Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
Contradictory Results

Four Phases of a Force Transient Emerge from a Binary Mechanical System

Josh E. Baker
doi: https://doi.org/10.1101/2023.09.20.558705
Josh E. Baker
1Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jebaker@unr.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

Models of muscle contraction are important for guiding drug discovery, drug validation, and clinical decision-making with the goal of improving human health. Models of muscle contraction are also key to discovering clean energy technologies from one of the most efficient and clean-burning machines on the planet. However, these important goals can only be met through muscle models that are based on science. Most every model and mechanism (e.g., a molecular power stroke) of muscle contraction described in the literature to date is based on a corpuscular mechanic philosophy that has been challenged by science for over two decades. A thermodynamic model and mechanisms (e.g., a molecular switch) of muscle contraction is supported by science but has not yet been tested against experimental data. Here, I show that following a rapid perturbation to the free energy of a thermodynamic muscle system, a transient force response emerges with four phases, each corresponding to a different clearly-defined thermodynamic (not molecular) process. I compare these four phases to those observed in two classic muscle transient experiments. The observed consistency between model and data implies that the simplest possible model of muscle contraction (a binary mechanical system) accurately describes muscle contraction.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted September 23, 2023.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Four Phases of a Force Transient Emerge from a Binary Mechanical System
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Four Phases of a Force Transient Emerge from a Binary Mechanical System
Josh E. Baker
bioRxiv 2023.09.20.558705; doi: https://doi.org/10.1101/2023.09.20.558705
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Four Phases of a Force Transient Emerge from a Binary Mechanical System
Josh E. Baker
bioRxiv 2023.09.20.558705; doi: https://doi.org/10.1101/2023.09.20.558705

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Biophysics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4861)
  • Biochemistry (10811)
  • Bioengineering (8054)
  • Bioinformatics (27346)
  • Biophysics (13999)
  • Cancer Biology (11140)
  • Cell Biology (16087)
  • Clinical Trials (138)
  • Developmental Biology (8793)
  • Ecology (13307)
  • Epidemiology (2067)
  • Evolutionary Biology (17375)
  • Genetics (11694)
  • Genomics (15939)
  • Immunology (11042)
  • Microbiology (26132)
  • Molecular Biology (10669)
  • Neuroscience (56660)
  • Paleontology (420)
  • Pathology (1737)
  • Pharmacology and Toxicology (3009)
  • Physiology (4557)
  • Plant Biology (9648)
  • Scientific Communication and Education (1617)
  • Synthetic Biology (2695)
  • Systems Biology (6985)
  • Zoology (1511)