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Abstract

The three-dimensional (3D) nuclear organization of chromatin in eukaryotes plays a crucial
role in gene regulation, DNA replication, and DNA damage repair. While genome-wide
ensemble methods have enhanced our understanding of chromatin organization, they lack
the ability to capture single-cell heterogeneity and preserve spatial information. To overcome
these limitations, a new family of imaging-based methods has emerged, giving rise to the
field of spatial genomics. In this study, we present pyHiM, an open-source and modular
software toolbox specifically designed for the robust, automatic analysis of sequential spatial
genomics data. pyHiM enables the reconstruction of chromatin traces in individual cells from
raw, multicolor images, offering novel, robust and validated algorithms, extensive
documentation, and tutorials. Its user-friendly graphical interface and command-line interface
allow for easy installation and execution on various hardware platforms. The software
employs a modular architecture, allowing independent execution of analysis steps and
customization according to sample specificity and computing resources. pyHiM supports
preprocessing, spot detection, mask detection, and trace generation, generating
human-readable reports and intermediate results for data validation and further analysis.
Moreover, it offers additional features for data formatting, result display, and post-processing.
pyHiM's scalability and parallelization capabilities enable the analysis of large, complex
datasets in a reasonable time frame. Overall, pyHiM aims to facilitate the democratization
and standardization of spatial genomics analysis, foster collaborative developments, and
promote the growth of a user community to drive discoveries in the field of chromatin
organization.
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In eukaryotes, the three-dimensional (3D) nuclear organization of chromatin is tightly
controlled and plays an active role in gene regulation, DNA replication and DNA damage
repair. In the last decade, genome-wide ensemble methods, such as Hi-C and 3C 1, have
revolutionized our understanding of genome structure at the kilobase-to-megabase scale by
revealing the complex organization of chromatin into compartments, topologically-associating
domains, and chromatin loops 2,3. However, these bulk approaches are unable to dissect
single-cell heterogeneity or preserve spatial information in tissue 4–6.

Recently, a new family of imaging-based methods was developed to trace the 3D
conformation of chromatin in single cells, giving rise to the field of spatial genomics 7–11 (Fig.
1a). These techniques perform sequential imaging of genomic loci with a precision of a few
tens of nanometers, allowing for the 3D mapping of a given region of chromatin at kilobase
resolution in thousands of individual cells 8,9,12. Our specific implementation, called Hi-M,
couples detection of chromatin structure and transcriptional output 8 (Fig. 1a). Since their
creation, spatial genomics methods based on sequential imaging were successfully used for
the detection of short- and long-range chromatin interactions in multiple model systems,
including mammalian cultured cells, fly embryos, and mouse tissues 7–10,12. Critically,
imaging-based spatial genomics technologies complement transcriptomic surveys of single
cells in their spatial context and thus have the potential to lead to important new discoveries
in multiple fields, including 3D genomics, transcriptional regulation, DNA replication, or DNA
repair.

In recent years, several efforts were made to promote a wider use of these new technologies
by sharing experimental and image analysis protocols 7,13–16. However, democratization of
spatial genomics will require the development of open-source and user-friendly software
packages for reconstructing chromatin traces (i.e. unique sets of 3D coordinates describing a
locus conformation in an individual cell) from raw, 3D, multicolor images 17. To this end, such
software should: 1) provide access to validated cutting-edge techniques required for the
analysis of spatial genomics data, 2) use a license-free programming language, 3) provide
extensive documentation and tutorials to guide new users and allow development of new
functionalities, 4) adopt a modular architecture to facilitate adaptation to future developments
in spatial genomics, and 5) use novel analysis methods to ensure robust, automatic analysis
of large data sets (several Tb per experiment) without user input in reasonable times.

To address these needs, we introduce pyHiM, an open-source, modular and scalable
software toolbox specifically designed for sequential spatial genomics data analysis (Fig. 1a).
pyHiM comes with extensive user and developer documentation, as well as tutorials that
illustrate typical analysis pipelines (Fig. 1b). It can be easily installed using standard package
management tools (conda and PyPi, Fig. S1), and conveniently runs in both Windows and
Linux (Fig. 1c). A single human-readable configuration file is used to centralize all analysis
parameters and can be edited thanks to a user-friendly graphical user interface (GUI) (Fig.
S1). In addition, a command-line interface enables execution on multiple hardware platforms,
from laptop computers to high-performance computing (HPC) clusters. Functionality can be
tuned according to local hardware specifications, acquisition conditions (e.g. number of
channels, size of 3D image stacks), and sample properties.

The analysis pipeline of pyHiM is organized in modules, each performing a specific analysis
task. The inputs of pyHiM are 3D image stacks in the universal TIFF format (Figs. 1a, 1d).
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Deconvolution of images before pyHiM execution is not mandatory for pyHiM analysis but, in
our experience, improves the quality of the results and the statistics of reconstructed
chromatin traces.

The pre-processing module organizes images by field of view (FOV) and by the type of probe
imaged: DNA-FISH spots, nuclear/ oligopaint library masks, fiducial marks, or RNA
expression. For each FOV, pyHiM first performs a projection and global registration using
fiducial images acquired at each cycle as references (Fig. 1e). To improve the robustness of
this step, we implemented a new method whereby the image is decomposed in blocks that
are independently co-aligned. A polling step then determines the most popular global
registration and applies it to the whole image (Fig. S2a). This step allows for a global
correction of thermal drift and stage repeatability error even for cycles with fiducial images
displaying local distortions. Samples such as embryos or tissues may often display local
deformations during acquisition of different cycles which can not be taken into account by
global registration algorithms. Thus, we developed a new local registration algorithm that
optimizes 3D registrations locally to correct for 3D sample deformations (Figs. S2b, c).

The spot detection module performs segmentation and localization of DNA-FISH spots with
sub-pixel accuracy of all sequential imaging rounds, using a combination of Deep Learning
(DL)-powered spot segmentation followed by robust and automated 3D Gaussian fitting.
3D-DL segmentation is performed using a StarDist neural network 18 trained to robustly
detect 3D-Point Spread Functions (PSF) in diverse sample types and illumination conditions.
We obtained this network after extensive simulations of PSFs with different signal-to-noise
ratios and inhomogeneous background levels. Next, based on the centroid position of each
DL-mask, a robust 3D Gaussian fit of the intensity distribution is performed using Big-FISH
(Figs. 1f and S3) 19.

The mask detection module segments nuclei in 3D using pre-trained StarDist neural
networks models 18 (Fig. 1f). Other custom models based on StarDist or other popular
architectures (e.g. Cellpose 20) can also be integrated via a plugin. Finally, DNA-FISH spots
localized within the same mask are combined into chromatin traces, which are assigned a
universally-unique identifier and tabulated in human-readable Enhanced
Character-Separated Values (ECSV) format (Figs. 1g and S4). Additional labels, based on
RNA expression levels or spatial cell distribution, can be assigned to each single trace,
allowing for cell/tissue-specific post-processing analysis (Fig. 1h).

Thanks to pyHiM's modular architecture, each analysis step in the pipeline (registration,
detection, tracing, etc) can be run independently. Users can tailor the analysis workflow
according to their sample specificity, acquisition conditions and available computing
resources (Fig. 2a). Intermediate results, such as unfiltered localizations or traces, are saved
in ECSV format after each module execution, allowing the user to perform custom data
validation or additional analysis. Finally, each module produces reports in human-readable
markdown files with snapshot images illustrating the performance of the analysis for each
cycle and FOV. This allows the user to efficiently assess the quality of the analyses and
eventually fine-tune parameters to improve them (Figs. 2a-c and S2, S3). pyHiM can
successfully analyze experimental data acquired from a variety of sample types, ranging from
fly embryos to mouse and human tissues (Figs. 2d-e).
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pyHiM also offers a number of additional features that facilitate data formatting, result display,
and post-processing. For instance, DNA-FISH spot detection efficiency and maps of the
pairwise distance (PWD) distributions between DNA-FISH spots from different cycles (Fig.
2c), or proximity frequency matrices for specific cell-types (Fig. 2d). Another important feature
of pyHiM is its ability to perform rapid analysis in 2D (Fig. 2e). In this mode, pyHiM projects
signals from DNA-FISH spots and masks in 2D, and performs registration, segmentation,
spot localization, and tracing in 2D. Contact maps computed using the 2D pipeline show all
the relevant features of 3D maps (long-range contacts, TADs, etc), but require ~5x less
computation time (Figs. 2e-f) and can therefore be used to quickly assess the quality of the
acquired dataset before full 3D analysis.

Finally, a critical aspect of multiplexed DNA-FISH imaging is the amount of data generated,
typically ~1-3 Tb per experiment depending on the number of cycles and the number of
FOVs. To handle and analyze such large volumes of data in a reasonable time, we have
implemented a parallelization mode based on the Dask Python package. For this, pyHiM
analyzes data associated with different hybridization cycles in parallel, while keeping the
technical aspects transparent to the user, leading to a drastic shortening in computation time
(Figs. 2f-g). Conveniently, a reporting web-server based on Bokeh can be launched to
monitor analysis status and performance in real-time (Fig. S4c). As a result, pyHiM can run
indifferently on a laptop or an HPC cluster and be tuned according to the technical
specificities of both (e.g. number of CPUs, available memory, availability of GPUs, etc).

In summary, we describe pyHiM, a modular, user-friendly, well-documented tool for chromatin
tracing analysis based on sequential DNA-FISH imaging. pyHiM can be used to analyze data
produced by Hi-M or by other spatial genomics methods. Thus, we envision that the adoption
of pyHiM will enable the growth of a new user community for this active field of research.
Indeed, as data acquisition and sample preparation become standard and even commercially
available, a final bottleneck for widespread adoption will be the availability of flexible image
analysis tool boxes dedicated to chromatin tracing. Thus, a well-tested and user-friendly
analysis pipeline such as pyHiM will be key to break barriers to adoption of spatial genomics
by users and microscopy facilities, to promote transparent image analysis pipelines in the
field, and to create a large user community to accelerate discoveries and new developments.
The modularity, open-source nature, and extensive developer documentation of pyHiM were
purposefully designed to promote collaborative developments, to standardize and benchmark
image analysis practices, and to facilitate reuse of existing algorithms to implement analysis
tools for novel technologies in the blooming field of spatial genomics.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558412doi: bioRxiv preprint 

https://www.dask.org/
https://bokeh.org/
https://doi.org/10.1101/2023.09.19.558412


Methods

Inputs
The two minimal inputs of pyHiM are: a dictionary of parameters (infoList.json) and a list of
images to process. infoList.json contains acquisition parameters (e.g. pixel size), file
formatting parameters (e.g. regular expression to decode filenames), and all the parameters
that are required for the execution of each module in pyHiM. For detailed information on the
infoList.json parameter file, please refer to our online resource: Input Parameters.
Input images can be of two types: DNA-FISH spots for a given cycle, and masks used for
tracing. The latter can be either nuclear masks (e.g. from DAPI labeling) or from a cycle
where the whole oligopaint library is labeled and imaged at once. Both DNA-FISH and mask
images must be accompanied by a corresponding fiducial image used for registration (see
Registration section below). Images are assumed to be in the universal and non-proprietary
TIFF format. Use of deconvolved images is recommended but not compulsory.

Projection
We developed a tool for image reprojection (module: makeProjections). This step is
necessary for lateral global drift alignment (see Registration section below) and for the rapid
visual inspection of input files. Sum and maximum projections are implemented and
configured through the infoList.json parameters file. We recommend the former for masks
and the latter for DNA-FISH images. makeProjections allows for the manual selection of the
z-range, and implements an automatic algorithm to robustly retrieve the in-focus plane.
Briefly, this method estimates the optimal in-focus plane by calculating the maximum of the
laplacian of the intensity profile along the z-axis. The calculation is performed block-by-block
to take into account local variability and sample drift. More details on the methods and the
execution of this module can be found in the online description of the makeProjections
module.

Registration
We implemented two registration methods to obtain automatic and robust global and local
realignments. The alignImages module performs global realignments by registering the 2D
z-reprojected fiducial images using 2D cross-correlation. This method, however, can be
unreliable when fiducial images contain impurities that vary between cycles. To solve this, we
developed a second algorithm (alignByBlock) that uses block-by-block decomposition to
determine the best registration for each block. This calculation is followed by a polling
operation that retrieves the most satisfactory global registration. This second method is highly
robust to impurities. More details on the methods and the execution of this module can be
found in our online description of the alignImages module. Once registrations for each cycle
are processed, the module appliesRegistrations re-interpolates 2D images of DNA-FISH
spots and masks to provide a visual input of the performance of global registrations for each
hybridization cycle.

Biological samples can display local deformations (typically in the hundreds of nm range)
during the long-term acquisition times of a HiM dataset. These distortions cannot be properly
corrected by global 2D realignment routines. To tackle this issue, we developed a new
registration method that performs local 3D registration. In this method, images are first
globally realigned in 2D. Next, fiducial images are decomposed in 3D blocks and each block
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is realigned by 3D cross-correlation and re-interpolation. The resulting local block corrections
are stored as an ASTROPY table 21 that is used by the register_localizations module (see
section below). More details on the methods and the execution of this module can be found
in our online description of the alignImages3D module.

Segmentation and detection
Three different modules were built to deal with the segmentation and detection of DNA-FISH
spots and masks. First, we developed a module for the segmentation and localization of
masks and sources in 2D (module: SegmentMasks). Mask and DNA-FISH images are
segmented using startdist with pre-trained networks. Segmented objects are filtered by size
and shape, while merged objects are split using the watershed algorithm. DNA-FISH spots
are fitted using the highly efficient DAOStarFinder algorithm from photutils 23, and
post-processed using filter_localizations.
Second, we developed a module specifically designed to segment masks in 3D (module:
segmentMasks3D). segmentMasks3D relies on deep-learning segmentation using a network
that we trained specifically to robustly segment nuclei in 3D with stardist 22. Other DL
segmentation tools, such as cellpose 20, can be used to further increase the flexibility of mask
segmentation for different biological samples. segmentMasks3D then post-processes 3D
masks by size and shape filtering, and applies a watershed algorithm to split merged masks.
The output of segmentMasks3D is a 3D labeled image used by the build_traces module to
group localizations into single chromatin traces (see Tracing section below). More details on
the methods and the execution of this module can be found in our online description of the
segmentMasks3D module.
Finally, we developed a module for the segmentation and localization of DNA-FISH spots
(module: segmentSources3D). segmentSources3D segments DNA-FISH spots by using a
stardist DL network trained to detect PSFs in 3D. This network was optimized by training the
DL network on simulated data displaying large variations in signal-to-noise ratios, local
background inhomogeneities, and intensity levels. After segmentation, segmentSources3D
fits the intensity distributions within DNA-FISH spot masks with a 3D-Gaussian model using
non-linear regression with functions from Big-FISH 19. The output segmentSources3D is an
ASTROPY table containing the xyz coordinates, identities, and properties of all the
localizations. Localizations with low intensities are filtered in post-processing using the
module filter_localizations. A final step before tracing involves the application of local
registrations to the localization tables obtained from segmentMasks or from
segmentSources3D using the register_localizations module. The DL networks trained for
pyHiM are available from our pyHiM OSF repository

Tracing
The final step involves the grouping of DNA-FISH spots belonging to the same chromatin
fiber (module: build_traces). This is accomplished in an iterative manner by grouping together
localizations that belong to each segmented object in a mask image (either from nuclei or
from labeling the entire oligopaint library). The output of build_traces is a trace table in
ASTROPY format where each trace is stamped with a universal unique identifier to enable
the automatic merging of multiple trace tables while avoiding misattributions. More details on
the methods and the execution of this module can be found in our online description of the
build_traces module.
We developed several tools for post-processing of trace tables. Trace_selector finds traces
that match specific morphological or gene-expression patterns by matching trace localization
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with user-provided 3D masks. Trace_combinator merges traces from different FOVs or
different experiments. Trace_filter is a general tool for filtering traces that can remove specific
barcodes from a trace table, remove duplicated localizations from single traces, and perform
spatial filtering. Trace_analyzer analyzes a trace table to calculate the distribution in the
number of barcodes detected per trace, the number of times each barcode appears in single
traces, and the spatial clustering of traces.
Finally, we developed an algorithm that builds maps from trace tables (module: build_matrix).
This tool produces conventional pair-wise median distance maps, relies on kernel-density
estimators to accurately calculate the maximum of each distance distribution, and calculates
proximity distance maps for user-specified threshold distances. Build_matrix produces
N-maps which contain the number of localizations detected for each combination of
barcodes, a diagnostic tool that is fundamental to determine the performance of an
experiment and the robustness of detection for each barcode pair. More details on the
methods and execution of this module can be found in our online description of the
build_matrix module.

Code availability
The latest stable and development versions of pyHiM are publicly available at our Github
repository: https://github.com/marcnol/pyHiM. The online documentation is available at:
https://pyhim.readthedocs.io/en/latest/.
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Figure legends

Figure 1
a- Schematic description of Hi-M microscopy: Chromatin is imaged through multiple
acquisition cycles, each targeting a specific genomic locus using a set of unique DNA-FISH
oligonucleotides targeted by a complementary, fluorescently-labeled oligonucleotide. A
fiducial marker is simultaneously imaged to allow for registration and drift correction during
post-processing. Using pyHiM, the 3D conformation of the target locus is reconstructed for
each individual cell.
b- pyHiM is an open source project hosted on GitHub. Extensive documentation and Jupyter
notebooks are available for users and developers.
c- pyHiM is developed in Python and runs indifferently on Linux and Windows.
d- Input data: 3D images are organized by imaging channel (DAPI, fiducial, DNA-FISH spots,
etc.) and FOV. A single json file combines all parameters needed to run the analysis pipeline.
e- 3D images are pre-processed by calculating the maximum intensity projection and
applying 2D registration based on the fiducial images.
f- Masks for nuclei, oligopaint libraries, and DNA-FISH spots are computed using pre-trained
deep learning models. Individual DNA-FISH spots are localized with sub-pixel accuracy using
big-FISH.
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g- Individual traces are built by combining the localizations of all DNA-FISH spots detected
within the same mask. Results are saved in ECSV format.
f- Post-processing analyses are performed to obtain pairwise distance and proximity
frequency matrices for each combination of DNA loci, and for different spatial regions of the
sample containing different cell types.

Figure 2
a- Illustration of a typical pyHiM analysis on mouse tissues: examples of raw data are shown
in the top row and the most relevant pyHiM outputs are shown in the bottom row. From left to
right, raw DAPI data are segmented to compute the 3D masks of each individual nucleus.
Next, 2D & 3D registration of the fiducial is performed for each imaging cycle, and the quality
of the correction can be quickly assessed based on the output image. Then, the localization
of individual DNA-FISH spots is performed in two steps: first, a 3D mask of each DNA-FISH
spot is computed using deep learning. Then, using the mask position as a reference, the
sub-pixel localization of the spot is inferred using big-FISH. Scalebars = 8µm.
b- Chromatin tracks are calculated by combining all individual DNA-FISH spot localizations
detected within the same nuclear mask. Each individual trace represents a snapshot of the
locus conformation within a single cell (see reconstruction with two different orientations).
c- Data quality assessment: (top) The N-matrix represents the number of times that each pair
of DNA loci was detected in the dataset, and is indicative of their detection efficiency.
(Bottom) The distribution of pairwise distances between DNA-FISH spots in the same
chromatin trace is plotted to ensure that there is no major error in the analysis (detection
threshold, etc.).
d- Traces computed by pyHiM were sorted based on RNA expression profiles in NC14 fly
embryos and assigned to specific cell types (e.g. mesoderm vs. neuroectoderm). Specific
long-range interactions and chromatin organization are observed for each cell type.
e- Fast 2D analysis based only on the projected 3D data is used to optimize parameters and
test data quality. An example from mouse tissue data shows the pairwise distance maps
computed using 2D (top) and 3D (bottom) analysis. The 2D map captures most of the
features that characterize the conformation of the studied locus.
f- Comparison of pyHiM execution times for different number of cycles, and for a desktop
computer (Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, CPUs: 12, Cores: 6, Threads per
core: 2, Memory: 16Gb) or a multi-threaded server (AMD EPYC 7702 64-Core Processor
3.34GHz, CPUs:256, Cores: 128, Threads per core: 2, Memory: 512Gb).
g- Performance of pyHiM using single-threaded or DASK-powered multi-threading.

Supplementary Figure 1
a- List of all the python Packages used by pyHiM and their versions.
b- Graphical user interface for pyHiM parameter setting routine.

Supplementary Figure 2
a- pyHiM first performs a 2D registration on projected 3D images: Example of two
superimposed fiducial images before (left) and after (middle) registration. The registration can
be performed globally or locally. In the latter case, the image is divided into an array of 8x8
blocks and the registration is computed separately for each block. The block correction map
(right) shows the shift along the x-axis applied to the registered image (in pixels, 1 pixel is
105 nm). Scalebars = 25 µm.
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b- The 2D global registration can be affected by local sample deformation, and a 3D
block-by-block routine is used to further improve the correction. Again, a local correction is
computed by dividing the 3D images into an array of 16 x 16 x 16 blocks. A quick
assessment of the correction quality can be made based on the overlaid images. Scalebars =
25 µm.
c- Average block correction maps for 3D registration are used to check for errors or
unexpected deformation of the sample during the experiment.

Supplementary Figure 3
a- DAPI-stained nuclei are imaged in a Drosophila embryo (left) and segmented using
StarDist (right). Scalebar = 25µm.
b- Using a library of oligonucleotides targeting a large genomic region, bright 3D fiducial
images are acquired in mouse tissue (left). Using custom trained StarDist models, the images
are segmented and individual masks are computed for each fiducial. Scalebar = 25µm.
c- For each round of acquisition, individual DNA-FISH images are analyzed and sub-pixel
localizations are computed using big-FISH. Each detection is assigned a unique ID and
saved together with its x, y, z localizations and intensity in a .dat file. The table summarizes
all the parameters available for each detection.
d- The distribution of peak intensity is plotted against spot localizations along the z-axis.
Such data can be used to further optimize the intensity threshold used for detection and
check for illumination artifacts.
e- Example of detection output. Each individual detections are represented by a spot of color
overlay with the maximum intensity projection of the original image (in inverted grayscale).
Scalebars = 25µm.

Supplementary Figure 4
a- 3D representation of example chromatin traces.
b- Format of the chromatin table output file.
c- Snapshot of Bokeh server displaying the advancement of a pyHiM execution in parallel
mode.
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