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Abstract

Bistable perception involves the spontaneous alternation between two exclusive
interpretations of a single stimulus. Previous research has suggested that this perceptual
phenomenon results from winnerless dynamics in the cortex. Indeed, winnerless
dynamics can explain many key behavioral characteristics of bistable perception.
However, it fails to explain an increase in alternation rate that is typically observed in
response to increased stimulus drive and instead predicts a decline in alternation rate.
To reconcile this discrepancy, several lines of work have augmented winnerless dynamics
with additional processes such as global gain control, input suppression, and release
mechanisms. These offer potential explanations at an algorithmic level. But it remains
unclear which, if any, of these mechanisms are implemented in the cortex and what their
biological substrates might be. We show that the answers to these questions lie within
the architecture of the cortical microcircuit. Utilizing a dynamic mean field approach,
we implement a laminar columnar circuit with empirically derived interlaminar
connectivity. By coupling two such circuits such that they exhibit competition, we are
able to produce winnerless dynamics reflective of bistable perception. Within our model,
we identify two mechanisms through which the layered structure of the cortex gives rise
to increased alternation rate in response to increased stimulus drive. First, deep layers
act to inhibit the upper layers, thereby reducing the attractor depth and increasing the
alternation rate. Second, recurrent connections between superficial and granular layers
implement an input suppression mechanism which again reduces the attractor depth of
the winnerless competition. These findings demonstrate the functional significance of
the layered cortical architecture as they showcase perceptual implications of
neuroatomical properties such as interlaminar connectivity and layer-specific activation.

Author summary

In our study, we explore the mechanistic underpinnings of bistable perception, a
phenomenon where a single visual stimulus can be perceived in two distinct ways, and
where our percept alternates spontaneously between interpretations. Although
winnerless competition mechanisms have been widely recognized to govern this, they fall
short in explaining why we observe more perceptual alternations with a stronger
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stimulus. To uncover the cortex’s role in this discrepancy, we constructed a detailed
model that mirrors the layered structure and interlaminar connections of the cortex.
Remarkably, the architecture of these layers emerged as instrumental players. We
discovered that the deeper layers of the cortex seem to inhibit the upper layers,
facilitating a quicker alternation between perceptions when stimulated. Additionally,
the interlaminar recurrent connections between the upper ’output’ layer and middle
’input’ layer appeared to destabilize the prevailing interpretation of the stimulus, leading
to faster alternations. Our research illuminates how the complex architecture of the
cortex, particularly the interconnections between its layers, plays a pivotal role in
influencing our perception. The layered structure of the cortex goes beyond mere
anatomy; it influences our perceptual experiences.

Introduction 1

Bistable perception refers to the phenomenon wherein the subjective experience of an 2

observer spontaneously alternates between two mutually exclusive interpretations of the 3

same physical stimulus [9, 34]. This phenomenon is integral to the study of visual 4

perception as it provides insights into the neural mechanisms that underlie perceptual 5

decision-making and awareness [36,48,54,57]. Behaviourally, bistable perception is 6

typically characterized in terms of dominance duration and alternation rate. Dominance 7

duration is the duration for which one interpretation is maintained whereas alternation 8

rate is the number of perceptual alternations within a predefined time interval. 9

Statistical generalities of these behavioral measures of bistable perception have been 10

consolidated as Levelt’s four propositions [11,35]. The first two propositions pertain to 11

dominance duration statistics and state that 1) the interpretation receiving larger 12

stimulus drive (stronger evidence) exhibits longer dominance durations and that 2) 13

dominance duration increases monotonically with stimulus drive (Fig 1A). The third 14

and fourth proposition pertain to alternation rate. Specifically, the third proposition 15

states that alternation rate is maximal when both interpretations receive equal stimulus 16

drive and reduces as stimulus drive diverges between interpretations [41] (Fig 1B). The 17

fourth proposition states that when the total stimulus drive is increased but equal for 18

both interpretations, the alternation rate increases (Fig 1B). These rules are 19

instrumental for validating models concerning neural mechanisms underlying bistable 20

visual perception [11,15,29]. 21

Previous research has suggested that bistable perception results from a form of 22

mutual inhibition between two neuronal populations reflecting the two 23

interpretations [16,40, 53]. Strong competition between these populations will generate 24

winner-take-all dynamics with two attractor states corresponding to the two 25

interpretations of the stimulus. By introducing mechanisms such as neural adaptation it 26

is possible to achieve winnerless competition dynamics where the model switches 27

between attractor states. Dynamics of such attractor systems are commonly 28

conceptualized using double-well energy landscapes, where the depth of a well 29

determines the probability of transitions from one attractor state to another [12] 30

(Fig 1C). Winner-take-all dynamics is characterized by deep wells that render 31

transitions highly improbable. In winnerless competition, on the other hand, attractor 32

wells are sufficiently shallow for transitions to occur regularly, albeit stochastically. 33

Indeed, the depth of attractor states directly determines dominance duration and 34

alternation rate [12]. 35

While models implementing winnerless competition have successfully replicated most 36

of the key behavioral characteristics of bistable perception [11,15,40], they have faced 37

challenges in replicating the increase in alternation rate with increased stimulus drive as 38

posited by Levelt’s fourth proposition. A fundamental property of these models is that 39
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increasing total stimulus drive deepens attractor wells and hence reduces alternation 40

rate [40,53] (Fig 1D). In order to address this limitation, some models introduce 41

additional mechanisms such as global gain control, input suppression, or a release 42

mechanism. A global gain control mechanism suppresses the total neural activity when 43

stimulation is increased by inhibiting all neuronal populations equally [40] (Fig 1E). An 44

input suppression mechanism ensures that the currently dominant state inhibits its own 45

input, thereby promoting transitions away from that state [15,18,29] (Fig 1F). A release 46

mechanism may be utilized by the suppressed population to overcome the dominant 47

population [16]. These mechanisms serve to maintain shallow attractors when the total 48

input received by both populations is increased and offer explanations for Levelt’s 49

fourth proposition at an algorithmic level [37]. However, at present it is not clear which, 50

if any, of these mechanisms are implemented in the cortex and what might be their 51

biological substrates. 52

We suggest that the answers to these questions lie within the architecture of the 53

cortical microcircuit. The cortex is characterized by a multi-layered structure with 54

complex interlaminar connectivity [19, 27, 49]. The horizontal organization of the cortex 55

into columns is characterized by responses to specific sensory features [42] while the 56

vertical organization into layers is marked by a canonical connectivity pattern that is 57

consistent across the cortex [4, 13,58]. As such, mutually exclusive interpretations of the 58

same physical stimulus are represented in distinct cortical columns (c.f. [51]) that 59

compete via layer-specific horizontal connections located primarily in superficial layers 2 60

and 3 (L23; [1, 3, 38,49]). 61

Like several previous studies (e.g., [5, 15,40]), we hypothesize that bistable 62

perception is a form of winnerless dynamics, where an adaptation mechanism ensures 63

shallow attractors and random noise causes transitions between attractor states. 64

However, in classical winnerless competition models, the stimulus input drives directly 65

the populations engaged in mutual inhibition. In contrast, the layered cortical circuitry 66

in our model separates the input from the mutual inhibition mechanism. More 67

specifically, feedforward input primarily arrives in layer 4 (L4; [6, 20,26,27,47]). In 68

contrast to L23, L4 selectively targets intra-columnar populations with similar preferred 69

features, thus lacking lateral connectivity to surrounding cortical columns [26,33,62]. 70

However, L4 projects to L23 [8, 47] providing input to winnerless dynamics between 71

cortical columns. Finally, L23 excitatory neurons also project to L4 inhibitory 72

neurons [14,56]. Through these projections L23 effectively inhibits its own input. We 73

therefore hypothesize that an input suppression mechanism is inherent in the recurrent 74

connections between L4 and L23. 75

We hypothesize that the implementation of shallow attractors is further supported 76

by a gain control mechanism implemented by the deep layers of the cortex. Activation 77

of layer 6 (L6) in mouse cortex has been shown to strongly suppress neural activation of 78

the upper layers [10,21,43]. Similarly, deep layer 5 (L5) suppresses activity in superficial 79

and granular layers L23 and L4, respectively [44]. We suggest that L4 activates L23, 80

next L23 activates deep layer L5, and finally deep layers L5 and L6 inhibit superficial 81

and granular layers L23 and L4 (c.f. [47]) to adjust their sensitivity to input. Given that 82

both L5 and L6 also receive feedforward thalamic input [2, 8, 17,27,28,52], this gain 83

control mechanism is also responsive to stimulus drive. 84

We test these hypotheses in silico using a biologically-derived layered columnar 85

model (Laminar Column Model) . The model comprises two columns of four layers 86

(L23, L4, L5, L6), representing the two competing interpretations of a bistable stimulus 87

(e.g., horizontal and vertical motion in an ambiguous motion paradigm). Each layer 88

consists of one excitatory and one inhibitory population. Estimations of layer specific 89

sizes of neuron populations are taken from a macaque brain atlas [50]. Moreover, we 90

used empirically derived interlaminar connectivity [8, 47, 55]. Inspired by a recent study 91
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demonstrating that two mutually exclusive interpretations of an ambiguous motion 92

stimulus were reflected by distinct cortical columns in (human) MT [51], we report 93

results for interlaminar connectivity specifically of (macaque) MT. However, our results 94

generalize to other cortical areas as well (See S1 Fig). Dynamics of each population are 95

described by a set of dynamic mean-field equations [24]. Mutual inhibition between 96

columns is implemented within L23 to promote competition. Noise and adaptation are 97

included to promote state reversals between attractors (see Laminar Column Model 98

diagram in Fig 2). 99

We show that the layered architecture allows for replication of all four of Levelt’s 100

propositions. Specifically, we show that the recurrent interlaminar connectivity between 101

superficial layer L23 and granular layer L4 implement an input suppression mechanism. 102

This results in a suppression of L4 by L23 for strong feedforward activation of L4 and 103

hence maintains shallow attractors. Furthermore, we show that deep layers L5 and L6 104

indeed implement a gain control mechanism on the upper layers. This additionally 105

contributes to maintaining shallow attractors. Both input suppression and gain control 106

mechanisms in the empirically derived columnar model ensure full replication of Levelt’s 107

propositions. 108

These findings highlight the functional significance of the layered cortical 109

architecture. We show that the cortex implements two of the proposed mechanisms that 110

ensure shallow attractors in spite of strong stimulus drive. This model sets the stage for 111

future research endeavors that aim to elucidate the functional role of laminar cortical 112

circuits for perception [27]. 113

Results 114

The Laminar Column Model reflects empirically observed 115

Bistable Perception Dynamics 116

It has previously been shown that self-excitation of L23 excitatory neurons controls the 117

dynamical stability of the columnar model [7]. We extend these findings and show that 118

self-excitation in L23 is also important for the competitive dynamics of the column. 119

Specifically, the dynamic range of the model is primarily determined by the strength of 120

self-excitation within L23 of one column (Jlocal) and the strength of lateral inhibition 121

between L23 across columns (Jlateral) Feedforward stimulation of L4 enables 122

competition between columns (Fig 3A). Higher values of both self-excitation and 123

lateral-inhibition promote competition between the columns (Fig 3A). To simulate 124

winnerless competition dynamics, in the following we take parameter values within the 125

winnerless regime that are biologically realistic (see Methods for details). 126

We expect the model to align well with all four of Levelt’s propositions. We first test 127

whether the first three propositions are reproduced by the winnerless competition 128

resulting from applying stimulation to L4 of both columns. Specifically, we expect the 129

dominance duration to primarily increase for the column receiving stronger stimulation. 130

Furthermore, we expect the alternation rate to be maximal when both columns are 131

equally stimulated. Each column receives an external input applied through 300 and 132

188 synapses to the excitatory and inhibitory populations of L4, respectively (ratio 133

derived from [47]), resulting in a net excitatory stimulation. We simulate 10 trials for 134

each condition with 100 seconds per simulation. From each simulation we extract the 135

dominance duration per column and the alternation rate. The winner is the column 136

whose excitatory L23 population exhibits the highest firing rate. We define a dominance 137

duration interval as the time between two successive switches of dominance. Increasing 138

the stimulus drive to one column mainly increases the dominance duration of that 139

column (Fig 3B). In line with our hypotheses, the alternation rate is maximal when 140
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Fig 1. Conceptual illustration of Levelt’s propositions for behavioral
statistics of bistable perception. A: Dominance duration is longer for the
interpretation receiving highest stimulus drive (rule 1). Dominance duration of stronger
stimulus mainly increases (rule 2). B: Alternation rate is highest when stimulus drive to
both interpretations is equal (rule 3) and increases when the total drive increases (rule
4). C: double-well diagram for a bistable attractor system; The system can occupy one
of two attractor states at a time (D1 or D2). Switches between states occur through
noisy jumps. Depth of the attractor determines the probability of transitions; Several
mechanisms can be used to maintain shallow attractors: D: Neural adaptation in
populations inhibits its own activation; E: A gain control mechanism suppresses neural
activity when total stimulation is increased through a shared neural component; F:
Input suppression through direct suppression of the selective input.
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Fig 2. Laminar Column Model diagram. A: Two layered columns mutually inhibit
each other through lateral connections in L23, from excitatory to inhibitory populations.
Jlateral and Jlocal scale the lateral inhibition and the local self-excitation weights,
respectively. L23 populations are recurrently connected to deeper layers according to
the empirically derived interlaminar circuit connectivity from [47]. Each column consists
of four layers (L23, L4, L5, L6). The two columns receive selective input in layer L4
reflecting the strength of the stimulus for the two interpretations (D1 & D2; e.g.
horizontal or vertical apparent motion). B: The local dynamic mean field model. Each
population in the network is simulated using a set of non-linear differential equations to
obtain the synaptic input, the membrane potential and eventually the firing rate.

stimulation of the columns is equal and decreases when the difference in stimulation is 141

increased (Fig 3C). The alternation rate is decreased with stronger total stimulus drive, 142

compared to the behaviorally observed increase. The alignment of the model with the 143

first three propositions shows that feedforward stimulation of L4 affects the 144

mutual-inhibition mechanism in L23 by increasing the depth of the attractor receiving 145

the highest stimulation. Without input to deep layers, the model does not account for 146

the fourth proposition. Indeed, as was found for other winnerless competition models, 147

the alternation rate is not enhanced with higher stimulus drive because it increases 148

competition between L23 populations and deepens the attractors, lowering the 149

probability of transitions. Up to now we only applied feedforward stimulation to L4. 150

However, applying no stimulation to deep layers is not biologically 151

realistic [2, 8, 17,27,28,52]. Therefore, in the next section we discuss the influence of 152

deep layers on winnerless competition dynamics. 153

External Input to Deep Layers explains Levelt’s Fourth 154

Proposition 155

We expect that deep layers 5 and 6 implement a gain control mechanism on the upper 156

layers [10,21,43,44]. Such a gain control mechanism would promote shallow attractors 157

and enhance the alternation rate with increased stimulus drive. We apply external input 158

to L5 and L6 through all external synapses (see 1) to excitatory and inhibitory 159

populations, (Fig 4A), resulting in a net excitatory input. We systematically vary the 160

stimulus drive to deep layers L5 and L6 and obtain the alternation rate and dominance 161

duration are for each combination. Externally stimulating L5 or L6 both increases the 162
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Fig 3. Exploring winnerless competition dynamics. A: Variance of L23E firing
rate within trials for different combinations of local self-excitation (Jlocal) and
lateral-inhibition strengths (Jlateral) without (top) and with (bottom) stimulus drive in
L4. Variance of the firing rate reveals the winnerless competition regime (WL) because
firing rates in the non-competing (NC) and winner-take-all (WTA) regimes do not
change over time while firing rates in the WL regime alternate between high and low
rates. Local self-excitation and lateral-inhibition in L23 both facilitate competition.
The model can occupy 3 states: non-competing (NC), winnerless dynamics (WL) and
winner-take-all (WTA). Without feedforward stimulation in L4 the model does not
compete (NC) (top). Applying an input of 20 Hz reveals a bistable regime where the
variance increases (WL; bottom). The red dot indicates the parameter settings used in
further simulations. B: Dominance duration for different combinations of feedforward
input in L4 to the two columns. right: Dominance duration per column when changing
input to one column while keeping input to the other column constant. C: Alternation
rate for different combinations of feedforward input in L4 to the two columns. right:
Increasing total input decreases alternation rate. Alternation is highest when columns
are equally stimulated.
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Fig 4. External input to deep layers. A: External input is applied to deep layers
L5 and L6. Combinations of input to L5 and L6 increase alternation rate (B) and
reduce dominance duration (C). External input to excitatory or inhibitory populations
in L5 (D) and L6 (E). More excitatory input mainly increases the alternation rate in
both layers.

alternation rate (Fig 4B) and decreases the dominance duration (Fig 4C) of the 163

winnerless column model. Externally stimulating L5 and L6 simultaneously further 164

enhances this effect. These results indicate that layer-specific stimulation of deep layers 165

during bistable perception result in output matching Levelt’s fourth proposition: 166

increased alternation rate in response to increased stimulation. Effects are generally 167

larger for stimulation of L5, but robust for stimulation of L6 as well. External input can 168

target either or both excitatory and inhibitory populations within a layer. To show how 169

the excitation-inhibition balance of the layer-specific input affects the alternation rate 170

we systematically apply different levels of input to the excitatory and inhibitory 171

populations of the layers in question, L5 (Fig 4D) and L6 (Fig 4E). For both layers we 172

find that more excitation increases higher alternation rate. More inhibitory input would 173

not affect the alternation rate significantly. Interestingly, for L6 there is a slight 174

decrease before the alternation rate starts increasing when the layer is excited more. 175

Together these results suggest that deep layers modulate the winnerless dynamics. 176

Stimulation of excitatory populations in these layers causes an increase in alternation 177

rate which aligns the winnerless dynamics of the model with all of Levelt’s propositions 178

for bistable perception, including the fourth. 179

External Input to Granular Layer explains Levelt’s Fourth 180

Proposition 181

Several models of bistable perception suggest a form of input suppression to account for 182

Levelt’s fourth proposition [15,18,29]. Such architectures generally consider a two-level 183

hierarchy where the input components are isolated from the decision making 184

components. The decision making components then inhibit the input components and 185

thereby sustain shallow attractors. The laminar structure of our model naturally 186

provides such a split structure. Granular layer L4 generally receives stimulus input 187

while L23 implements a decision making mechanism through the lateral 188

mutual-inhibition mechanism between two columns. To test whether the interlaminar 189
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connectivity between L4 and L23 implements an input suppression mechanism we 190

examine various combinations of external stimulation of L23 and L4 and their effect on 191

the alternation rate and dominance duration. We apply external input to L23 and L4 192

through all external synapses (see 1) targeting excitatory and inhibitory populations 193

(Fig 5A), resulting in a net excitatory input. We systematically vary the external input 194

to superficial L23 and granular L4 used in simulations and record the corresponding 195

alternation rates and dominance durations. Injecting external input to the decision 196

layer L23 generally decreases the alternation rate (Fig 5B) and increases the dominance 197

duration (Fig 5C). This reflects a deepening of the attractors, which is common in 198

simple mutual-inhibition network models of bistable perception which consists of only a 199

decision layer [12]. For external input to the granular layer L4 the results are less 200

straightforward. For weak inputs to L4 the alternation rate decreases (Fig 5B) and 201

dominance duration increases (Fig 5C), just as it does for inputs to L23. Interestingly, 202

increasing external input to L4 further reverses the effect and causes the alternation 203

rate to increase again. This non-linear relation between the external input and the 204

alternation rate reflects first a deepening and than a diminishing of the attractor for 205

increasing stimulus drive. This suggests a suppression of L4 activity when external 206

input to L4 is strong. To explore how the excitation-inhibition ratio of the layer-specific 207

input affects the alternation rate we perform a grid search applying different levels of 208

input to the excitatory and inhibitory populations of the layers in question, L23 209

(Fig 5D) and L4 (Fig 5E). We find that more inhibitory input to superficial layer L23 210

increases the alternation rate, which is expected as inhibitory input would diminish the 211

competition between columns by reducing the attractor depth. For granular layer L4 we 212

find that it is particularly unbalanced input (i.e., more excitatory or more inhibitory) 213

which increases the alternation rate while for balanced input (i.e., similar excitatory as 214

inhibitory input) the alternation rate is at its lowest point. This confirms again that 215

more excitatory input diminishes the depth of the attractors, but in addition shows that 216

predominantly inhibitory input to L4 has a similar effect. Feedforward stimulation 217

between areas is generally of excitatory nature and generally targets L4. Our results 218

suggest that such unbalanced excitatory input could very well cause an increase in the 219

alternation rate. 220

Interlaminar Mechanisms underlying Levelt’s Fourth Proposition 221

Our results from simulations wherein we apply varying amounts of external input to 222

different layers support the hypotheses that deep layers implement gain control while 223

superficial and granular layers conjointly implement an input suppression mechanism. 224

We argue that these mechanisms critically depends on the interlaminar connectivity 225

profile we derived from biological datasets. Here, we explore this further and elucidate 226

the specific interlaminar circuits of the columnar model that contribute to gain control 227

and input suppression. 228

Gain Control by Deep Layers 229

Potjans & Diesmann [47] identified a feedforward flow of activity resulting from the 230

interlaminar connectivity of the circuit: L4 excites L23, which in turn excites L5. Layer 231

5 then excites L6. Finally, L5 and L6 inhibit L23 and L4, respectively. Deep layers 232

balance the circuit by directly targeting the superficial and granular layers with 233

interlaminar connections. We explore whether these connections are also directly 234

responsible for modulations in alternation rate and dominance duration by 235

manipulating their strength. We control the connection strength of all connections from 236

deep layer populations L5 and L6 onto superficial and granular layers, L23 and L4 237

respectively (Fig 6A). Completely uncoupling the deep layers from the upper layers 238
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Fig 5. External input to superficial and granular layers A: External input is
applied to layers L23 and L4. B: Alternation rate decreases with increasing excitatory
input to L23. For relatively strong L23 input, alternation rate is decreased for weak
input to L4 as well. C: Dominance duration increases with increased excitatory L23
input. Dominance duration increases for weak input to L4 but decreased for strong
stimulation of L4. D: External input to excitatory or inhibitory populations in L23.
More inhibitory input mainly increases the alternation rate . E) External input to
excitatory or inhibitory populations in L4. More unbalanced input increases the
alternation rate. The effect is more pronounced for strong excitatory input.

decreases the alternation rate (Fig 6A). That is, without the inhibiting effects of the 239

deep layers, the dominant attractor state becomes deeper, resulting in increased 240

dominance duration and less alternations between states (Fig 6A,B). Increasing the 241

connection strength from deep layers to upper layers increases the alternation rate and 242

suppresses the dominance duration in a linear fashion. Together, these results show that 243

it is the direct interlaminar connections of deep layers onto upper layers L23 and L4 244

which affect the winnerless dynamics and give rise to statistical regularities summarized 245

in Levelt’s Fourth proposition. Consistent with empirical findings [10,21,43,44], the 246

deep layers within this columnar model exhibit an inhibitory effect on the upper layers. 247

We establish a direct connection between these biological findings and behavioral 248

observations of statistics related to bistable perception. 249

To further investigate the causal role of deep layers in decision reversals we compare 250

the timing of state switching in the deep and superficial layers. Specifically, for each 251

decision reversal from one attractor state to the other we take a 400ms interval around 252

the time-point where the reversal took place in L23E (i.e., when the rate of L23E in the 253

dominant column first dropped below the rate of L23E in the other column). The 254

population rates in this interval are then used to obtain the population specific reversal 255

point (i.e., when the rate of a particular population in the dominant column first 256

dropped below the rate of the same population in the other column). Interestingly, L5 257

populations show a particularly early onset of switching decision compared to L23 258

(Fig 6C). This suggests a causal influence of L5, and in particular the inhibitory 259

population, in bringing about decision reversals. An early review on the laminar and 260

lateral structure of cortical circuits assigns a central role to L5 in decision making [19]. 261

According to the authors, L5 would confirm the decision after it was made by 262

September 22, 2023 10/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.19.558418doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558418
http://creativecommons.org/licenses/by/4.0/


superficial layers and prepare the cortical output. However, our results suggests that L5 263

might causally affect the decision process in the superficial layers and play an important 264

role in reversing rather than confirming a decision. We suggest that L5 ensures that 265

attractor states remain shallow, thereby promoting exploration of the attractor 266

landscape. The switches in L6 excitatory population are relatively late compared to 267

decision layer L23. L6 inhibitory neurons switch at similar times as L23. We suggest 268

these results on the population-specific latency of switches only provide information on 269

whether a population is involved in causing particular jumps across the attractor 270

separatrix and are independent from the effects of constant input, as this mainly affects 271

the attractor depth during the simulation. 272

Input Suppression in Superficial-Granular Circuits 273

We find that weak input to granular layer L4 deepens the attractors while strong input 274

renders them more shallow, promoting reversals between states. We hypothesize that 275

L23 and L4 implement an input suppression mechanism where L23 suppresses L4 [14]. 276

To inspect whether interlaminar connections from L23 onto L4 are indeed capable of 277

causing the observed increase in alternation rate for strong input to L4, we first 278

uncouple the deep layers (L5 and L6) from the superficial and granular layers. Next, we 279

compare two implementations of this superficial-granular sub-circuit: One with and 280

without L23 connections targeting L4. We then systematically manipulate the 281

feedforward connection from L4E to L23E which controls the feedforward input to the 282

decision layer L23. We keep the external input fixed. For weak feedforward connectivity 283

(< 100%) the alternation rate strongly decreases for both versions of the circuit, 284

indicating a deepening of the attractors (Fig 6D). However, for strong feedforward 285

connections (> 100%) the circuit implementing direct feedback connections from L23 286

onto L4, the alternation increases. This suggest connections from L23 onto L4 ensure 287

shallow attractors and promote reversals. To show that L23 is suppressing its own 288

input, we investigated the effect that the feedback connections from L23 to L4 have on 289

the mean firing rate of these populations. Specifically, we implement two versions of a 290

full column model. One with and one without connections from L23 to L4. As before, 291

we manipulate the feedforward connection strength, L4E to L23E, while keeping the 292

external input fixed. We compare the normalized rates of L23E and L4E in both 293

versions of the column. Without connections from L23 to L4 it is mainly the rate of 294

L23E which is increased while the rate L4E is not much affected (Fig 6E). With L23 to 295

L4 connections the increase in rate of L23E is much weaker. Interestingly, the rate of 296

L4E is now strongly affected by an increase in feedforward connectivity. The L23 to L4 297

connections cause a strong decrease in L4E rate. These results show that L23 and L4 in 298

the cortical column model implement an input suppression mechanism through direct 299

feedback connections from L23 to L4 within the same column. 300

Discussion 301

We test the significance of the layered structure of the cortex for bistable perception. 302

Using a dynamic mean field model of two cortical columns with empirically derived 303

interlaminar circuit connectivity, we show that the architecture of the cortical 304

microcircuit provides the neurobiological substrate required for winnerless competition 305

dynamics supplemented with gain control and input suppression mechanisms. Two 306

columns in our model compete for dominance through mutual-inhibition in superficial 307

layers L23. We show that the first three of Levelt’s propositions are directly accounted 308

for by the model through systematically applying feedforward stimulation to the main 309

input layer L4 of both columns. Furthermore, we establish that concomitant input to 310
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Fig 6. Exploring interlaminar mechanisms A: Alternation rate is increased by
increasing connection strength of deep layers to upper layers. B: Dominance duration is
decreased by increasing connection strength of deep to upper layers. C: Population
specific latency relative of switching attractor states in L23E. Lower latency indicates a
early detection of switching states compared to population L23E. Latency measured for
all decision reversals for 100s simulations for 10 trials. Black horizontal bars indicate
standard deviation. D: Effect of L23 to L4 connections on the alternation rate in a
superficial-granular sub-circuit. Increasing weak feedforward connectivity (L4E to L23E,
50− 100%) decreases the alternation rate in both the circuit with L23 to L4 connections
(dashed) and the circuit without these connections (solid). Increasing stronger
feedforward connectivity (100− 150%) the alternation rate of the circuit with L23 to L4
connectivity increases while the alternation rate of the other circuit does not. E: Effects
of L23 to L4 connections on the mean rate of L23E (red) and L4E (black) populations.
Rates are normalized per population.
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deep layers increases the alternation rate as a function of stimulus drive. This shows 311

that feedforward input to deep layers accounts for Levelt’s fourth proposition using a 312

mechanism grounded in biology. In line with theoretical work on bistable 313

perception [40], we suggest that deep layers implement a gain modulation mechanism on 314

the upper layers through interlaminar inhibition. This requires that deep layers receive 315

stimulus-related feedforward input, which is supported by several studies that have 316

shown that deep layers are important targets for thalamic axons (both matrix and core 317

thalamic nuclei) in many brain areas [2, 8, 17,28,52]. Our model further shows that 318

relatively weak inhibition of the upper layers is already sufficient to increase the 319

alternation rate, however several studies have highlighted that inhibitory effects of layer 320

6 on the upper layers are rather strong [10,21,43,44]. These studies are based on mouse 321

cortex while our model implements connectivity derived mainly from cat. 322

Furthermore, [10,21] have shown that the mechanism responsible for such gain 323

modulation involves a more complex inhibitory circuit than currently implemented in 324

our Laminar Column Model. The wide variety of cell types and projections suggest a 325

variety of layer 6 dependent circuits with different roles. Further research is needed to 326

delineate how layer 6 is involved in the implementation of gain control [43]. We suggest 327

that extending our model to include a more sophisticated inhibitory circuit in layer 6 328

would amplify the importance of this layer in modulating the winnerless competition 329

dynamics and in maintaining shallow attractors. Nevertheless, our model is capable of 330

implementing gain control due to weak inhibitory connections from deep layers to 331

superficial and granular layers. Because empirical and modelling work suggests that 332

deep layers inhibit upper layers we hypothesize that projections from deep to upper 333

layers are responsible for maintaining shallow attractors required for high alternation 334

rates. By systematically modulating the connectivity from deep to upper layers we show 335

that it is indeed these connections that are responsible for increasing the alternation 336

rate. 337

Other theories of bistable perception have postulated forms of input suppression to 338

explain Levelt’s fourth proposition [15,18,25,29]. We hypothesize that local recurrent 339

feedback from L23 to L4 implements such a mechanism. We find that applying weak 340

input to L4 (< 9Hz to L4 and no input to L23) reduces the alternation rate, but when 341

stronger input is applied (> 9Hz) the alternation rate starts to increase again. By 342

systematically modulating the recurrent feedforward and feedback connections between 343

L23 and L4 we show that it is indeed the feedback from L23 onto L4 which causes this 344

increase in alternation rate during strong stimulation of L4. With this we show that the 345

columnar circuit implements a form of input suppression that can account for the 346

increase in alternation rate when the stimulation is strong. Interestingly, one study has 347

shown a potential deviation from Levelt’s fourth proposition as formulated in [11]. By 348

alternating the contrast and motion strength separately in a random dot motion 349

experiment [46], these authors found a decrease of alternation rate for weak motion 350

strength (but not for weak contrast levels) and an increase in alternation rate for strong 351

motion. Importantly, unlike previous models, our model accounts for this deviation 352

from Levelt’s fourth proposition at weak stimulus drives. We show that weak 353

feedforward stimulation to L4 reduces the alternation rate and strong stimulation 354

increases the alternation rate matching the experimental observation in [46]. 355

Our findings have important implications for a systems-level perspective on bistable 356

perception as well. The layer-specificity of the gain control and input suppression 357

mechanisms in conjunction with characteristic laminar patterns of feedforward, lateral 358

and feedback projections in the cortex, allows us to draw inferences and make 359

predictions on how cross-regional interactions affect bistable perception. For example, 360

top-down feedback selectively targets deep layers during viewing of ambiguous 361

figures [32]. Furthermore, activity in frontal areas is associated with higher alternation 362
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rates [60]. Together with insights gleaned from our model, these observations support 363

the hypothesis that increased top-down feedback from higher cortical areas targeting 364

deep layers in visual cortex serves to inhibit the upper layers in order to maintain 365

shallow attractors and increase the alternation rate. Through such a mechanism the 366

frontal areas, known to be important for executive control and voluntary action [22, 39], 367

may actively induce switches. Furthermore, many theoretical studies highlight the 368

importance of top-down and bottom-up interactions for bistable perception without 369

specifying the neural substrate that would implement these mechanisms [15,18,25,29]. 370

We show that interlaminar circuit implements mechanisms which explains all of Levelt’s 371

propositions and thus provides a possible neural substrate for bistable perception locally 372

within a brain region. How much local and inter-area mechanisms each contribute to 373

bistable perception remains an open question, but our work highlights the importance 374

of the local inter-laminar circuitry. Further extensions of our model to encompass 375

additional brain regions are warranted to gain a more comprehensive understanding of 376

the interplay between local and inter-area inhibitory effects. Future work on layer 377

specific responses and connectivity during bistable vision could help to further constrain 378

our model. For example, the advent of ultra-high field fMRI allows us to investigate 379

neural correlates of human cognition at columnar and laminar resolution [30,45]. 380

In conclusion, previous work has provided important insights how bistable 381

perception may possibly be implemented algorithmically [15,18,25,29,40]. Our work 382

provides a first crucial step towards an understanding which and how these algorithms 383

are implemented by the neurobiological hardware of the cortex [31,37]. Our study 384

provides compelling evidence for the relevance of gain modulation and input suppression 385

mechanisms for bistable perception and the implementation of these mechanisms in 386

distinct laminar circuits. 387

Methods 388

Dynamic Mean Field 389

We use a dynamic mean field (DMF) implementation which simulates neural 390

populations of the cortical column. A single column consists of 8 populations divided 391

across 4 layers: L23, L4, L5 and L6 1. Each layer contains an excitatory and an 392

inhibitory population. The intra- and interlaminar connectivity is derived from [47] 393

which base their connectivity scheme on empirical research reviewed in [8, 55]. We 394

adjust the population sizes to fit with area MT of macaque using estimated population 395

sizes computed by [50]. The empirical nature of our model necessitates that we 396

implement a column of a specific cortical region. We chose MT because a recent study 397

showed that two mutually exclusive interpretations of an ambiguous motion stimulus 398

were reflected by distinct cortical columns in (human) MT. However, the mechanism we 399

identify generalize to other cortical regions (see Supplementary Materials for layer 400

specific input using connectivity of other visual system areas). We implement two 401

columns, each representing an axis-of motion column in MT, one for each direction of 402

motion (horizontal (H) or vertical (V)). The firing rate dynamics of each population are 403

modelled using a set of differential equations. Each population has five state variables: 404

the synaptic current, the membrane potential, noise, an adaptation variable and the 405

firing rate. The change in current dI
dt to each population in the DMF model is given by 406

the stochastic differential equation: 407

τs
dIi
dt

= −Ii(t) +

N∑
j=1

Wijνj +W ext
i νexti + ni(t) (1)
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Where τs is the synaptic time constant, W and ν the recurrent connectivity strength 408

and the recurrent input from other populations, respectively. W ext and vext are the 409

external weight and input to population i. Finally, the noise n(t) is an 410

Ornstein-Uhlenbeck process [23] with zero mean and deviation σ: 411

τs
dni

dt
= −ni + σ

√
2

τs
ξ(t) (2)

Where ξ(t) is a white noise process with zero mean and variance 1. The current is passed 412

through a linear temporal filter to obtain the change in population membrane potential: 413

τm
dhi

dt
= −hi(t) +RIi(t) (3)

Where τm is the membrane time constant and R is the membrane resistance given by 414

τm
Cm

. Adaptation is modelled by updating an rate-dependent variable (w) with a slow 415

time-constant: 416

τw
dwi

dt
= −wi + κiνi(t) (4)

Where τw, κi and νi(t) are the adaptation time constant and population specific 417

adaptation strength and firing rate, respectively. Finally, the membrane potential and 418

the adaptation variable are passed through a non-linear threshold function [61] to 419

obtain the population firing rate: 420

ν = f(h− w) (5)
421

f(x) =
ax− b

1− e−d(ax−b)
(6)

Where a, b and d are the gain, threshold and noise factor, respectively. These 422

parameters are fitted such that the DMF and LIF implementation of the microcircuit 423

model have similar firing rates (see 1). Code for simulating the dynamic mean field is 424

available at github.com/ccnmaastricht/LCM-BS 425

Network connectivity 426

We obtain the intra- and interlaminar recurrent connection probabilities from [47]. The 427

feedforward connection probability from L4E to L23E is doubled as in to compensate 428

for the decrease in firing rate in L23E due to the lateral inhibition (c.f. [14, 59]). We 429

subsequently compute the number of synapses between populations: 430

K =
log(1− P )

log(1− 1
NpreNpost

)
/Npre (7)

Where P , Npre and Npost are the connection probabilities between the pre- and 431

post-synaptic populations and the number of neurons in the pre- and post-synaptic 432

populations, respectively. The layer-specific excitation-inhibition ratio is obtained by 433

dividing the number of excitatory neurons by the inhibitory neurons. The inhibitory 434

synaptic weight is then the multiplication of this ratio with −JE . The final connectivity 435

matrix is obtained by multiplying the number of synapses by the synaptic weight: 436

Wij = KijJj (8)

External input is applied by defining a number of synapses and an input frequency and 437

multiplying the these with the standard excitatory weight JE . Each population in the 438

network receives a background input with a frequency of 8 Hz via a population specific 439
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number of synapses with weight JE = 0.0878. The number of background synapses are 440

taken from [47]. Lateral mutual-inhibition is modelled by symmetric connections from 441

population L23E in one column to L23I in the other column. Jlocal and Jlateral control 442

the self-excitation of L23E and lateral-inhibition strength, respectively. Feedforward 443

stimulation of L4 excitatory and inhibitory populations is applied through 295 and 186 444

synapses, respectively (with the same E/I-ratio as [47]). The number of external 445

connections of net excitatory external inputs in layers L4, L6 and layers L23, L5 are 300 446

and 255 for excitatory and inhibitory populations, respectively. The full list of model 447

parameters are provided in 1 and 2. Fig 2 shows a diagram of the implemented model. 448

Table 1. Model Structure

Populations 16 populations; 2 columns, 8 per columns
Num. Synapses K, within, between columns, stimulus drive
Weights J , within and between columns
Population size N , area and population specific

L23E L23I L4E L4I L5E L5I L6E L6I
Population Sizes

NV 1 20683 5834 21915 5479 4850 1065 14395 2948
NMT 30303 8547 14101 3525 7088 1556 7918 1621

Number of External Synapses
Kbg 1600 1500 2100 1900 2000 1900 2900 2100
Kff 0 0 295 186 0 0 0 0
Kext 300 255 300 255 300 255 300 255
κ 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Columnar Connectivity
Pcolumn source:
target: L23E L23I L4E L4I L5E L5I L6E L6I
L23E 0.1009 0.1689 0.0880 0.0818 0.0323 0.0000 0.0076 0.0000
L23I 0.1346 0.1371 0.0316 0.0515 0.0755 0.0000 0.0042 0.0000
L4E 0.0077 0.0059 0.0497 0.1350 0.0067 0.0003 0.0453 0.0000
L4I 0.0691 0.0029 0.0794 0.1597 0.0033 0.0000 0.1057 0.0000
L5E 0.1004 0.0622 0.0505 0.0057 0.0831 0.3726 0.0204 0.0000
L5I 0.0548 0.0269 0.0257 0.0022 0.0600 0.3158 0.0086 0.0000
L6E 0.0156 0.0066 0.0211 0.0166 0.0572 0.0197 0.0396 0.2252
L6I 0.0364 0.0010 0.0034 0.0005 0.0277 0.0080 0.0658 0.1443
Jcolumn 0.0878 -.3113 0.0878 -.3512 0.0878 -.3998 0.0878 -.4287

Lateral Inhibition Parameters
Plateral 0.1
Jlateral 0.172
Jlocal 0.13

P : connection probabilities; J : synaptic strength (mV); κ: adaptation strength

0.1 Simulation 449

All simulations of the stochastic differential equations describing our model are 450

performed in Python 3.8.10 using the Euler-Maruyama method with a simulation time 451

of 1.0 s and a time step of 0.1ms. Simulations are executed on the PizDaint CSCS 452

Supercomputer cluster. 453
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Table 2. Model Parameters

Dynamic Mean Field Parameters
Name Value Description
σ 0.02 nA noise amplitude
τs 0.5 ms synaptic time constant
τm 20.0 ms membrane time constant
Cm 250.0 mF membrane capacitance
af 48 function gain
bf 981 function threshold
df 0.0089 function noise factor
νbg 8 Hz background rate
τw 10 s adaptation time constant

0.2 Analysis 454

Our main analyses focus on the distribution of the dominance duration and alternation 455

rate. The dominance duration is defined as the length of the time intervals the model 456

occupies one of the attractors (i.e. L23E rate of column D1 is high and D2 is low, or 457

vice versa). To obtain the distribution of dominance durations, we extract the reversal 458

time-points of L23E populations by comparing their rates. The difference between 459

consecutive reversal time-points quantifies the dominance duration. 460

The alternation rate is here defined as the number of reversals per second per 461

simulation (in Hz). Thus, every instance of a simulation has a single value for the 462

alternation rate. Distributions for the alternation rate are obtained by running multiple 463

trials using different random noise realizations. 464

Supporting information 465

S1 Fig. Layer Specific External Input in Areas of the Visual System 466

External input to different areas of the visual system. Layer specific population sizes 467

are adjusted to the different areas according to [50]. Connectivity pattern is in turn 468

adjusted to the area in question. Alternation rate behaves similarly for all areas, 469

including area MT. 470
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