














 

 
Supplementary Figure 9. a. Gene enrichment analysis of NR/3-specific (orange) and PAX/2-
specific (blue) target genes using published B cell related gene sets)& and b. gene ontology 
biological processes. c. Motif visualization and comparison. From top to bottom: LHX6 (a neuronal 
lineage TF), PAX5 motif in PAX/1 motif cluster, PAX5 core motif and reverse complement, PAX5 
motif in PAX/2 motif cluster, RORA and RARA motifs in NR/3 motif cluster. d. Contact map of full 
length PAX5-NR2C2 from AlphaFold 3 prediction. The best ranked model is shown here. G183 
residue is highlighted in the black box. e. Heatmap with the specific transcriptional program for 
the cases with the germline PAX5 G183S mutation. 
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