateralization, we assessed the symmetry of the functional profiles of left-right voxel pairs. For616

this, we calculated the cosine similarity of the functional profiles of each voxel pair. Functional profiles617

were obtained by averaging the estimated mean response vectors for each voxel in each session. The618

cosine similarities were then weighted by the session weight κn and the number of subjects Nn, for session619

n.620

To investigate left-right boundary symmetry in the cerebellum, an asymmetric version of the atlas621

was estimated (see methods: Symmetry constraint). An index of boundary symmetry was calculated622

as the correlation between the parcel probability vectors of the asymmetric and the symmetric atlas for623

each voxel, either for the group map, or for the individual parcellations. For visualization, the correlation624

values within all datasets, excluding the Nishimoto and IBC dataset due to the relatively low reliabilities,625

were averaged across individuals.626

Cerebral cortical connectivity627

Connectivity models were fitted for each individual (and dataset) separately. As described in King et al.628

[28], we parcellated the cerebral cortex into 1876 parcels using a regular icosahedron. For task-based629

data we used the normalized activity estimates, for the resting-state data, the preprocessed time series630

(see methods: Datasets and data organization). These data were averaged across all voxels in each631

cerebral ROI, forming the NxQ matrix X. The same data was extracted for each cerebellar voxel in atlas632

space. The connectivity weights were then estimated to form the best predictive model Y = XW using633

Ridge-regression. The ridge coefficient was tuned for each dataset separately to yield the best prediction634

performance on all the other datasets.635

For evaluation, we averaged the connectivity weight across all subjects in each training dataset. For636

each individual in the evaluation dataset, we used the cerebral cortical activity measures and the average637
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connectivity weights to predict the individual cerebellar activity patterns. We then calculated the cosine638

similarity between the predicted and observed cerebellar activity [28].639

When evaluating a connectivity model on the same dataset it was trained on, we adopted a leave-640

one-subject out approach. For each individual, the connectivity weights were averaged across all other641

individuals in that dataset, and then applied to make the prediction for that single subject.642

Finally, we investigated if an integration across all datasets would increase the predictive power of643

the connectivity model. For this we simply averaged connectivity models across all task-based datasets,644

always taking care to leave the particular evaluation subject out of the averaging of the connectivity645

weights.646

Functional profiles for the MDTB dataset647

To characterize the functional profile of each cerebellar region, we calculated the mean task response648

of all parcels in the MDTB dataset. These functional profiles were the normalized activation estimates649

(see methods: Dataset and Data Organization), averaged across the individualized regions within each650

individual. To account for activation that can be explained by the motor aspects of each task, we used the651

number of movements in each condition (left hand presses, right hand presses and saccades per second) as652

a covariate alongside regressors that coded for each condition separately [3]. The columns of the design653

matrix and the average functional profiles were z-normalized across conditions. We estimated a linear654

model using ridge regression (L2 regularization) to arrive at a final estimate for the motor features and655

task-activations.656

Inter-individual variability657

To quantify inter-individual variability in the cerebellum, we calculated Pearson’s correlation coefficient658

of each voxel’s response profile pairwise between all subjects within the MDTB dataset. To account for659

the measurement noise, we derived two independent estimates for each subject and voxel: one from the660

first half, the other from the second half of the data. Correlations were computed on the concatenated two661

profiles and the reliability was calculated by correlating the two independent estimates of the response662

profile within each subject. The inter-subject correlation was normalized by dividing each value by the663

square root of the product of the two subject’s reliabilities. For purposes of visualization of each voxel’s664

inter-individual variability, we averaged the inter-subject correlation values across subjects and divided it665

by the reliability averaged across subjects, obtaining a single value per voxel. These voxel values were666

projected to the flatmap.667
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Kanwisher. New method for fMRI investigations of language: Defining ROIs functionally in754

individual subjects. Journal of Neurophysiology, 2010.755

[32] David Dodell-Feder, Jorie Koster-Hale, Marina Bedny, and Rebecca Saxe. fmri item analysis in a756

theory of mind task. NeuroImage, 55(2):705–712, 2011.757

[33] Xavier Guell, Jeremy D Schmahmann, John DE Gabrieli, and Satrajit S Ghosh. Functional gradients758

of the cerebellum. Elife, 7:e36652, 2018.759

[34] Martin I. Sereno, J. rn Diedrichsen, Mohamed Tachrount, Guilherme Testa-Silva, Helen D Arceuil,760

and Chris De Zeeuw. The human cerebellum has almost 80neocortex. Proceedings of the National761

Academy of Sciences of the United States of America, 117(32):19538–19543, 2020.762

[35] Catherine J. Stoodley, Jason P. MacMore, Nikos Makris, Janet C. Sherman, and Jeremy D. Schmah-763

mann. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar764

stroke. NeuroImage: Clinical, 12:765–775, 2016.765

[36] Renée F. Schild. On the inferior olive of the albino rat. Journal of Comparative Neurology, 1970.766

[37] I. Sugihara, H. S. Wu, and Y. Shinoda. The entire trajectories of single olivocerebellar axons in the767

cerebellar cortex and their contribution to cerebellar compartmentalization. Journal of Neuroscience,768

2001.769

[38] Mohammad Shahangir Biswas, Yuanjun Luo, Gideon Anokye Sarpong, and Izumi Sugihara. Diver-770

gent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. Journal771

of Comparative Neurology, 527(12):1966–1985, 2019.772

[39] Scott Marek, Joshua S. Siegel, Evan M. Gordon, Ryan V. Raut, Caterina Gratton, Dillan J. Newbold,773

Mario Ortega, Timothy O. Laumann, Babatunde Adeyemo, Derek B. Miller, Annie Zheng, Kather-774

ine C. Lopez, Jeffrey J. Berg, Rebecca S. Coalson, Annie L. Nguyen, Donna Dierker, Andrew N.775

Van, Catherine R. Hoyt, Kathleen B. McDermott, Scott A. Norris, Joshua S. Shimony, Abraham Z.776

Snyder, Steven M. Nelson, Deanna M. Barch, Bradley L. Schlaggar, Marcus E. Raichle, Steven E.777

19/30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2024. ; https://doi.org/10.1101/2023.09.14.557689doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.14.557689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Petersen, Deanna J. Greene, and Nico U.F. Dosenbach. Spatial and Temporal Organization of the778

Individual Human Cerebellum. Neuron, 100(4):977–993.e7, 2018.779

[40] Frank Van Overwalle, Min Pu, Qianying Ma, Meijia Li, Naem Haihambo, Kris Baetens, Natacha780

Deroost, Chris Baeken, and Elien Heleven. The Involvement of the Posterior Cerebellum in Recon-781

structing and Predicting Social Action Sequences. Cerebellum, 21(5):733–741, 2022.782

[41] Anila M. D’Mello, Peter E. Turkeltaub, and Catherine J. Stoodley. Cerebellar tdcs modulates783

neural circuits during semantic prediction: A combined tDCS-fMRI study. Journal of Neuroscience,784

37(6):1604–1613, 2017.785

[42] Anila M. D’Mello, John D.E. Gabrieli, and Derek Evan Nee. Evidence for Hierarchical Cognitive786

Control in the Human Cerebellum. Current Biology, 30(10):1881–1892.e3, 2020.787

[43] Rodrigo M. Braga, Lauren M. DiNicola, Hannah C. Becker, and Randy L. Buckner. Situating the788

left-lateralized language network in the broader organization of multiple specialized large-scale789

distributed networks. Journal of Neurophysiology, 124(5):1415–1448, 2020. PMID: 32965153.790

[44] Caroline Nettekoven, Leah Mitchell, William T. Clarke, Uzay Emir, Jon Campbell, Heidi Johansen-791

Berg, Ned Jenkinson, and Charlotte Stagg. Cerebellar GABA Change during Visuomotor Adaptation792

Relates to Adaptation Performance and Cerebellar Network Connectivity: A Magnetic Resonance793

Spectroscopic Imaging Study. The Journal of Neuroscience, 42(41):JN–RM–0096–22, sep 2022.794

[45] Ladan Shahshahani, Maedbh King, Caroline Nettekoven, Richard Ivry, and Jörn Diedrichsen. Se-795

lective recruitment: Evidence for task-dependent gating of inputs to the cerebellum. bioRxiv, pages796

2023–01, 2023.797

[46] Tomoya Nakai and Shinji Nishimoto. Quantitative models reveal the organization of diverse cognitive798

functions in the brain. Nature communications, 11(1):1–12, 2020.799

[47] Ana Luı́sa Pinho, Alexis Amadon, Torsten Ruest, Murielle Fabre, Elvis Dohmatob, Isabelle Denghien,800
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1 DATA AVAILABILITY825

The raw data for the fMRI studies used in this project are publicly available on https://openneuro.826

org/ for the MDTB dataset, the Nishimoto dataset and the IBC dataset. For the HCP dataset, raw and pre-827

processed data is available at https://www.humanconnectome.org/study/hcp-young-adult/828

data-releases. The MDTB-Highres, WMFS and Somatotopic dataset has not yet been openly re-829

leased.830
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2 CODE AVAILABILITY831

The code for building the atlas and generating the results and figures in this paper is publicly available as the832

GitHub repository https://github.com/DiedrichsenLab/ProbabilisticParcellation.833

The code for the hierarchical Bayesian parcellation framework is available at https://github.834

com/DiedrichsenLab/HierarchBayesParcel. The organization, file system, and code for835

managing the diverse set of datasets is available at https://github.com/DiedrichsenLab/836

Functional_Fusion.837
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SUPPLEMENTARY MATERIALS AND FIGURES848

Name Subjects No. conditions min/subject Voxel size (mm) Description

MDTB 24 62 320 3T, 3mm Cognitive, motor, perceptual, social

Highres-MDTB 8 9 120 7T, 1.5mm Cognitive, motor, perceptual, social

Nishimoto 6 103 162 3T, 2mm Cognitive, motor, perceptual, social

IBC 12 208 822 3T, 1.5mm Cognitive, motor, perceptual, social

WM 16 17 65 3T, 3mm Motor and working memory task

Multi-demand 37 12 100 3T, 2mm Executive Tasks

Somatotopic 8 6 96 1.8/2.4 Motor

HCP-Unrelated 100 100 none 60 3T, 2mm Resting-state

Table 1. FMRI datasets used for the functional fusion. All datasets but the last are task-based. The
last one refers to resting-state data from a subset of the HCP dataset.
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Figure S1. Fused atlas performance compared to existing atlasses. DCBC evluation of existing
anatomical parcellation (Lobular: [5]), task-based parcellation (MDTB: [3], and resting-state
parcellations (7 and 17 regions: [7]; 10 regions: [6]) averaged across all datasets.
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Figure S2. Functional profiles of regions in MDTB dataset. Average activity relative to the mean
activity in all tasks in MDTB dataset corrected for motor features. Responses were estimated from
subject-specific regions and averaged across subjects for visualization. To account for activation that can
be explained by the motor aspects of each task, number of movements were used as covariates alongside
regressors that coded for each condition separately. Movements were left hand presses, right hand presses
and saccades per second.
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Figure S3. Probability maps and region size. a, Probability maps for each region displayed on the flat
representation. b, Size estimate for each region in terms of the number of voxels (2mm3) using
winner-take-all assignment. c, Size estimate for each region in terms of the number of voxels (2mm3)
using probabilistic assignments.
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Figure S4. Atlas in volumetric space. Atlas shown at medium granularity (32 regions; 16 per
hemisphere). Top row shows motor and action regions, middle row shows multi-demand regions and
bottom row shows social-linguistic-spatial regions. Horizontal fissure is marked in white.
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Figure S5. Regional differences in functional responses for selected tasks. a-b, Spatial imagery,
theory-of-mind, motor imagery and rest separate social-linguistic-spatial (S1-5) regions. c-d, Verb
generation, spatial map, and animated movie tasks seperate social-linguistic-spatial regions from other
domains. For c, only the right regions are shown and for d only the left regions are shown. For the other
panels the responses are shown averaged across hemispheres.
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Figure S6. Cortico-cerebellar connectivity weights and probability maps. Parcel probability maps
for motor (a-d) and action (e-h) regions are shown in the middle of each figure inset, surrounded by the
cortical input weights for the left and right cerebellar parcel. Weights for the left cerebellar parcel are
shown to the left of the probability map and for the right cerebellar parcel to the right of each probability
map on the cortical flatmap. Motor regions include oculomotor vermis M1 (a), tongue and vermal region
M2 (b), hand M3 (c)) and lower body M4 (d)) region. Action regions include spatial simulation regions
A1 (e), classical action observation A2 (f) and motor imagery region A3 (g).
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Figure S7. Cortico-cerebellar connectivity weights and probability maps for demand. Parcel
probability maps for multiple demand (a-d) and social-linguistic-spatial (e-h) regions are shown in the
middle of each figure inset, surrounded by the cortical input weights for the left and right cerebellar
parcel. Weights for the left cerebellar parcel are shown to the left of the probability map and for the right
cerebellar parcel to the right of each probability map on the cortical flatmap. Demand regions include
spatial working memory region (a), recall regions (b), difficulty-related (c)) and n-back region (d)) region.
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Figure S8. Cortico-cerebellar connectivity weights and probability maps for
social-linguistic-spatial regions. Parcel probability maps for multiple demand (a-d) and
social-linguistic-spatial (e-h) regions are shown in the middle of each figure inset, surrounded by the
cortical input weights for the left and right cerebellar parcel. Weights for the left cerebellar parcel are
shown to the left of the probability map and for the right cerebellar parcel to the right of each probability
map on the cortical flatmap.social-linguistic-spatial regions include linguistic region S1 (a), social region
S2 (b), rest region S3 (c), self-projection region S4 (d) and scene construction region S5
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Figure S9. Individual functional lateralization for each dataset. Functional lateralization calculated
as the correlations of the functional responses of anatomically corresponding voxel of the left and right
hemisphere. Functional lateralization was averaged across subjects within each dataset.
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Figure S10. Size difference between left and right region pairs of the asymmetric atlas. Regions
were estimated in individual subjects using the asymmetric atlas version. The size difference was
calculated as number of voxels (2mm3) in right parcel minus number of voxels in left parcel for each
individual. Bars show average size difference across individuals and error bars indicate standard error of
the mean.
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