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Abstract 47 

Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse 48 

molecular pathways important for synaptic function. However, how polygenic risk funnels through 49 

these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful 50 

pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem 51 

brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate 52 

nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC). We identified a CN-53 

predominant gene set showing dopaminergic selectivity that was enriched for genes associated with 54 

clinical state and for genes associated with SCZ risk. Parsing polygenic risk score for SCZ based on 55 

this specific gene set (parsed-PRS), we found that greater pathway-specific SCZ risk predicted greater 56 

in vivo striatal dopamine synthesis capacity measured by [18F]-FDOPA PET in three independent 57 

cohorts of neurotypicals and patients (total N=235) and greater fMRI striatal activation during reward 58 

anticipation in two additional independent neurotypical cohorts (total N=141). These results reveal a 59 

‘bench to bedside’ translation of dopamine-linked genetic risk variation in driving in vivo striatal 60 

neurochemical and hemodynamic phenotypes that have long been implicated in the pathophysiology 61 

of SCZ. 62 
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Introduction 64 

Schizophrenia (SCZ) is a mental illness with complex heritability and polygenic architecture1. 65 

The largest genome-wide association study (GWAS) to date has identified an extensive set of 66 

potential SCZ risk genes converging on synaptic biology of central nervous system neurons2. To the 67 

extent that the downstream consequences of diverse risk alleles might affect shared biological 68 

functions, genetic risk for SCZ is likely best understood in the context of molecular ensembles, rather 69 

than at a single gene level. This perspective puts gene co-expression at the forefront of investigating 70 

genetic risk convergence as an instrumental approach to model the effect of many variants on 71 

interconnected genetic systems and, ultimately, downstream neurochemical and neural functioning3-72 

5. 73 

There is a large body of evidence which implicates synaptic dysfunction and 74 

neurotransmission across several key brain circuits which bridge the striatum, the dorsolateral 75 

prefrontal cortex (DLPFC) and the hippocampus (HP) as key pathological mechanisms in SCZ6-9. As 76 

such, understanding gene co-expression across multiple brain regions may increase understanding of 77 

how broad genetic variation translates into increased risk of illness10.  78 

There is also a large body of evidence for dopamine involvement in SCZ, including emergence 79 

of psychotic symptoms (e.g., hallucinations and delusions) following administration of pro-80 

dopaminergic agents and therapeutic antipsychotic effects elicited by dopamine blocking drugs 81 

targeting D2 receptors11. In the D2-rich striatum where illness-related dysfunction has been observed, 82 

positron emission tomography (PET) studies have found an array of dopamine system disturbances 83 

in SCZ suggesting increased dopaminergic drive from mesencephalic synaptic terminals, including 84 

elevated presynaptic dopamine synthesis 7,12-15. There is also evidence that individuals at clinical risk 85 

for SCZ, e.g., with subthreshold psychotic symptoms, as well as first degree relatives show a similar 86 

pattern of elevated striatal presynaptic dopamine synthesis capacity16,17, which may be enhanced with 87 

progression to frank illness18. Importantly, striatal dopamine synthesis shows heterogeneity across 88 
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patients with SCZ19, particularly in treatment-resistant individuals, who have demonstrated synthesis 89 

capacity decreases20 and in whom different mechanisms may be at play21. Recent evidence from post-90 

mortem human caudate has revealed that decreased expression of the short (predominantly 91 

autoreceptor) isoform of the D2 dopamine receptor gene DRD2 – and not the long (predominantly 92 

postsynaptic) isoform – may be the causative mechanism for association of the SCZ GWAS risk allele 93 

mapped to the DRD2 locus20. By identifying diminished expression of the inhibitory D2 presynaptic 94 

autoreceptor as one potential mechanism of SCZ risk, this work further implicates exaggerated 95 

presynaptic dopamine activity in pathogenesis22, consistent with earlier work associating a single-96 

nucleotide polymorphism (SNP) with differential DRD2 splicing,  striatal dopamine D2 signaling, 97 

and prefrontal and striatal activity during working memory23,24. 98 

Functional magnetic resonance imaging (fMRI) studies have reported altered brain activity in 99 

patients with SCZ while performing dopamine-dependent reward processing tasks, possibly arising 100 

from synaptic dysfunction and neurotransmission dysregulation25,26. Moreover, anticipatory striatal 101 

activation during reward task performance has been shown to be a heritable trait27 (h2 = .20-.73) 102 

suggesting that genetic investigations may help better define important connections between this 103 

phenotype and dopamine-relevant SCZ risk molecular factors. In light of this and because dopamine 104 

dysfunction in SCZ generally appears to have at least in part a genetic basis22,28-30, we hypothesized 105 

that a SCZ-related genetically driven increase of striatal presynaptic dopamine synthesis might be 106 

reflected functionally in an increase of striatal fMRI activation during reward anticipation at least in 107 

neurotypical individuals.  108 

While most of the same genes are expressed across brain regions, mRNA expression patterns 109 

vary consistently with differing functions subserved at a system-level. A widely used approach to 110 

analyze gene co-expression patterns is a combination of graph theory and clustering 3,31-33, such as in 111 

the popular weighted gene co-expression network analysis34. This approach, however, has important 112 

limitations, in its handling of higher-dimensional data, particularly in accounting for the multiplicity 113 
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of co-expression contexts across brain regions and cell types, crucial aspects to capture the biological 114 

reality in which different tissues, cells and molecular pathways share common genes. Another class 115 

of co-expression detection methods called sparse decomposition of arrays (SDA) circumvents these 116 

limitations 35. SDA is based on singular value decomposition, a family of techniques that includes 117 

independent component analysis (ICA) and principal component analysis (PCA) and is able to 118 

effectively identify relationships between genes in multi-tissue experiments35. SDA decomposes a 119 

3D Array (also called a “Tensor”) with dimensions representing individuals, genes and tissues, 120 

respectively, into several latent components (or factors) that represent major directions of variation 121 

in the data set. This approach identifies components that uncover functional biology35,36, and 122 

outperforms other co-expression detection strategies in the identification of functionally related and 123 

co-regulated groups of genes37.   124 

Using SDA and two independent post-mortem brain samples, we investigated human RNA 125 

sequencing data from three brain regions prominently implicated in SCZ, i.e., CN, HP, and DLPFC 126 

(Fig. 1). We sought to identify gene sets enriched both for genes differentially expressed in SCZ and 127 

for genes associated with SCZ genetic risk. Focusing on genes sets with convergence of illness state 128 

and illness risk in neurotypical brain avoids epiphenomena related to drug treatment in patient 129 

samples and the same directionality of effects supports genetic risk inferences.  130 

 We identified a co-expression component in the SDA data that meets these criteria and is 131 

especially enriched for DA function genes. We then aimed to evaluate whether this component 132 

specifically translates into SCZ-relevant brain functional correlates in vivo. To that end, we studied 133 

striatal dopamine synthesis capacity determined via PET in both neurotypical controls (NC) and 134 

patients with SCZ and obtained corroborative evidence in an independent replication dataset. We then 135 

measured brain physiological activation during reward anticipation measured with functional 136 

magnetic resonance imaging (fMRI) in two independent neurotypical cohorts performing different 137 

reward tasks. We sought to translate dopamine-linked gene sets in postmortem brain involved in 138 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.20.558594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.20.558594


7 
 
 

manifest illness and in illness risk into neurochemical and neurofunctional outcomes in the living 139 

human brain concordant with known SCZ associated phenotypes.  140 
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Results 142 

Gene co-expression analysis 143 

From SDA of postmortem CN, HP, and DLPFC tissue from our discovery cohort (Table 1) 144 

we obtained 69 robust components not associated with confounding variables. Supplementary Data 145 

1 and 2 report output of SDA as well as the association with biological covariates and technical 146 

confounders and summary information regarding the number of genes included in each component.  147 

When comparing samples from neurotypical controls (NC) and individuals with SCZ, two of 148 

69 filtered components (C80: 2497 genes; C109: 1211 genes; see Supplementary Data 2 for 149 

component gene membership) were associated with diagnosis (C80: F[1,210]=11.4, p=.0009, 150 

p[FDR]=.038; C109: F[1,210]=10.9, p=.001, p[FDR]=.039) (Fig. 2a). To identify SCZ-associated 151 

components more likely linked to pathogenic biology rather than treatment history or other factors, 152 

we additionally tested these components across samples for association with SCZ genetic risk before 153 

proceeding with further analyses. Only the SDA component C80 was also significantly associated 154 

with SCZ polygenic risk score (PRS), a measure of overall cumulative risk burden, in a diagnosis-155 

consistent direction (see Online methods for PRS computation; C80: t[93]=1.67, one-tailed p=.048; 156 

C109: t[93]=-1.2, one-tailed p=.11) (Fig. 2a). Patients with SCZ had greater C80 scores and, 157 

consistently, healthy controls with greater SCZ PRS had relatively greater C80 scores.  158 

Biological characterization of this component showed enrichment for SCZ, major depressive 159 

disorder (MDD) and attention deficit hyperactivity disorder (ADHD) risk genes, SCZ differentially 160 

expressed genes (DEGs) previously observed in the CN22 and in the DLPFC, and differentially 161 

methylated genes (DMG; i.e., genes proximal to regions enriched in CpG islands differentially 162 

methylated in SCZ compared to healthy controls) and also loss of function intolerant genes (all 163 

empirical p <.05; Fig. 2b). Moreover, we used Multi-marker Analysis of GenoMic Annotation 164 

(MAGMA)38 and H-MAGMA39, which leverages chromatin accessibility datasets, to perform a gene-165 
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set enrichment analysis for pathology-specific GWAS variants and found that the association with 166 

SCZ risk of the variants falling within or regulating (based on chromatin interactions) C80 genes is 167 

greater than that in the remaining sets (p[FDR] < .05; Fig. 2b). Interestingly, this technique shows 168 

greater specificity to SCZ, as there was no consistency across MAGMA, H-MAGMA, and GWAS 169 

variant analyses with MDD and ADHD results (Fig. 2b). See Supplementary Fig. 1a for results on 170 

biological characterization of all 69 robust components.  171 

To determine which tissue contributed more to the inter-individual variation within a given 172 

component, we checked the tissue score matrix obtained by SDA, which represents the covariance 173 

between the overall gene expression derived from one tissue and the component identified. Using a 174 

threshold of |0.5| (as previously reported by SDA developers35) in the tissue loading matrix, we found 175 

the C80 component to be most active in the CN (Fig. 2b). Accordingly, cell specificity analysis 176 

suggested a highly significant preponderance of medium spiny neurons (MSNs) and dopaminergic 177 

terminals (p[FDR]=1.9×10-57; Fig. 2c), consistent with CN localization. Gene ontology analysis (Fig. 178 

3a, Supplementary Fig. 1b-c and Supplementary Data 3) characterized C80 as a predominantly 179 

synaptic component (133 genes, fold enrichment=2.3, p[FDR]=1×10-18) with both pre (128 genes, fold 180 

enrichment=1.9, p[FDR]=2.2×10-12) and postsynaptic specializations (103 genes, fold enrichment=2, 181 

p[FDR]=8×10-12, Fig. 3a). KEGG pathway analysis showed enrichment for dopaminergic, GABAergic, 182 

glutamatergic, and cholinergic synapses, all characteristic of the CN (Fig. 3b and Supplementary Data 183 

3).  184 

To follow-up these network-level findings suggesting a role for this component in 185 

dopaminergic neurotransmission, we investigated the membership of C80 for dopamine receptor and 186 

synthesis genes. C80 included the dopamine D2 receptor gene DRD2 but not DRD1, along with 187 

tyrosine hydroxylase (TH) and DOPA decarboxylase (DDC) genes, necessary for presynaptic 188 

dopamine biosynthesis. We found that C80 was positively correlated to DDC expression (t[201]=5.3, 189 

p=2.9×10-7) and negatively correlated to DRD2 expression (t[201]=-3.01, p=.003) in the CN after 190 
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covarying for biological and technical confounders (see Online Methods for details). Because DDC 191 

catalyzes the last committed step of dopamine synthesis and D2 receptor signaling inhibits dopamine 192 

synthesis, these results are consistent with greater dopamine synthesis capacity in individuals with 193 

greater C80, who also have higher polygenic risk for SCZ. Greater DA synthesis may thus be expected 194 

to be associated with decreased DRD2 expression in this context.  195 

Interestingly, when restricting the analysis to only healthy individuals, we also found that C80 196 

negatively correlated with DRD2 expression in the DLPFC (t[218]=-2.1; p=.04). We further leveraged 197 

transcript level information to disentangle to which extent the DRD2 expression variance was related 198 

to the short or long isoform in the CN (see Online Methods for details), and found a significant 199 

association with the long isoform expression in consistent direction with previous gene level analyses 200 

(DRD2 short isoform transcript: t[183]=-1.65, p=.1; DRD2 long isoform transcript: t[183]=-2.2, p=.029). 201 

A similar result was found with only healthy individuals (DRD2 short isoform transcript: t[116]=-1.38, 202 

p=.16; DRD2 long isoform transcript: t[116]=-2.8, p=.006). Due to the MSN enrichment and selective 203 

presence of DRD2 compared with DRD1 in this component, we also examined this component’s 204 

membership for the 29 most preferentially expressed genes in each MSN class identified by Tran et 205 

al.40 in the nucleus accumbens, with specific focus to the D1_A and D2_A clusters as they represented 206 

the largest D1-MSN (67%) and D2-MSN (87%) subclasses, respectively. We assessed the statistical 207 

significance of these intersections via permutation tests (see Online Methods for details). 208 

Interestingly, 17 out of 29 genes were shared between C80 and D2_A (including PENK, enkephalin 209 

typically expressed by indirect pathway MSNs41; empirical p < 1×10-4) and only 8 out 29 were shared 210 

with D1_A (with the exclusion of DRD1 and PDYN typically expressed by direct pathway MSNs; 211 

empirical p = .09), suggesting that the D2-expressing neuronal population may contribute more to the 212 

clustering observed in C80 (Fig. 3c). 213 

Finally, to replicate our findings, we applied SDA to the Genotype-Tissue Expression (GTEx) 214 

dataset (https://gtexportal.org/home/)42. RNA-seq data are available for 120 NC across CN, DLPFC 215 
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and HP (see Table 1 for demographics). This replication analysis yielded 84 components which we 216 

used to assess replication of the 69 LIBD components (see Supplementary Data 1 for SDA output). 217 

We assessed the Jaccard Index (JI), representing the overlap between gene sets, and the correlation 218 

of component-specific gene loadings. The former revealed more statistically significant replicated 219 

components (JI:62 vs gene loading:34; empirical p < .001; Fig. 3d and Supplementary Fig. 2a). 220 

Indeed, most filtered components were replicated in GTEx (90%; Fig. 3d) with a median JI = 0.13 in 221 

the framework of a gene universe overlap between the LIBD and GTEx dataset of JI = 0.67. 222 

Interestingly, C80 was among the only four replicated components out of 69 in which the associated 223 

GTEx component (C18) was consistently found using both JI and gene loading (JI = .19; gene loading 224 

R2 = .19; empirical p < .001; Fig 3d and Supplementary Fig. 2a). Moreover, the GTEx C18 component 225 

was again mainly active in the CN with a similar neurobiological profile by cell specificity, gene 226 

ontology, and KEGG pathway analyses and a similar enrichment for dopaminergic synapse (33 genes; 227 

fold enrichment=1.7; p[FDR]=.01) (Supplementary Fig. 2b-d and Supplementary Data 3). Accordingly, 228 

we replicated the association between C18 component loadings and DRD2 expression in the CN with 229 

effect directions consistent with our discovery C80 component (t[94]=-2.6; p=.01). We did not find 230 

significant association with either DRD2 long or short isoform transcripts (DRD2 short isoform: 231 

t[116]=-1.9, p=.056; DRD2 long isoform: t[116]=-1, p=.3; see Online Methods for details), suggesting 232 

that a transcript level tensor decomposition might be best suited to capture the variance at this fine-233 

grained biological resolution.  234 

In summary, we identified replicable co-expression patterns relative to the dopaminergic 235 

neurotransmission in a completely independent dataset of neurotypical individuals. The list of genes 236 

within discovery C80 and replication C18 components is reported in Supplementary Data 3. 237 

 238 

Brain functional association analysis 239 
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Based on these results in support of C80’s role in SCZ, SCZ risk, and dopaminergic function, 240 

we computed a PRS stratified for genes within C80 (C80-PRS) to examine the relationships between 241 

C80-specific SCZ genetic risk burden and neurochemical and neurofunctional parameters in the 242 

living human brain (see Online Methods for details about PRS computation and p-value thresholds 243 

used). C80-PRS was positively associated with greater striatal dopamine synthesis capacity as 244 

measured by [18F]-FDOPA specific uptake in NC and in patients with SCZ (C80-PRS1: Fisher’s zr 245 

coefficient[99.5% CI]: 0.33[0.01, 0.65]; p=.0037; p[Bonferroni]=.037) in the whole striatum ROI analyzed in our 246 

discovery cohorts (Table 1; Fig. 4a). We also found a significant association for PRS2 in the whole 247 

striatum (C80-PRS2: Fisher’s zr coefficient[99.5% CI]: 0.34[0.03, 0.66]; p=.0024; p[Bonferroni]=.024) 248 

(Supplementary Fig. 3a). Furthermore, both C80-PRS1 and C80-PRS2 were significantly and more 249 

strongly associated with [18F]-DOPA PET uptake in the associative striatum (C80-PRS1: Fisher’s zr 250 

coefficient[99.5% CI]: 0.38[0.07, 0.70] ; p=.0006; p[Bonferroni]=.006; C80-PRS2: Fisher’s zr coefficient[99.5% 251 

CI]: 0.35[0.03, 0.66]; p=.002; p[Bonferroni]=.02), (Supplementary Fig. 3b-c). There was no significant 252 

correlation with limbic striatum or sensorimotor striatum when correcting for multiple comparisons. 253 

Interestingly, these results remain consistent even across different genetic ancestry definitions 254 

(Supplementary Fig 4a-b; see Supplementary Information for details).  255 

In our independent replication cohort (Table 1), C80-PRS was also positively associated with 256 

greater striatal [18F]-FDOPA specific uptake, albeit at a different PRS threshold (C80-PRS6: 257 

t[149]=3.95; k=16; p[FWE]<0.05), which localized to the dorsomedial striatum (Fig. 4a). 258 

Finally, we investigated the association of C80-PRS with striatal functioning using fMRI in 259 

participants who performed a reward processing task. We found that C80-PRS1 was positively 260 

correlated to the physiological activation in the right CN during high motivation vs low motivation 261 

during reward anticipation assessed in a discovery sample of 86 NC (Table 1; C80-PRS1: p[TFCE-262 

FDR]=0.01; Z=3.54; x = 17; y=15; z=-5; 73 voxels). Specifically, participants with higher C80-PRS 263 

and thus higher predicted striatal dopamine synthesis showed greater CN activation when they 264 
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expected a reward during the task (Fig. 4b). We replicated this association in an additional 265 

independent sample of 55 NC (Table 1; C80-PRS1: p[TFCE-FDR]=0.03; Z=4.04; x = 18; y=17; z=5; 20 266 

voxels) in a cluster partially overlapping with the one identified in the discovery sample analysis (Fig. 267 

4b).  268 

We also computed a measure of cumulative SCZ risk burden based on GWAS risk genes not 269 

in C80 (C80-PRS-complementary) and did not find any significant association in any of the PET and 270 

fMRI samples (p>0.05; Supplementary Fig. 5a-b). It is also worth mentioning that the number of 271 

SNPs included at each threshold for the C80-PRS is always lower than for the C80-PRS-272 

complementary (Table 2), indicating the SNPs mapped to C80 genes represent a minority more 273 

closely involved in dopaminergic processes than the rest. Supplementary Data 4 include SNPs 274 

mapping to C80 genes and used to compute C80-PRSs. 275 

  276 
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Discussion 277 

The genetic architecture of SCZ is complex and spans the genome2. Despite evidence for 278 

aggregation of implicated genes into certain clusters43, characterizing the functional biology of SCZ 279 

risk genetics has been a challenge. We applied a tensor decomposition method called sparse 280 

decomposition of arrays (SDA) to post-mortem brain gene expression data from three brain regions, 281 

i.e., CN, HP, and DLPFC in an effort to identify cohesive biological pathways that are implicated in 282 

SCZ illness and risk, which might help delineate plausible routes from SCZ-promoting genetic 283 

variation to specific neural circuit functions perturbed in this condition. We discovered a caudate-284 

dominant co-expression gene set (C80) that is enriched for genes differentially co-expressed in 285 

individuals with SCZ relative to neurotypical controls and is associated with individual genetic risk 286 

for SCZ, features that suggest a role in SCZ pathogenesis. Expanding long-held hypotheses of 287 

dopaminergic involvement in psychosis in general and in SCZ more specifically, this gene set showed 288 

enrichment for dopamine system genes and embedded SCZ risk variation that specifically tracked 289 

with in vivo neurochemical and neurofunctional dopamine- and illness-related phenotypes. 290 

The SDA algorithm provided an efficient technique to uncover sparse gene networks that were 291 

not only statistically robust but also biologically coherent, capturing, in the case of C80, gene 292 

expression covariance showing biological specialization for striatal dopaminergic circuitry 293 

implicated in SCZ. A key component of this circuitry, the C80 member gene DRD2, is expressed both 294 

at the presynaptic terminal, where its protein, the D2 dopamine receptor, functions as an autoreceptor 295 

regulating dopamine synthesis and release, as well as in the postsynaptic compartment, where its role 296 

in indirect pathway medium spiny neurons (MSNs) has been well established44. In line with DRD2’s 297 

autoreceptor role, SDA segregates DRD2 together with the genes for the primary dopamine 298 

biosynthesis enzymes, TH and DDC, in a single, SCZ-associated component, although isoform 299 

transcript analyses did not confirm an isoform preference replicated across LIBD and GTEX data. 300 

This is not surprising in principle, as greater DA biosynthesis should have downstream effects on 301 
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both receptor isoforms. However, at the total gene expression level, greater C80 (higher SCZ risk) 302 

correlated with higher striatal expression of DDC, translating into an increase of dopamine synthesis, 303 

and as expected, lower expression of DRD2, with both results replicated in an independent NC cohort. 304 

These findings, along with the neurofunctional results, highlight the control of presynaptic DA 305 

synthesis and release as a mechanism of DA associated pathogenesis22. When looking at transcript 306 

level expression, we cannot clearly disentangle replicable effects specific to one isoform over the 307 

other. Importantly, while previous work on translating genetic risk into gene expression association 308 

has highlighted the presynaptic short isoform as the molecular mechanism of risk, here we are looking 309 

at co-expression in a broader biological context than genetic risk alone.  310 

It is notable that follow-up analyses of C80 gene membership additionally identified a 311 

preference for genes expressed in the indirect pathway, i.e., D2 dopamine receptor bearing MSNs 312 

(e.g., DRD2, PENK) over those expressed in direct pathway associated, i.e., D1 dopamine receptor 313 

bearing MSNs (e.g., DRD1, PDYN)41. As KEGG pathway analysis revealed a collection of 314 

dopaminergic, GABAergic, glutamatergic and cholinergic pathway related genes belonging to this 315 

component, it is interesting that among the genes segregated by SDA in both C80 and C18 316 

components is the one encoding for the M4 muscarinic receptor (CHRM4), previously associated 317 

with the regulation of cholinergic and dopaminergic neurotransmission in SCZ45-48 and recently 318 

highlighted as a potential therapeutic target for this disorder49-51. Besides the relevance of C80 to 319 

presynaptic dopaminergic mechanisms, these observations point to a wider biological interpretation 320 

of the genes co-expressed within this SCZ-associated component, including cortico- and nigro-striatal 321 

terminals closely tethered to the indirect pathway.  322 

Following the identification of these links between C80 and dopaminergic systems, we 323 

conducted in vivo neuroimaging investigations and found that SCZ genetic risk variation that is 324 

mapped to the C80 gene set – and not cumulative risk outside of it – is specifically associated with 325 

elevated presynaptic dopamine synthesis in the striatum, which we observed in both NC and SCZ 326 
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cohorts across three independent PET samples totaling 235 participants. This is consistent with the 327 

[18F]-FDOPA associated phenotype in SCZ52 and further supports the notion that C80, also expressed 328 

to a greater degree in SCZ, plays an important role in presynaptic dopamine dynamics. Thus, the 329 

present results may provide a molecular mechanism to the risk signature of a central phenotypic pillar 330 

of the modern dopamine hypotheses of SCZ52.  331 

The specificity of these findings may provide insight for a better understanding of the 332 

heterogeneity of SCZ and its pathobiology. These data align with the notion that some routes to 333 

clinical illness (e.g., those within the C80 pathway) preferentially perturb presynaptic dopamine 334 

systems over others, providing a possible molecular basis for the observation that not all individuals 335 

with SCZ show excessive presynaptic dopamine synthesis capacity and not all patients respond well 336 

to antidopaminergic medications19,20. More generally, the approach we employed may be promising 337 

for stratifying patients based on their pathway-specific genetic liability to illness, which, if confirmed 338 

to be clinically informative, could provide new avenues for personalized medicine.  339 

The association between these pathway-specific variants and heightened striatal dopamine 340 

synthesis, as evidenced by post-mortem and PET data, aligns with findings from a dual PET-fMRI 341 

study that demonstrated positive correlations between reward anticipation-related activation and 342 

striatal dopamine release in healthy individuals53. Accordingly, dopamine depletion attenuates striatal 343 

activation during the same task in healthy subjects54. Moreover, our results are consistent with past 344 

findings of positive correlations between polygenic risk for SCZ and ventral striatal activation during 345 

the MID task in a large sample of healthy adolescents55. Importantly and again, cumulative risk 346 

outside of this filter (i.e., variants not included in C80) did not show a significant relationship with 347 

this anticipatory BOLD response; along with the similar pattern observed in our PET results, this 348 

specificity suggests that parsing the PRS into co-expression pathways can reveal previously 349 

unreported phenotypic association with risk43. 350 
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The positive correlations between C80-specific SCZ risk burden and reward anticipation 351 

BOLD response in neurotypical individuals deviate in direction from prior findings of blunted striatal 352 

response to reward anticipation in patients with SCZ25,26,56-60. The difference between genetic and 353 

clinical findings may have multiple sources, including illness characteristics and pharmacological 354 

treatment. Patients with SCZ display abnormal salience attribution patterns61, which could lead to 355 

reduced contrast between anticipation cues and baseline, ultimately resulting in poorer motivational 356 

performance and BOLD contrast during reward anticipation62-64. Secondly, the activity of different 357 

brain regions involved in the reward system can be affected by the disorder65, while being preserved 358 

in our fMRI samples only including NC. Third, SCZ patients exhibit elevated striatal dopamine 359 

synthesis and release as measured by PET7,12-15, suggesting that higher steady-state dopamine levels 360 

may cause an apparent blunted response by elevating baseline activation. Consistent with this 361 

hypothesis, Knutson et al.66 reported that amphetamine administration, which blunts task-based 362 

dopamine release while enhancing steady-state availability in the striatum67, leads to decreased peak 363 

activation but prolonged activation duration during reward anticipation in healthy individuals. Taken 364 

together, we suggest that the blunted response to stimuli in a saliency-modulating task observed in 365 

SCZ may arise at least in part from both reward devaluation as well as enhanced steady-state baseline 366 

activity.  367 

A further and perhaps paramount consideration in studies of reward circuity in patients with 368 

schizophrenia is the impact of neuroleptic medications on the sensitivity of the brain's reward 369 

system68,69. Previous studies indicate that antipsychotic drugs can blunt reward-related anticipatory 370 

striatal activation in individuals with SCZ56,57, This effect may be associated with the blockade of D2 371 

dopamine receptors56,57 or the suppression of dopaminergic neuron firing70-72, known as inactivation 372 

block. In fact, the recent report by Benjamin et al.22 highlights a significant downregulation of the TH 373 

gene in caudate of SCZ patients receiving antipsychotic drugs, and acute depletion of dopamine has 374 

been associated with reduced striatal activation during reward anticipation in both patients73 and 375 
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controls54. Notably, atypical antipsychotics, which exhibit a lower level of D2 receptor affinity were 376 

found to enhance striatal fMRI BOLD signal during reward anticipation relative to first-generation, 377 

high-affinity D2 blocking agents57,74,75. Nonetheless, even atypical antipsychotic medications may 378 

increase baseline striatal activity in a dopamine-dependent fashion76. Thus, the effects of illness and 379 

pharmacological stimulation are not necessarily aligned with the relationship of illness genetic risk 380 

and striatal physiological activation in the neurotypical state. In this regard, examining effects of 381 

polygenic risk for SCZ in samples of healthy controls provided an important perspective on risk 382 

biology while avoiding important illness-associated confounders, such as treatment with D2 dopamine 383 

receptor antagonists.  384 

Limitations of this study include the relatively limited sample size used in the gene co-385 

expression analysis, which is pivotal for decomposition approaches37. To obtain the 3D tensor used 386 

as input for SDA, we had to exclude samples without available data in all three brain regions analyzed, 387 

a filter which was especially limiting for the GTEX replication dataset. Nonetheless, while a larger 388 

sample size would have been ideal and perhaps offered greater precision, we employed the largest 389 

gene expression resources available with these tissue types, including the relatively sizeable LIBD 390 

resource, and were able to identify replicable gene co-expression findings. Moreover, while including 391 

SCZ postmortem data in our analyses provided important insights into illness associations of 392 

identified SDA components, antipsychotic treatment and other illness-associated epiphenomena may 393 

have introduced confounding effects for the SDA analysis. We tried to address this issue by 394 

performing SDA on the same three tissues using an independent dataset consisting of only healthy 395 

controls (GTEx) to assess the rate of replication and generalizability of these results. Indeed, we found 396 

that 90% of the components identified were replicated, and the one we studied was very well reflected 397 

in GTEx. While the total sample size for [18F]-FDOPA PET genetic studies in this work is 398 

unparalleled, the within-cohort sample sizes are limited, which may explain minor differences in peak 399 

findings across different PRS SNP p-value thresholds or anatomically within the striatum. 400 
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Nonetheless, the convergent positive association identified between C80 and striatal presynaptic 401 

dopamine synthesis in all cohorts studied despite independent, multi-site sampling and diverse 402 

methods bolsters confidence in the PET results. Additionally, while the non-invasive reference region 403 

graphical linearization method used here for [18F]-FDOPA quantification has been well validated, it 404 

is possible that alternative kinetic modelling in future studies using arterial data may allow for a more 405 

comprehensive view of observed effects. Finally, it is possible that sample size limitations in the 406 

fMRI dataset prevented identification of weaker but important BOLD effects, though the replication 407 

mitigates this concern. 408 

In sum, these results highlight a DA related striatal gene set that is prominently expressed in 409 

SCZ, implicated in SCZ genetic risk, and involved in dopamine synthesis and striatal physiological 410 

activity in vivo, suggesting that genetic risk within this pathway differentially affects SCZ-relevant 411 

striatal function. These observations provide evidence that polygenic risk for SCZ can be effectively 412 

parsed into pathways important for specific systems-level functions that is measurable even in the 413 

absence of illness43. Furthermore, they suggest a molecular basis of how genetic risk within the C80 414 

pathway might affect illness relevant striatal neurochemistry and neurofunction and may open new 415 

possible avenues for studying clinical heterogeneity19,43 and drug treatment response43.  416 

  417 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.20.558594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.20.558594


20 
 
 

Online Methods 418 

 419 

Lieber Institute for Brain Development (LIBD) postmortem data – discovery cohort 420 

We used post-mortem human brain tissue from the LIBD Human Brain Repository. All 421 

included neurotypical controls (NC) had minimal age-associated neuropathology (determined from 422 

postmortem histopathological examination), had no substance or drug use from toxicology, and were 423 

free from any psychiatric or neurological disorder from clinical histories. All tissue donations were 424 

made with informed consent from next of kin. Brains in the LIBD Human Brain Repository were 425 

transferred from the National Institute of Mental Health Clinical Brain Disorders Branch under a 426 

material transfer agreement after having been collected under NIMH Protocol 90-M-0142, as 427 

approved by the National Institutes of Health Combined Neurosciences Institutional Review Board. 428 

An additional sample of SCZ cases in the LIBD repository were collected from the Office of the Chief 429 

Medical Examiner for the State of Maryland under State of Maryland Department of Health and 430 

Mental Hygiene Protocol 12-24, and from the Kalamazoo County Michigan Medical Examiners’ 431 

Office under Western Institutional Review Board Protocol 20111080. All samples were collected and 432 

processed using a standardized protocol specifically developed to minimize sample heterogeneity and 433 

technical artifacts as previously described77,78. See Table 1 for cohort demographics. 434 

Caudate nucleus samples were derived from the anterior ‘head’ portion, a subregion tightly 435 

connected with the prefrontal cortex; HP samples from the mid-hippocampus proper (all dissections 436 

included the dentate gyrus, CA3, CA2 and CA1) plus the subicular complex; and DLPFC samples 437 

from Brodmann Area 9/46 at the level of the rostrum of corpus callosum79.  438 

For all tissues, RNA sequencing was performed via the Illumina Ribozero Kit as previously 439 

described78 . Gene-level mRNA expression was quantified as Reads Per Kilobase per Million mapped 440 

reads (RPKMs) and annotated as total gene expression separately for each brain region using 441 

GENCODE release 25 (GRCh38.p7).  442 
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We included NC and SCZ samples with European or African American ancestry, all with 443 

RNA Integrity Number (RIN) ≥ 6 (see Table 1). We used inter-array distance to identify tissue-444 

specific outlier subjects deviating more than three standard deviations from the mean32 (CN = 4; HP 445 

= 7; DLPFC = 5). We then focused our analyses on mRNA expression measurements that were 446 

available for common samples (N=238) and genes (N=58,037) across all three tissues. 447 

 448 

The Genotype-Tissue Expression (GTEx) postmortem data – replication cohort 449 

We used the recount3 R80 package to download already processed GTEx v8 RPKMs for CN, 450 

HP, and DLPFC (Frontal Cortex Ba9). Data available for all three tissues consisted of 120 samples 451 

and 54,892 genes.  452 

 453 

King’s College London (KCL) PET data – discovery cohorts 454 

Two cohorts, one with 92 NC and one with 47 individuals with SCZ, (see Table 1 for 455 

demographics) underwent [18F]-FDOPA positron emission tomography (PET) scans to measure 456 

dopamine synthesis capacity (indexed as the influx rate constant Ki) in the striatum as previously 457 

described81-86. In short, after pretreatment one hour before the scan with fixed doses of carbidopa 458 

(150 mg) and entacapone (400 mg) to reduce peripheral tracer metabolism, and immediately 459 

following intravenous injection of [18F]-FDOPA, a series of dynamically binned emission frames 460 

were acquired over 95 minutes. Computed tomography (CT) imaging was performed for attenuation 461 

correction. Scans were obtained on one of the following PET scanners: an ECAT HR + 962 462 

(CTI/Siemens, Knoxville, Tennessee), and an ECAT HR+ 966 (CTI/Siemens, Knoxville, 463 

Tennessee), and two Siemens Biograph HiRez XVI PET-CT scanners (Siemens Healthcare, 464 

Erlangen, Germany). Reconstructed, attenuation corrected emission scans were realigned to correct 465 

for interframe head motion. An atlas defining the regions of interest (striatum, its subdivisions, and 466 

the reference region (cerebellum) as described in Howes et al 200916 was co-registered to a tracer 467 
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specific template and transformed to each subject’s PET data series using SPM 12 software (UCL, 468 

London, UK). Time-activity curves were extracted for the regions of interest and entered into 469 

standard Patlak-Gjedde graphical linear models using the reference region to adjust for non-specific 470 

uptake to obtain the influx rate constant Ki, a measure of specific tracer uptake87. The primary 471 

analyses focused on the whole striatum. For post-hoc exploratory analyses, the striatum was sub-472 

divided into limbic, associative, and sensorimotor subdivisions based on functional topography of 473 

the striatum and its connectivity as previously descrived88. All participants provided written, 474 

informed consent per KCL IRB approved protocols.  475 

 476 

National Institute of Mental Health (NIMH) PET data – replication cohort 477 

[18F]-FDOPA PET scans were acquired for a total of 150 healthy subjects (demographics in 478 

Table 1) as previously described89. In short, after a required 6-hour fast to prevent competition for 479 

tracer transport to the brain, a 4-hour caffeine/nicotine restriction, and pretreatment with fixed doses 480 

of carbidopa (200 mg) to reduce peripheral tracer metabolism, and immediately following intravenous 481 

injection of [18F]-FDOPA, a series of dynamically binned emission frames were acquired over 90 482 

minutes. A transmission scan was performed in the same session for attenuation correction. All scans 483 

were obtained on a GE Advance PET tomograph operating in 3D mode with a thermoplastic mask 484 

applied to help restrict head movement. Reconstructed, attenuation corrected emission scans were 485 

realigned to correct for interframe head motion. Spatial warping of PET data was performed with 486 

ANTs software to an MNI space tracer-specific template. A 10 mm Gaussian kernel smoothing was 487 

applied to improve voxel-wise signal to noise ratios. Using PMOD software 488 

(https://www.pmod.com/), time-activity curves from voxels within the striatum were subjected to 489 

standard Patlak-Gjedde graphical linear modelling using cerebellar reference region time-activity 490 

data as an input function to yield Ki as above87. All participants provided informed consent per NIH 491 

Combined Neurosciences IRB approved protocols. 492 
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 493 

LIBD fMRI data – discovery cohort 494 

An independent sample of 86 NC (demographics in Table 1) participated in a fMRI 495 

experiment in which participants performed a modified version of the MID task90 based on the 496 

expectancy theory of motivation91. Participants had no history of any psychiatric or neurological 497 

disorders and gave written, informed consent for a protocol approved by the NIH Combined 498 

Neurosciences IRB. Participants were told that they would be monetarily compensated based on 499 

earnings in the task. Details about the task layout are reported in the Supplementary materials. 500 

fMRI scans were acquired through a 3T GE Signa scanner. Gradient-recall echo-planar 501 

imaging was used with the following parameters: TR = 2000 ms; TE = 28 ms; flip angle = 90; 64 × 64 502 

matrix; FOV = 240 mm; and 35 3.5 mm slices acquired with an interleaved order of slice acquisition 503 

and first five frames discarded to allow steady-state magnetization. Slice timing correction, six-504 

parameter coregistration to adjust for movement, mean functional-image driven spatial normalization 505 

to MNI space, and spatial smoothing with an 8 mm Gaussian kernel were applied and yielded 506 

timeseries data with 3 mm isotropic resolution through SPM12 507 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). A separate general linear model (GLM) was 508 

specified for each participant, modeling time-locked BOLD responses to high reward vs low reward, 509 

i.e., low expectation vs high expectation of reward event onsets, i.e., high motivation vs low 510 

motivation, by convolving the onset vectors with a synthetic hemodynamic response function as 511 

implemented by SPM12. At the model estimation stage, the data were high-pass filtered with a cutoff 512 

of 128 s to remove low-frequency drifts. Global scaling was not applied to the data.  513 

 514 

UNIBA fMRI data – replication cohort 515 

A cohort of 55 NC (demographics in Table 1) participated in a fMRI experiment in which 516 

participants performed a version of the MID task90 alternative to the one described before. Participants 517 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.20.558594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.20.558594


24 
 
 

had no history of any psychiatric or neurological disorders and gave informed consent for a protocol 518 

approved by the institutional ethics committee of the University of Bari Aldo Moro (UNIBA). 519 

Participants were told that they would be compensated with one gift gadget (pen, t-shirt, pin, bag, 520 

pouch, notebook) when they earned at least 1700 points, and the chance of choosing between two or 521 

three gifts of their choice (when reaching 1900 and 2300 points, respectively) and encouraged to 522 

respond as quickly as possible. For details about the task layout see Supplementary materials. 523 

fMRI scans were acquired through a 3T Philips Ingenia scanner. Gradient-recall echo-planar 524 

imaging was used with the following parameters: TR = 2000 ms; TE = 38 ms; flip angle = 90; 64 × 64 525 

matrix; FOV = 240 mm; and 38 3.6 mm slices acquired with an interleaved order of slice acquisition. 526 

Slice timing correction, six-parameter coregistration to adjust for movement, mean functional-image 527 

driven spatial normalization to MNI space, and spatial smoothing with a 9 mm Gaussian kernel were 528 

applied and yielded timeseries data with 3 mm isotropic resolution through SPM12. A separate 529 

general linear model (GLM) was specified for each participant, modeling time-locked BOLD 530 

responses to high reward vs low reward event onsets, i.e., high motivation vs low motivation, by 531 

convolving the onset vectors with a synthetic hemodynamic response function as implemented by 532 

SPM12. At the model estimation stage, the data were high-pass filtered with a cutoff of 128 s to 533 

remove low-frequency drifts. Global scaling was not applied to the data.  534 

 535 

Genotype data processing and polygenic risk score (PRS) calculation 536 

Genotype data for all samples were obtained and processed as previously described92,93. 537 

Genotype imputation and quality checks as well as calculation of genomic eigenvariates (GEs) for 538 

population stratification were performed in each cohort separately. See Supplementary Information 539 

for details. 540 

We indexed the whole-genome genetic risk for SCZ by computing the PRS for each sample 541 

using the PRSice-2 software94. To obtain a highly informative SNP set with as little statistical noise 542 
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as possible, we excluded uncommon SNPs (MAF < 1%), low-quality variants (imputation INFO < 543 

0.9), indels, and SNPs in the extended MHC region (chr6:25-34 Mb). We used PGC (wave 3; primary 544 

autosomal analysis) GWAS2 summary statistics that did not include any of the LIBD discovery 545 

samples (leave-sample-out) to weight SNPs by the effect size of association with SCZ. We used 546 

European samples from the 1000 Genomes Project95 (1000G) as external reference panel to improve 547 

the linkage disequilibrium (LD) estimation for clumping. Both PGC3 leave-LIBD-out and the 548 

reference panel were in reference to human genome Build 37.  549 

To stratify SCZ genetic risk for genes within a specific component we first mapped European 550 

1000G SNPs at 100kbp up- and down-stream of each component-specific gene using MAGMA tool 551 

(v1.09b), we then matched component-specific SNPs with PGC3 leave-LIBD-out summary statistics 552 

and finally computed the scores for the KCL, NIMH, LIBD- and UNIBA-fMRI cohort separately 553 

using PRSset96 and again the European 1000G as LD reference panel. As negative control, we 554 

computed complementary scores including all PGC3 leave-LIBD-out SNPs not mapping to any of 555 

the component-specific genes.  556 

We used PRSs based on 10 SNP sets corresponding to GWAS SNP association p values of p 557 

= 5e−8 (PRS1), p = 1e−6 (PRS2), p = 1e−4 (PRS3), p = 0.001 (PRS4), p = 0.01 (PRS5), p = 0.05 558 

(PRS6), p = 0.1 (PRS7), p = 0.2 (PRS8), p = 0.5 (PRS9), and p = 1 (PRS10)2. Table 2 shows number 559 

of SNPs used for each cohort for each PRS threshold. 560 

 561 

RNA data processing 562 

To analyze LIBD postmortem data with SDA, we first removed mitochondrial genes and 563 

genes with RPKM expression median lower than 0.1 or deviating more than 3 standard deviations 564 

from the mean in each tissue. We then removed genes with more than 20% zeroes in all three tissues 565 

as previously done35. We log-transformed RPKM values with an offset of 1, i.e., log2(RPKM+1). 566 

After performing quantile normalization to normalize samples based on their gene expression, we 567 
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rank-normalized gene expression using Blom formula28,29,97 to limit the impact of deviations from 568 

normality in expression data. We performed all normalization steps for each tissue separately. The 569 

final tensor of 22,356 mRNA expression measurements in 238 samples and across CN, HP and 570 

DLPFC was used as input for SDA (see Table 1). 571 

 572 

Sparse decomposition of arrays (SDA) computation 573 

We iterated the algorithm 10 times, and for each run we obtained latent components defined 574 

by three bidimensional matrices: i) the individual score matrix, which represented the magnitude of 575 

the effect of each component across individuals and was used to compute the association with 576 

diagnosis; ii) the tissue score matrix, which indicated the activity of the component for each tissue 577 

and was used to identify the contribution of each tissue to the components; iii) the gene loading 578 

matrix, which indicated the contribution of each gene to components and served to identify genes 579 

specific to tissues or shared between them (see Supplementary Information for further details about 580 

parameters used). 581 

We thus obtained robust components found consistently across multiple iterations, whereas 582 

others only occur in one or a few of them. We clustered similar components across different iterations 583 

following published procedures35 (see Supplementary Information). We obtained 126 large clusters 584 

containing components from multiple different iterations and combined components within each 585 

cluster by taking the mean of the individual scores, tissue scores and gene loadings. We finally used 586 

the resulting 126 combined clusters as the basis for further analyses. 587 

 588 

Tissue activity evaluation 589 

 We evaluated the tissue loadings across components by column-wise scaling the tissue score 590 

matrix (components as columns and tissues as rows) obtained by the SDA decomposition so that the 591 

largest score was equal to 1 and the lowest to -1 using a threshold of |0.5| (as previously reported by 592 
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SDA developers35) to infer the tissue specificity of each component and how many components are 593 

shared across tissues (Fig 2b and Supplementary Fig. 1a).  594 

 595 

Confounder analysis 596 

 Since SDA identifies non-sparse components that might be expected to arise from 597 

confounding effects, we expected singular value decomposition to reveal latent confounders. Singular 598 

value decomposition in its principal component analysis implementation has been used often to this 599 

aim35,98-100. To identify components most likely to represent confounding effects, we computed a 600 

series of multiple linear regressions using as dependent variable individual scores from the individual 601 

score matrix for each of the 126 SDA components and as predictors both biological confounders (age, 602 

sex, diagnosis, first 10 GEs) and technical confounders (postmortem interval (PMI), RIN, 603 

mitochondrial mapping rate, rRNA rate, gene mapping rate). 604 

We adopted a confounder detection approach consistent with the reference paper35 by using 605 

the same confounder effect size of 0.274 (p = 10-10; sample size = 845). We found that the same effect 606 

size corresponded to p < 5×10-4 in our sample of 238 individuals (observed power = 80%) and 607 

removed the 57 components associated at this threshold with at least one of the technical confounders 608 

or GEs. We focused our further analyses on the remaining 69 components. 609 

 610 

Diagnosis and PRS association 611 

 To investigate whether the 69 components were differentially co-expressed between NC and 612 

SCZ, we tested the association of the component-specific individual scores with diagnosis via 613 

ANCOVA while covarying for biological (age and sex) and tissue specific technical confounders 614 

(PMI, RIN, mitochondrial mapping rate, rRNA rate, gene mapping rate), taking into account the 615 

component tissue activity. Samples with age > 17 were included (N=229) as this was the minimum 616 

age in the SCZ sample.  617 
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We further evaluated the association of the differentially co-expressed components with PRS 618 

via multiple linear regression again covarying for age, sex, diagnosis, and tissue specific confounders 619 

and including only samples with European ancestry (N=103) since the summary statistics used are 620 

mainly based on European population. For this analysis one-tailed tests were used because of the 621 

constraint on effect directionality, i.e., we discarded potential significant results in the opposite 622 

direction of diagnosis association. We focused on PGC3 variants with a SCZ association p-value < 623 

.05, since this PRS has been shown to have the highest prediction accuracy for diagnostic status in 624 

multiple independent samples2.We used Benjamini-Hochberg false discovery rate (FDR) correction 625 

to correct for multiple comparisons across SDA components and set αFDR < 0.05.  626 

 627 

Biological and functional enrichment analysis  628 

We explored the functional and biological significance of these components through 629 

enrichment analyses for multiple psychiatric disorders and immune disorders’ top risk loci genes, i.e., 630 

putative causal genes identified by setting a fixed distance around each index GWAS-significant SNP 631 

and subsequently integrating genomic functions or chromatin interactions101,102 (ADHD - attention 632 

deficit hyperactivity disorder103; ASD - autism spectrum disorder104; BD - bipolar disorder103; MDD 633 

- major depressive disorder105; OCD – obsessive-compulsive disorder106; PTSD – post-traumatic 634 

stress disorder107; SA – suicide attempt106; SCZ- schizophrenia2; CD and UC – Crohn’s disease and 635 

ulcerative colitis108). 636 

We also computed enrichments for differentially expressed genes (DEGs) obtained from 637 

CN22, HP and DLPFC78; genes proximal to differentially methylated CpG islands (DMGs) in PFC 638 

and blood77,109-113 and loss of function intolerant genes114. For DEGs, we performed a brain region-639 

specific enrichment using the appropriate gene list of each tissue. Moreover, for DLPFC DEGs and 640 

DMGs enrichment, we computed a meta-analysis of the papers from which we retrieved target genes 641 

to obtain module-wise enrichment p-values (sum-log Fisher’s method). Considering the overlap 642 
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between the SDA components obtained, we computed permutation statistics to control for multiple 643 

comparisons by first creating for each component a null distribution of 10,000 sets of randomly 644 

sampled genes using the 22,356 genes as the universe and then comparing the enrichment hits to the 645 

null distribution created from the permuted components (⍺ =.05).  646 

 647 

MAGMA analysis 648 

We used the MAGMA tool v1.09b, pathology-specific summary statistics as SNP p-value data 649 

and 1000G European as the reference data file for a European ancestry population to estimate LD 650 

between SNPs. We took the following steps: i) we mapped 1000G SNPs to genes encompassed in 651 

each component (a window of 100 kb upstream and downstream of each gene; for H-MAGMA we 652 

used Adult brain Hi-C annotation files already computed in the H-MAGMA publication39), ii) we 653 

calculated gene-wide association statistics based on summary statistic SNPs p-values (MAGMA 654 

“mean” method), iii) we performed “competitive” gene-set enrichment analysis where the association 655 

statistic for genes in the components is compared to those of all other genes with at least one SNP 656 

mapped (universe used consisted of 22,356 genes used for SDA). FDR correction served to control 657 

for multiple comparisons (⍺FDR=0.05). 658 

 659 

Cell-type specificity analysis 660 

We further asked whether SDA components mapped onto specific brain cell-types. We used 661 

marker genes already identified by Skene et al. including cell-type specificity indices115. They 662 

computed specificity indices for each gene ranging between 1 (high specificity for a given cell type) 663 

and 0 (low specificity). We used specificity indices derived from single-nuclei RNA-seq of human 664 

brains116, which discriminated ten different cell types (neuron and glia); and from single-cell RNA- 665 

seq of mouse brains115 which encompasses 24 different cell types. We used Mean-rank Gene Set Test 666 

in the limma R package to evaluate the enrichment of our components for the specificity indices of 667 
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each cell type. This algorithm performs a competitive test comparing the specificity index rank of the 668 

co-expressed genes with the remaining genes. FDR correction served to control for multiple 669 

comparisons across components and cell-types tested (⍺FDR=0.05). 670 

 671 

Gene Ontology analysis 672 

Finally, we explored the gene ontology of components via enrichment analysis through the 673 

clusterProfiler R117 package using the Gene Ontology Database (PANTHER, http://pantherdb.org)118 674 

and the Kyoto Encyclopedia of Genes and Genomes (KEGG, https://www.genome.jp/kegg/) database 675 

and setting the 22,356 genes gave as input to SDA as universe. FDR correction was applied to control 676 

for multiple comparisons (⍺FDR=0.05). 677 

 678 

Association with DRD2, DDC and TH total gene expression 679 

 We evaluated the C80 association with DRD2, DDC and TH gene expression via a multiple 680 

linear regression analysis using C80 individual scores as dependent variable and DRD2, DDC and 681 

TH expression across CN, DLPFC and HP as independent variables. We also included age, sex, 682 

diagnosis, postmortem interval (PMI), tissue-specific RIN, mitochondrial mapping rate, rRNA rate 683 

and gene mapping rate as covariates. Finally, we added to this model the interaction between 684 

diagnosis and each gene expression as well as interaction between diagnosis and age to control for 685 

spurious association driven by postnatal samples (Eq.1). The gene expression values used were the 686 

ones given as input to SDA for all 238 samples (quantile and rank normalized matrices). We also 687 

performed this analysis using only healthy individuals (N = 154; Eq.2). 688 

 689 

Eq.1: 80 =  ∗ 2 + ∗ 2 + ∗ 2 + ∗  +690 ∗  + ∗  + ∗  + ∗  + ∗  +  ∗691 + + + +  +  +   +  +692 
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  +   +   +693   +   +  +   +    694 

 695 

Eq.2: 80 =  2 + 2 + 2 +  +  +696  +  +  +  +  +   + +  +697   +   +  +   +698  +   +   +   +699   +   +    700 

 701 

DRD2 transcript level association analysis 702 

 To evaluate contribution of short and long isoform to the DRD2 expression variance, we 703 

substituted the DRD2 terms in the previous gene level models (Eq.1-2) with the long and short 704 

isoform transcript expression values (Eq.3).  705 

Transcript counts were preprocessed and normalized to transcripts per million (TPM) 706 

estimates as previously described22,78 and were available for 222 out of the 238 samples previously 707 

used. After mapping 138,933 transcripts to the 22,356 genes used for previous analyses, we log-708 

transformed TPM values with an offset of 1, i.e., log2(TPM+1) and kept transcripts with a median 709 

higher than zero. We then performed quantile and rank normalization in each tissue separately as 710 

previously done. DRD2 short isoform survived filters for all tissues while the long isoform had a 711 

median higher than zero only in CN. This analysis was also performed using only healthy individuals 712 

(N = 143). 713 

 714 

Eq.3: 80 =  ∗ 2 ℎ  + ∗ 2 ℎ  + ∗ 2 ℎ  +715 ∗ 2  +  ∗  + ∗  + ∗  + ∗  +716 ∗  + ∗  +  ∗ + + + +  +  +717 
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  +  +   +718   +   +   +   +719   +   +    720 

 721 

MSN pathways enrichment 722 

We downloaded the 40 most preferentially expressed genes in each MSN class identified by 723 

Tran MN et al.40 in the nucleus accumbens and focused on D1_A and D2_A clusters as they 724 

represented the largest D1-MSN (67%) and D2-MSN (87%) subclasses, respectively. As 11 genes 725 

shared expression for both D1_A and D2_A clusters, we considered the intersection without these 726 

genes for a total of 29 genes in each class. We permuted 10,000 gene sets matching both C80 727 

component size and GC content, gene length and average expression distributions of C80 genes. The 728 

universe from which random genes were pooled consisted of the protein coding genes given as input 729 

to SDA for which this info was available (22,282 genes). 730 

We then computed empirical p-values by comparing the enrichment hits with each MSN cluster to 731 

the null distribution created from the permuted gene sets (⍺ =.05).  732 

 733 

 GTEx replication analysis 734 

To replicate gene co-expression sets obtained with the LIBD data, we applied SDA on CN, 735 

HP, and DLPFC GTEx RNA-seq data using the exact same pipeline previously described. The input 736 

matrix for SDA is described in Table 1.  737 

Two replication measures were assessed: correlation between LIBD and GTEx component-738 

specific gene loadings and Jaccard Index (JI) as the intersection/union of the LIBD and GTEx 739 

component-specific genes. To identify the LIBD-GTEx pair of replicated components we took for 740 

each of the LIBD components the GTEx component with the highest replication measure assessed 741 

and iteratively discarded that component to have unique LIBD-GTEx pairs. We then permuted the 742 
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LIBD components 10,000 times and compared the replication measure previously assessed to the null 743 

distribution created from the permuted components to obtain a replication empirical p-value for each 744 

pair identified. 745 

 746 

Replication of total gene and transcript level expression in GTEx 747 

To replicate results obtained in the discovery sample, we assessed C18 association with DRD2 748 

total gene expression via a multiple linear regression analysis using C18 individual scores as 749 

dependent variable and DRD2 expression across CN, DLPFC and HP as independent variables as 750 

previously done in the discovery analysis (Eq.2). 751 

 DRD2 long and short isoform transcript association was performed as previously done in the 752 

discovery analysis (Eq.3).  753 

 We downloaded GTEx v8 transcript TPM values from GTEx portal 754 

(https://gtexportal.org/home/datasets) and after mapping 133,788 transcripts to the 20,475 genes used 755 

we performed normalization steps as previously done in the discovery analysis.  756 

 757 

Ancestry stratification 758 

As the summary statistics used are mainly based on the European population and PRS 759 

association with other ethnicity groups might lead to biases, we evaluated the individual ancestry 760 

based on the genotype data rather than only considering the self-reported ethnicity for all cohorts 761 

included for the brain function association analysis. To this purpose, we used a procedure developed 762 

by the ENIGMA consortium that consists in performing a PCA on target data merged with the 763 

HapMap119 phase 3 reference dataset (https://enigma.ini.usc.edu/wp-764 

content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf). For this analysis we included all 765 

samples whose genotype information were available (KCL: 168; NIMH: 169; LIBD: 86; UNIBA: 766 

2,178; see Supplementary Table 1). We then computed an individual ancestry score based on the GE 767 
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obtained from the PCA analysis. We trained a generalized linear model using the glmnet R package; 768 

we used the first 20 GE obtained as predictors and the ethnicity (European = 1; Others = 0) as response 769 

variable and considered only samples in the reference dataset. Then, we used the trained model to 770 

predict the ethnicity of our samples using the first 20 GE. Finally, for each subject we obtained a 771 

European ancestry score and considered a threshold of 90% prediction probability to remove 772 

individuals with a non-Caucasian ethnicity (KCL: 59; NIMH: 3; UNIBA: 213). Remaining samples 773 

whose genotype and PET/fMRI data were available were used in further analyses (demographics in 774 

Table 1). 775 

Since the KCL discovery cohort was the most heterogeneous in terms of ethnicities included 776 

we decided to also evaluate different ancestry subdivisions based on the visualization of the first two 777 

PCA dimensions, i.e. top axes of variation (see details in Supplementary Information).  778 

 779 

Parsed-PRS association with PET data 780 

Considering the sample heterogeneity in the KCL discovery cohort in terms of both ethnicity 781 

and scanners used and population type at the diagnostic level, we conducted the association analysis 782 

separately in the NC and SCZ samples. A multiple linear regression served to associate the C80 783 

stratified PRS (C80-PRS) as well as its complementary score (C80-PRS-complementary) with [18F]-784 

FDOPA uptake in the striatum indexed by Ki using age, gender, cannabis use, scanner and first three 785 

GEs as covariates. We then combined the effect of the individual studies with a fixed-effect model 786 

meta-analysis, as random-effect models require data to be randomly extracted from equivalent 787 

populations, an assumption that does not hold for clinical and control cohorts. We converted t-788 

statistics from the regression model into correlation coefficients using the following formula:  789 = ( + )⁄  790 

where DF is number of the degrees of freedom for the t-statistic. We finally used Fisher’s r-to-z 791 

transformed correlation coefficients as outcome measure in the metafor120 R package. 792 
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We focused our analysis on dopamine synthesis in an ROI encompassing the whole striatum 793 

and to obtain a more granular view of the relationship between risk and phenotypes corrected for 794 

multiple comparisons using Bonferroni method (α = .05/10). We then explored this association also 795 

in different striatum subdivisions as well as across different ancestry definitions (see Supplementary 796 

Information). 797 

As in the KCL analyses described above, we performed separate multiple linear regression 798 

analyses for C80-PRS and C80-PRS-complementary predictors in the independent NIMH NC cohort, 799 

in each case using the same covariates as described above in the KCL analysis (i.e., age, sex, and the 800 

first three GEs; the ‘scanner’ variable was omitted, as all scans were obtained on a GE Advance PET 801 

scanner). Comparisons were conducted voxelwise across the whole striatum, using SPM software at 802 

a height threshold of p<0.05, voxelwise family-wise error (FWE) corrected for multiple comparisons. 803 

 804 

Parsed-PRS association with fMRI data  805 

Finally, we associated C80-PRS and C80-PRS-complementary to reward anticipation-related 806 

fMRI activation in the independent sample of 86 NC from LIBD. We used the data of 55 NC from 807 

UNIBA participants to replicate the results.  808 

BOLD responses to events of interest were modelled separately and time-locked to event onset 809 

by convolving the onset vectors coinciding with onset of events (including cues by type, button press, 810 

successful/unsuccessful outcomes, and error trials) with a synthetic hemodynamic response function 811 

as implemented by SPM12. For all analyses, the primary outcome measure was the contrast in BOLD 812 

signal of rewarded relative to control cue events, which best reflects reward anticipation responses in 813 

this task. Participants additionally completed cognitive testing outside of the scanning environment 814 

that assessed full scale IQ, which was included as a nuisance covariate in analyses. 815 

Age, sex, IQ and first three GEs were used as covariates, consistently with previous analyses, 816 

whereas MID-related BOLD signal (cue-related anticipatory response during reward versus control 817 
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trials) was the dependent variable. Cue-related individual contrasts of the 86 NC from LIBD were 818 

entered into a group level analysis to identify voxels with a significant effect of C80-PRS and C80-819 

PRS-complementary on reward anticipation through separate multiple regression performed with 820 

SPM12. We considered the threshold free cluster enhancement correction121,122 p[TFCE-FDR] < 0.05 821 

accounting for multiple comparisons as the number of voxels within the task-related activity mask 822 

derived by the one sample t test on cue-related individual contrasts (pFWE=0.05). Next, the cue-related 823 

individual contrasts in the 55 NC from UNIBA were associated with C80-PRS, using age, sex, IQ 824 

and first three GEs as covariates. We considered significance at p[TFCE-FDR] < 0.05 accounting for 825 

multiple comparisons as the number of voxels within the task-related activity mask derived by the 826 

one sample t test on cue-related individual contrasts (pFWE=0.05).  827 

 828 

  829 
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Data availability 830 

SDA software is publicly available at: https://jmarchini.org/software/#sda. 831 

LIBD post-mortem processed RNA-seq data is available at: https://eqtl.brainseq.org/phase2/ and at: 832 

https://erwinpaquolalab.libd.org/caudate_eqtl/. 833 

GTEx post-mortem processed RNA-seq data is available at: https://gtexportal.org/home/datasets. 834 

SDA input and output data, components summary information, GO enrichment results, and SNPs 835 

used to compute C80-PRSs (Supplementary Data 1-6) are available at:  836 

https://doi.org/10.5281/zenodo.8214643 837 

 838 

Code availability 839 

The scripts used for this study are available in Supplementary Data 5 at: 840 

https://doi.org/10.5281/zenodo.8214643  841 
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 1171 

Fig. 2: Sparse decomposition of arrays (SDA) component characterization. 1172 

a, Notched box plots show SDA component C80 and C109 scores for post-mortem data samples in 1173 

SCZ and NC groups. These were the only component showing a significant group effect. Group 1174 

medians (horizontal line), 95% confidence intervals (notches), interquartile range (box edges), and 1175 

whiskers (25th/75th percentiles or extrema) are shown. 1176 

Scatter plot demonstrates SDA component C80 and C109 scores as a function of polygenic risk for 1177 

schizophrenia and includes regression fit line with shaded 95% confidence interval. C80 is the only 1178 

one with a significant PRS association consistent with diagnosis direction. 1179 

b, Gene enrichment analysis results are shown for C80 component. From the bottom, the first 1180 

(GWAS), second (MAGMA) and third orange grids (H-MAGMA) show enrichment results for 1181 

schizophrenia risk genes, other psychiatric illness risk genes, and immune condition risk genes. 1182 

Enrichment testing results are shown for differentially expressed genes, differentially methylated 1183 

genes, and loss of function variant intolerant genes in the green grid. The final lightblue grid show 1184 

C80 tissue specificity as determined by the tissue scores generated during the SDA process and 1185 

reflects the relative contribution of component gene networks within each of the sampled regions to 1186 

the overall component. Adjusted p-values shown are empirical p-values obtained from permutation 1187 

tests. 1188 

c, Cell-type specificity of C80 component using human (left) and mouse (right) single-cell atlases. y-1189 

axes show FDR-adjusted p-values. Red dashed lines represent p-value=.05. Barplots demonstrates a 1190 

higher specicifty for GABAergic, medium spiny and dopaminergic neurons. 1191 

Abbreviations: ADHD: attention deficit hyperactivity disorder; ASC: astrocytes; ASD: autism 1192 

spectrum disorder; BD: bipolar disorder; CD: Crohn’s disease; CN: Caudate Nucleus; DEGs: 1193 

differentially expressed genes; DLPFC: dorsolateral prefrontal cortex; DMGs: differentially 1194 

methylated genes; END: endothelial cells; HP: hippocampus; exCA: pyramidal neurons from the 1195 

hippocampal CA region; exDG: granule neurons from the hippocampal dentate gyrus; exPFC: 1196 

pyramidal neurons from the prefrontal cortex; GABA: GABAergic interneurons; LoF: loss of function 1197 

intolerant genes; MDD: major depressive disorder; MG: microglia; NC: Neurotypical controls; 1198 

NSC: neuronal stem cells; OCD: obsessive compulsive disorder; ODC: oligodendrocytes; OPC: 1199 

oligodendrocyte precursor cells; PRS: polygenic risk score as reported by the third wave (primary) 1200 

analyses of the Psychiatric Genetics Consortium2; PTSD: posttraumatic stress disorder; SA: suicide 1201 

attempt; SCZ: Patients with schizophrenia and UC: ulcerative colitis.  1202 
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Fig. 3: Synaptic dopaminergic specificity of C80.  1204 

a, and b, Gene ontology (cellular compartment) and KEGG enrichment of C80 for both pre and post 1205 

synaptic compartments as well as dopaminergic, GABAergic and glutamatergic synapses. FDR-1206 

adjusted p-values are reported. 1207 

c, Venn Diagram showing intersection between C80 genes and genes expressed in subpopulations of 1208 

D1- and D2-expressing MSNs in the nucleus accumbens. A larger intersection is found with D2-MSN 1209 

over D1-MSN. 1210 

d, Overlap between SDA components generated from the LIBD and GTEx datasets that are 1211 

significantly replicated (empirical p<.001) using JI or gene loading correlation. Discovery C80 and 1212 

replication C18 are one of the 4 pairs of components consistent with both JI and gene loading. 1213 

Abbreviations: JI: jaccard index; MSN: medium spiny neurons. 1214 
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 1231 

Fig. 4: C80-PRS association with neuroimaging parameters: striatal dopamine synthesis 1232 
capacity ([18F]-FDOPA PET) and reward anticipation-related fMRI activation (fMRI BOLD). 1233 

a, Associations between C80-PRS and both PET cohorts are shown. First row (PET discovery): on 1234 

the left whole-striatum region of interest (ROI) coverage (red) is shown overlaid on a grayscale 1235 

standardized [18F]-FDOPA PET activity map; on the right graphs shows standardized individual 1236 

mean Ki values for this ROI plotted against C80-PRS for the neurotypical control and SCZ subjects 1237 

(upper) as well as the forest plot of the metanalysis (lower).  1238 

Second row (PET replication): Region of positive association between C80-PRS and presynaptic 1239 

dopamine synthesis capacity ([18F]-FDOPA Ki) is shown as a statistic parametric map (color 1240 

indicates t-statistic value) overlaid on a grayscale standardized [18F]-FDOPA PET activity map 1241 

(p<0.005, uncorrected for display). Scatter plot shows standardized individual mean Ki values for a 1242 

2mm sphere around the peak voxel plotted against C80-PRS.  1243 

b, Associations between C80-PRS and both fMRI cohorts are shown. First (fMRI discovery) and 1244 

second (fMRI replication) rows: Regions of positive association between C80-PRS and fMRI 1245 

BOLD response during reward anticipation are shown as statistic parametric maps (color indicates 1246 

the threshold-free cluster enhancement (TFCE) statistics expressed in the -log10 scale). All results 1247 

meet thresholds of p[TFCE-FDR]<0.05 and cluster extent >20 voxels. Scatter plots show standardized 1248 

individual MID-related fMRI BOLD contrasts plotted against C80-PRS. 1249 
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Tables 1252 

Table 1. Demographics. 1253 

Demographics of cohorts used in the gene co-expression (upper rows) and neuroimaging (lower 1254 
rows) analyses are tabulated. Neuroimaging samples are those with both genetic and imaging data 1255 
after ancestry stratification. Abbreviations: CN: Caudate Nucleus bulk tissue data; HP: 1256 
hippocampus bulk tissue data; DLPFC: dorsolateral prefrontal cortex bulk tissue data; NC: 1257 
Neurotypical controls; SCZ: Patients with schizophrenia; AA: African American; EUR: European 1258 
 1259 

Modality Cohort Diagnosis 
(NC/SCZ) N Age 

(years±SD) 
Sex (N 
female) 

Ethnicity 
(EUR/AA) Genes 

Postmortem 
data (CN, HP, 
DLPFC) 

Discovery 
NC 154 44.9 ± 16.9 46 70/84 

22,356 
SCZ 84 49.4 ± 16.5 24 39/45 

Replication NC 120 range: 20 - 
79* 30 120/0 20,475 

[¹⁸F]-FDOPA 
PET 

Discovery 
NC 65 29±9  31 65/0 - 
SCZ 20 29±8 3 20/0  

Replication NC 150 35±11 75 150/0 - 

Reward fMRI 
Discovery NC 86 32±6 47 86/0 - 
Replication NC 55 26±6 33 55/0 - 

* For the postmortem replication (GTEx) dataset, age information was only available as a discrete variable and range 1260 

isreported the age range of the cohort 1261 

 1262 

Table 2. Number of SNPs used for parsed PRS. 1263 

Number of SCZ risk SNPs used for the C80-PRS and C80-PRS-complementary (compl) for each 1264 
cohort analyzed in the brain functional association analysis. Here are shown the first six GWAS p-1265 
value thresholds considered. 1266 

Cohort Diagnosis 
(NC/SCZ) 

PRS1  
(5e-08) 

PRS2  
(1e-06) 

PRS3  
(1e-04) 

PRS4  
(.001) 

PRS5  
(.01) 

PRS6  
(.05) 

C80 compl C80 compl C80 compl C80 compl C80 compl C80 compl 

Discovery 
NC 89 141 174 277 588 1,234 1,347 3,029 3,444 8,843 7,309 19,771 
SCZ 83 136 157 258 528 1,088 1,188 2,644 2,952 7,604 6,192 16,775 

Replication NC 82 137 157 272 569 1,186 1,337 3,001 3,624 9,394 8,215 22,094 
Discovery NC 84 142 172 284 608 1,276 1,458 3,268 3,969 10,228 8,982 24,090 

Replication NC 89 144 177 291 647 1,328 1,540 3,464 4,214 10,825 9,577 25,608 
 1267 

 1268 
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