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Abstract

Therapeutic antibodies have emerged as the most prominent class of new drugs
due to their high specificity and their ability to target several molecules at the same
time, in the case of multi-specific bio-therapeutics. Once an antibody has been
identified, an optimization phase follows that includes affinity maturation, often
based on the structure of the interface between the target and the antibody.
Cryo-EM is quickly emerging as the most efficient method to obtain such structures.
It provides a noisy tridimensional map of probability of presence of electrons. The
number, nature and structure of antibodies have to be inferred from the map.
Automated methods exist for solving the more general problem of finding any
protein in a density, but have a limited accuracy and usually require additional
inputs, high resolution maps, and a long running time.
We propose a method dedicated to finding antibodies in cryo-EM densities : CrAI.
This machine learning method leverages the conserved structure of antibodies and a
dedicated novel database to solve this problem. We show that our method performs
favorably compared to other methods, alleviating aforementioned limitations. Run-
ning a prediction takes only a few seconds and requires nothing but the cryo-EM
density.

1 Introduction

Since the first monoclonal antibody entered the clinic in 1986 [14], antibody-based therapeutics have
made considerable progress. With over a hundred compounds approved and forty just in the last three
years [22, 42], the use of antibodies currently appears as one of the most promising approaches for
designing new treatments for patients. One of the critical aspects of antibody-based therapeutics
remains the binding of an Antibody (Ab) to a target molecule (the antigen) with high specificity [28],
through their tips called the Complementarity Determining Regions (CDRs). The most classical
approach has been to use monoclonal antibodies which contain two interacting domains called the
Antigen Binding Fragment (Fab). More recently, an antibody fragments consisting of single variable
antibody domain, originally engineered from heavy-chain antibodies generated by camelids [1] (nAbs
or VHH) - have been rising in interest as an alternative form of therapeutics [12, 20]. Whether for
Abs of VHHs, initial hits are found using immunization [19, 24] or phage display [30, 41]. These hits
need to be optimized, to improve their capacity to selectively bind their antigen and their biological
function but also to improve their efficacy, manufacturability and safety, before entering clinical
studies. A specific binding to the antigen remains a critical property optimized in the early phase
of the optimization process and is scrutinized until drug candidate selection. The usual rational
way to optimize binding is to get the structure of the antibody [7], preferably in complex with the
antigen. Indeed, knowledge of the atomic coordinates at the contact points between the Ab and its
target, improves the understanding of its mode of action and guides the optimization of the affinity of
binding.
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Cryogenic Electron Microscopy (cryo-EM) is becoming the most common way to experimentally
obtain protein structures of therapeutic antibodies bound to their target. In cryo-EM, the target protein
is embedded in ice and exposed to an electron beam, resulting in raw noisy images of individual
particles. These raw 2D images are then aligned and transformed into a 3D electron probability
density [35, 39] from which atomic coordinates are inferred. Recent advances in data collection
hardware and software, as well as better data processing pipelines have allowed an increase in data
output and has resulted in more academic labs and big pharma [31] adopting the technology. Lately,
a new data collection workflow has been shown to produce 3-4 Å structures of a pharmaceutically
relevant target protein with 1 hour of instrument time and several hours of processing, thus allowing
the theoretical resolution of potentially 24 structures a day [10]. While data collection is rapid,
nowadays the data processing requires a lot of user input for simple decisions and requires days and
weeks, also depending on availability of computer resources.

As automation allowed X-ray crystallography to become a key technique in the structure-based drug
discovery pipeline [4], so it should for cryo-EM, making it cheaper and faster and freeing the time of
researchers from button pressing tasks, to structure interpretation and drug engineering. The process
of automation is being accelerated by the application of machine learning to the different stages of
the pipeline, from data acquisition [5, 16], to preprocessing of micrographs [38], particle picking
[2, 44, 45, 46, 47], 2D class selection [23] and 3D heterogeneity deconvolution [29, 48].

The last step of attribution of the map (going from 3D map to protein structure) is a challenging
problem from a machine learning point of view, making off-the-shelf computer vision methods
irrelevant. First, the training data is challenging : it is limited in size (about 10k aligned pairs of
density maps and structures), redundant, noisy, with varying resolution, grid step and grid size.
Second, Cryo-EM maps do not have a preferred orientation so any developed method must be able to
handle arbitrary global rotations. Third, we aim to detect a pose (orientation) of our object and not
solely its localization. Fourth, the different predictions interact with one another : for instance two
antibodies cannot overlap.

For those reasons, the rigid body fitting of atomic coordinates of a protein into the density is still a
largely manual process using ChimeraX [32], followed by the local optimization of atomic coordinates
using Coot [15]. Some automatic procedures were developed to help automate this process [26],
although with limited accuracy. Tools based on machine learning to trace the sequence in the density
were recently developed with good results [18, 34], but are for now limited to resolutions of 4Å
and better. Moreover, these tools display a long running time, incompatible with high throughput
imaging. In the context of using cryo-EM for optimization of therapeutic Abs, we can solve a simpler
task : finding Abs in the density and segmenting the map around them. Our goal is to automate
that step using a machine learning approach. We leverage the conserved structure of Abs as a prior
information to make our learning problem simpler [9]. Hence, we reduce the problem of finding Abs
in the density to an instance of 3D object detection [36, 49] : learning a rigid transform for a template
Ab.

In this paper, we address the problem of finding Abs (Fabs and VHHs) automatically and quickly,
at all resolutions better than 10Å, without manual intervention or any additional inputs beyond the
density. We formulate and parametrize the problem in section 2.2. We then gather a clean database of
aligned structures and densities in section 2.3. Finally, we solve our problem by using the database to
build an object detection machine learning method in section 2.4. We successfully find Abs in over
90% of systems, widely outperforming dock_in_map both in terms of speed and performance.

2 Methods

2.1 Overview

The design of our approach is motivated by aforementioned methodological challenges. First, due to
the challenges inherent in the limited scale and significant noise present in the data, we incorporate
the conserved structure of antibodies as a prior information to make learning more data-efficient
and robust. Second, to facilitate antibody pose finding in the presence of limited data, we use a
custom parametrization of the rotation that takes into account an “expected” pose, while being flexible
to allow arbitrary orientations. Third, we introduce a fully convolutional design to accommodate
arbitrary grid sizes that might be present at inference time. We also train the network with rotation
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augmentation to approximate rotation equivariance. Finally, we introduce a custom loss when training
our model. Our loss incorporates a formulation based on Optimal Transport along with persistence
diagrams to better capture the geometric aspects of our problem, such predicting non-overlapping
objects and including distance-based penalties between our prediction and the ground truth.

2.2 Problem formulation

Starting from an input cryo-EM map, we want our method to output the 3D coordinates of one or
several Abs. Because of the highly conserved structure of Abs, we can simplify our problem by only
predicting how to align a fixed antibody template T with the Abs, without deformations.

More formally : Let X be the cryo-EM density we consider, nX the number of Abs contained in
this density and AX = {Ai, 0 ≤ i < nX } the set of such Abs. Given an Ab A and a registration
objective d, let R∗

A, T ∗
A = minR,T∈(SO3(R)×R3) d(A, RT+ T ) be the translations and rotations that

best align A onto T. Finally let SX = {(R∗
Ai

, T ∗
Ai

), 0 ≤ i < nX } be the set of optimal alignments.
In this paper, we aim to predict SX instead of AX .

The optimal rotations mentioned above can be parametrized in many ways. Let p⃗A denote the unit
vector oriented from the center of mass of an Ab A towards its antigen. We believe it is easier to
predict p⃗A than the rotation around p⃗A from the density. Therefore, we decomposed R∗

A into a
rotation transforming p⃗T into p⃗A and one 2D rotation around p⃗T of angle θA. The generality of
this decomposition is established in Supplemental A.1. In practice, we chose the orientation of the
template to have pT = u⃗z . We assess the relevance of this decomposition in the results section.

Figure 1: CrAI pipeline : From an input density, we train a network to predict alignments of a
template encoded as a grid, and then process this grid to get a prediction as a protein structure.
A. Encoding of the output of CrAI. (Left to right) : The structure of our template (pdb 7lo8) is
displayed next to its cartoon, with u⃗z shown in red. We compute optimal alignments R∗

A, T ∗
A of

our template onto Abs and decompose the rotation into R∗
A = (p⃗A, θA). Finally, we show half the

structure of system 6bf9 : antigen (chain A in orange) and Fab (blue, green), along with our aligned
template (red, purple). As can be seen, our template aligns well to other antibodies (RMSD = 1.8Å).
(center bottom) : we decompose the translations into a position in a grid T cell

A and an offset from the
grid corner T loc

A . We thus obtain a grid with zero values except for cells containing an Ab, in those
cells, we have T loc

A , p⃗A and θA.
B. We then train a network to take as input a cryo-EM density grid and to predict the output grid
generated as explained above. At test time, we only use the grid as input. A post-processing is then
applied to transform the predicted output grid into predicted antibody locations. Details on these
steps are provided in section 2.4.
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Our problem is now formulated as an object detection problem. Following the best practice in this
domain, we overlay an occupancy grid GX ,s of size s over our input : this grid contains ones for cells
encompassing an Ab and zeros elsewhere. We decompose each translation into two parts : one going
to the corner of the occupied cell and one from this corner to the Ab : T ∗

A = T cell
A + T loc

A , as shown
in Figure 1A.

2.3 Database

Building a database To solve our problem, we start by building a curated antibody database. Fabs
are composed of one constant and one variable domain of each of the heavy and the light chain.
The two variable domains are denoted as the Fv variable fragment (Fv). Our database will include
both Fabs and Fvs. The reason why we put these two together is that the constant region of Fabs is
often missing in the structure file, but present in the density. Hence we will aim to predict the Fv of
either Fabs or Fvs. The data is originally fetched from SabDab[13]. We fix a few broken annotations,
notably for systems containing both Fabs and VHHs - more details in Section A.3. Using the PDB[3],
we find the corresponding cryo-EM maps and download all corresponding maps and structures. Then,
we remove systems with resolution below 10Å or ones with no antibodies or antigen chains, and
group all hits pertaining to the same structure together, yielding a total of 1032 systems. We then
split this data set in 722, 155 and 155 systems in the train, validation and test splits respectively. To
split the data, we compared two approaches : a randomly shuffled one (random) and a temporal one
with more recent systems in the test split (sorted). We will sometimes monitor performance at the
individual Fab level, and refer to it as ab, in opposition to aggregating the performance by systems,
which we will refer to as sys. The number of Fab per split is 1627, 320 and 374 respectively, so there
is a mean number of 2.25 Fabs per system in our database.

Once equipped with those splits we are ready to do machine learning. However, the map files can be
enormous (up to 109 grid cells). In addition, the maps are not centered for viruses : the asymmetric
unit only occupies a fraction of the map, which would create false negatives (some parts of the density
are associated with proteins that were omitted in the structure file, for instance pdb 7kcr). To deal
with this, we replace the original maps with ones centered around the structure with a margin of 25A
that covers most of the normal cases while limiting those false negatives. Of course, at use time,
users can provide a cropped map or a full one. Each of these maps is resampled to get a fixed voxel
size of two Å. Then we normalize the map values by zeroing out negative values and dividing by the
maximum of the map. We now have a split database of cropped, resampled, normalized cryo-EM
density maps.

Template management We now need an antibody template to transform other antibodies into
translations and rotations. To get this template, we pick a Fab system (we used pdb 7lo8) and
manually select the Fv residues. Then we shift the system so that the Fv is centered at the origin and
align its main axis with the uz = (0, 0, 1) vector using PCA. We save these Fab and Fv as templates.

For a given system, we align the 3D structure in its density. We then label each Ab it contains as
either a Fab or an Fv, based on their number of residues. Finally, we compute the optimal alignments
between these labeled Ab and their corresponding templates, using pymol align[11]. We provide
an example alignment of our templates in Figure 1A.

VHHs All of these steps apply to the production of VHH data. We started from SAbDab-nano[40]
and applied the same filters on the raw data, resulting in 398 systems. Then, we performed the
random and sorted splitting procedures as above. This amounts to 278, 60, 60 systems in each split
and 458, 74, 86 when counted as ab, for a mean of 1.55 VHHs per system. We then used the VHH
domain of the Fv template as a VHH template.

2.4 CrAI: a model to find antibodies in cryo-EM densities

Architecture and learning procedure We aim to solve the object detection problem stated above
with our data set. To do so, we will follow the YOLO [37] framework. Given a cryo EM density of
size si, X ∈ Rsi and its corresponding occupancy grid of size s, GX ,s, our network is a function
fθ : Rsi −→ R10×s such that ŷ(i, s) = fθ(X ) ∈ R10×s is our prediction for X . The first dimension
of this output is a prediction of the occupancy grid GX ,s. The other dimensions are predictions in
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each cell relative to the putative Ab contained in it. The detailed computation of the loss is detailed
below.

The architecture of our model is a simple 3D UNet [8] with a depth of 4. While dedicated models
were trained on Fabs, we found that VHH prediction performance benefited from training on both
data. The network is trained using data augmentation, with the eight possible rotations over a grid
and random cropping inside the input grid up to three cells. We used Adam optimizer over 1000
epochs. Hyper-parameters and exact architecture were not extensively optimized. Finer details about
the ones we used can be found in Supplementary A.2.

Prediction of the right cells using optimal transport Let Ĝs = ŷ(0, s) our predicted occupancy
grid. For convenience in this section, we drop indices and denote GX ,s as G. In order to make our
prediction closer to G, we will use two loss terms.

Because most grid cells are unoccupied, our prediction is very imbalanced. Hence, our first loss term
is a weighted binary focal loss [27] :

L1(Ĝ,G) =
∑
s

(λ ∗ Gs ∗ (1− Ĝs)
γ ∗ log(Ĝs) + (1− Gs) ∗ Ĝγ

s ∗ log(1− Ĝs)). (1)

We used λ = 30 and γ = 4 in our experiments.

However, this loss does not consider the distance between our prediction and the ground truth. If we
predict the neighbor pixel, we have the same value as if we had predicted the opposite side of the
map. To address this issue, we add an optimal transport term to our loss [33]. It gives meaningful
supervision to all voxels of our grids that depends on the distance to the closest occupied voxel. We
used the GeomLoss package [17] to compute this loss and refer to it as L2(Ĝs,Gs) without detailing
its mathematical expression here. The relevance of this loss is assessed in the Results section.

Prediction within each cell Let us now detail the loss terms that are used for the other nine
dimensions of our output. We emphasize that these will only be applied on pixels containing an
antibody. Let A be an antibody in our system, sA its position and ŷiA = ŷ(i, sA) the prediction at
this position. We use the notation ŷj:j+k−1

A to denote the k dimensional vector obtained from the
concatenation of ŷjA, ŷj+1

A · · · ŷj+k−1
A .

To predict the right pose of A in the cell, we use eight values. The three first are used to predict the
offset from the corner of the grid cell, T loc

A . We use a mean squared error loss to learn these values,
L3. The following three values are used to predict p⃗A by directly predicting its coordinates. The
corresponding loss, L4, is composed of a dot product term to control the direction of the prediction
along with a term to make this vector a unit one. Finally, the remaining two values are used to predict
the angle θA. Instead of directly predicting the angle, we aim to predict uA ∈ R2, the vector of
polar coordinates (1, θA). This formulation avoids singularities and was shown to be beneficial when
predicting angles [21]. L5 has a similar form than L4 in two dimensions to predict uA. We end up
with the following losses :

L3(ŷ
1:3
A , T loc

A ) = mse(ŷ1:3A , T loc
A ), (2)

L4(ŷ
4:6
A , pA) = 1− ⟨ŷ4:6A , pA⟩+ mse(∥ŷ4:6A ∥, 1), (3)

L5(ŷ
7:8
A , uA) = 1− ⟨ŷ7:8A , uA⟩+ mse(∥ŷ7:8A ∥, 1). (4)

Finally, we use a single model for both Fabs and VHHs, hence we have a final term that represents
the probability that the object contained in the grid cell is a VHH and not a Fab. Let δn(x) be the
indicator function for VHHs (one if VHH else zero). We again used a weighted focal loss, with a
weight of λn = 1000/400 corresponding to the ratio of VHHs to Fabs, yielding the last loss,

L6(ŷ
9
A,A) = λn ∗ δn(A) ∗ (1− ŷ9A)γ ∗ log(ŷ9A) + (1− δn(A)) ∗ (ŷ9A)γ ∗ log(1− ŷ9A)). (5)

To train our network we use a weighted sum (λs = 0.2) of previous loss terms as the final loss. We
sum the first two global ones and the sum of the four others over each antibody in our system. :

Ltot(ŷ,X ) =
2∑

i=1

Li(Ĝ,G) + λs ∗
6∑

i=3

∑
A∈AX

Li(ŷA,A). (6)
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Post processing A well known problem with object detection is the possibility that the network
predicts overlapping objects. Suppose grid cells edges are 3Å long, adjacent cells cannot both contain
a Fab. Hence, high values for adjacent cells amount to the detection of the same object. Non Maximal
Suppression (NMS) algorithms are used to discard such redundant predictions. In this paper we
used persistence diagrams [43]. Simply put, we decrease a threshold probability value from the
maximum of the grid and keep track of cells above this threshold. When the value of a cell goes over
the threshold, either it has no neighbors belonging to a visited connected component, giving birth
to a new one, or all neighboring components are merged into the one with lowest initial values and
merged ones die. The difference between the values of death and birth are called lifetimes. We return
connected components sorted by lifetimes.

This procedure takes into account both the value of a minimum and its distance to other minima. If
we suppose that the number of objects to find is known, we keep proceeding until it is reached (and
refer to this setting as and num). Otherwise we use a lifetime threshold and retain all predictions
above this threshold. We use a threshold of 0.2 that was found to work best on the validation set
(see Supplementary A.4). We will denote this setting thresh. Interestingly, this means that we can
automatically detect the numbers of Abs in a density !

From our density map, we now have a list of predicted values. For each of those, we choose a template
based on the classification in Fabs and VHHs and move the template to the predicted location and
pose. We save the result as a file in PDB format.

3 Results

3.1 Experimental setup

We have trained independent models for our random and sorted splits. We make inference of those
models on their respective test sets and over the maps obtained using the procedure described above.
This ends up with a PDB with one or several predicted Fv positions. We then use the Hungarian
algorithm [25] to match several systems together based on the distance between their center of mass.
We report the results for individual Abs (ab) as well as aggregated by systems (sys) so that a system
with many Fabs does not influence the results too much.

To our knowledge, no tool enables predicting the position of Fabs solely from any density. We
benchmark against dock_in_map [26], a tool that takes the density along with the structures of
objects that need to be docked in the map. At test time, we normally do not have access to the ground
truth structure. We ran dock_in_map in two setups : the template based just aims to dock a fixed
template Fab or Fv and the ground truth based that uses the actual structure giving an upper bound of
the performance.

First, we focus on the distances between centers of mass as they discriminate hard failure from
approximate success. We present a capped histogram of the distances predicted by our model and by
the tool in Figure S.2. As expected, we notice that dock_in_map performs significantly better when
used with the ground truth Fab structures than with templates. Moreover, our tool seems to get better
distances and less failures than dock_in_map. Finally, we observe that the predicted distances are
bimodal : a first peak corresponds to systems predicted successfully with distances below 10Å and
another spread mode corresponds to failed prediction.

Based on these observations, we will now only compare to the more challenging scenario of
dock_in_map ran with ground truth. We will also report our results in terms of hit rates : a
prediction is deemed as a hit if it is closer than 10Å to the ground truth. As can be seen in the figure,
performance is not very sensitive to the choice of this threshold. When the number of Fabs is wrongly
predicted, we add the difference as failed cases.

3.2 CrAI accurately finds Abs

The results of Fab detection are presented in Table 1. Looking at the first two lines, we see that CrAI
drastically outperforms dock_in_map in terms of hit rates. This holds in all settings for an overall
hit rate going from approximately 69% to 95%. In terms of distance between the centers of mass
prediction and the ground truth, both methods give results below 2.5Å which is close to optimal
considering the map resolutions. dock_in_map appears to be a little bit more precise, even though
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this mean is only computed on successful systems and thus does not include 25% that are included in
the CrAI average. One could combine both tools by first screening a map with a high hit rate, then
precisely refine the result.

Hit rate Distance Runtime
Method random sorted mean

sys ab sys ab sys ab CPU GPU

dock_in_map 67.5 62.2 74.8 71.1 71.2 66.7 0.81A 883s -
CrAI 93.5 93.8 97.3 97.1 95.4 95.4 2.15A 0.41s 0.031s
CrAI thresh 91.5 88.8 95.6 93.8 93.5 91.3 2.09A 0.41s 0.031s

Table 1: Performance of our tool at detecting Fabs. We report the performance of the benchmark
tool and of ours, provided or not with the ground truth number of objects. We report the Hit Rate,
defined as the number of prediction below a threshold of 10Å, the mean distance of these successful
predictions, and the mean run time of the tool

CrAI can be used with unknown number of Fabs If we now compare the second and third lines
of the Table, we see that we retain most of the performance when providing the network with only the
density. This is to compare to the result of dock_in_map that is additionally given the experimental
structures of all antibodies that are to be found in the map. We believe this to be the main result of
our paper.

CrAI runs fast, at all resolutions The average runtime of dock_in_map on our validation set is a
prohibitive 883s/system. This mean is optimistic because we stopped a few systems after 5 hours
of computations (letting them run longer would increase the mean). In comparison, our tool runs
in 0.031s/system, thirty thousand times faster when using a GPU. When using only one CPU, our
tool runs in 0.41s/system, two thousands times faster than dock_in_map and fast enough for this
computational step to integrate seamlessly in an analysis pipeline. This can be explained by the fact
that our algorithm is linear with regards to the grid size.

Supplementary B.2 shows how our performance depends on resolution of the input map, over all of
our data sets. We do not see a strong dependency and claim that CrAI is robust to low resolution.
This is a novel result as machine learning methods for tracing such as ModelAngelo [18] only work
for resolutions below 4Å.

CrAI finds VHHs We now turn to the prediction of VHHs. They are more challenging for a
machine learning model, because we have less training data. Moreover, the binding modes of VHHs
are less canonical which breaks the decomposition of our rotation. Finally, VHHs are smaller and
tend to be more buried into the density - as opposed to Fabs often sticking out. Our results are
presented in Table 2.

Hit Rate Hit rate
sorted

Hit rate
Mean Distance

Method random sorted mean
sys ab sys ab ab2 sys ab ab2

dock_in_map 76.7 67.4 87.5 84.9 81.4 82.1 76.2 74.4 0.7A
CrAI num 93.1 90.7 88.7 70.9 85.7 90.9 80.8 88.2 2.2A
CrAI thresh 92.9 86.1 87.1 64.0 77.1 90.0 75.0 81.6 2.1A

Table 2: Performance at detecting VHHs. The convention used is the same as above. We add the
setting ab2 that corresponds to removing one outlier system from the validation.

We achieve a positive result with a 10% hit rate boost over dock_in_map overall. Beyond the
intrinsic difficulties outlined above, we underline three additional factors to explain why this result
is weaker than for Fabs. dock_in_map performs much better for VHHs than for Fabs, which could
stem from the reduced size of the objects. It performs even better for the sorted split (performance
over the whole data is similar to random), which can be explained by the variance of estimators on
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small sized test sets. Finally, among the 60 systems in our test set (84 VHHs), one system (pdb 8gq5)
contains 16 VHHs arranged in an unusual way, surprisingly well captured by dock_in_map but
missed by our tool. This single system biases the ab statistics against CrAI. We include the statistics
obtained when ignoring this outlier and refer to it as ab2 in the Table.

3.3 Further analysis

Ablation study To assess the relevance of different design choices, we retrain a few models without
those features. Because this means retraining a model every time, we only perform this analysis in
the Fab random split setting. We report the performance in the sys setting, but results are consistent
in the ab setting. We try removing Persistence Diagrams (PD) and replacing them with a naive NMS.
We also tried training without using the Optimal Transport (OT). We present the results in Table 3.

Hit Rate
Method num thresh

without PD 93.8 89.9
without OT 90.3 55.9
uz → uy 91.7 90.6
CrAI 93.5 91.5

Table 3: Ablation study of our
method on the Fab random split, in
the sys setting.
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Figure 2: Histograms for the values of the angle
between the predicted and experimental vector
for Fabs, VHHs and u⃗y model

When removing optimal transport, the ability to predict the number of objects collapses. Finally,
persistence diagrams seem to work better in the num setting and worse otherwise, with a limited
impact.

CrAI finds meaningful poses We have validated the position of our predictions, now let us comment
on the predicted poses : are Abs in the right orientation ? Using the decomposition of rotations into
predicting a vector p⃗A and an angle θA, we can compute the angles between predicted values and
actual ones. For the Fab data, the angle between p⃗A and its prediction is on average of 6.5◦ and the
one for θA is 12◦, low enough values to make the prediction almost overlap with ground truth. For
the VHH data, those values are on average 15◦ and 25◦ respectively : predicting the VHH pose seems
to be more challenging, which can be explained by the less conserved binding mode.

Finally we tried removing the rotation encoding that puts forward the p⃗T = u⃗z axis and replaced it
by one that puts u⃗y instead, and retrained a model with this supervision. This model has an angle
error of respectively 17◦ and 13◦. We see that predicting u⃗z is easier than u⃗y, which validates our
assumption and formulation. We provide histograms for the distribution of these angles in Figure 2,
to show that most systems are predicted accurately. We also provide a few examples of predicted
systems in Figure S.4.

Case study As a case study for our tool, we take the system 8hij (corresponding map 34818 has a
resolution of 3.54Å). It is a well known example of interaction between Abs, with a VHH bound to a
Fab bound to an antigen. We use the model trained on the sorted split which is supposedly the least
successful one based on the above results. We run our algorithm using only the raw density, relying
on the automatic thresholding and classifications. Results are presented in Figure 3.

Under two seconds on a CPU, we get a prediction close to the ground truth. We predict a Fab at the
right epitope, in the right orientation. We also predict the VHH binding to the Fab with the right
epitope. Notably, our training data set does not include any example of systems with both a VHH and
a Fab. We believe this use case to be particularly eloquent.
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Figure 3: Prediction of our tool on the 8hij system. Our prediction (left) and the experimental
structure (right) are shown in the cryo-EM density. Antigen is displayed in orange, native antibodies
in blue/green and predictions in purple/red. The VHH is displayed in lighter colors. We predict the
correct positions and orientations for both the Fab and the VHH.

4 Conclusion, Future Work

In this paper, we addressed the problem of automatically finding the Abs in cryo-EM densities. This
step currently constitutes a tedious, manual step for structural biologists, thus presenting significant
opportunities and benefits for automation.

To achieve this goal, we proposed a customized solution, which exploits the structural properties
and addresses the specific challenges of the problem, such as handling significant data scarcity and
heterogeneity. Specifically, we leveraged the conserved structure of Fabs to cast this problem as an
object detection one. We then gathered and cleaned a database to solve this problem with machine
learning, designing a customized pose representation and loss based on optimal transport, which all
help integrate prior information, while remaining efficient and flexible. Using our approach, no extra
input is required to predict the number, position and pose of Fabs and VHHs in a density.

We validate our results on experimental maps and find the Ab positions with a hit rate of over 90%,
which presents a 25% (resp 9%) improvement on Fabs (resp VHHs) over existing methods, while
requiring no extra inputs and being thousands of times faster even when run on a single CPU. We
show that the predicted pose correlates well with experiments, especially for Fabs, and illustrate our
tool’s performance on a particularly challenging 8hij system.

We believe that this tool can reduce the burden on structural biologists working with cryo-EM
densities of Abs and accelerate the resolution of 3D complexes of Abs bound to their antigen. While
accurate and efficient, our approach has several limitations. Most importantly, it is currently limited
to a single conserved family (Fabs and VHHs). Thus, it will be interesting to expanding our approach
to other conserved families. More broadly, this approach could be expanded to dock several folded
domains into a density, which has already been done without machine learning, [6, 26]. We could
replace a fixed template by several embeddings of the folded domains. Finally, the throughput of our
tool opens the door to finding Abs in the output of heterogeneous reconstruction or even continuous
distribution of maps, and thus to capture several modes of antibody binding.
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A Methods

A.1 Proof of the validity of the decomposition

Following our notations, we are looking for R∗
A that aligns A onto T. We want to show that R∗

A can
be parametrized by the transformation of pT into pÃ along with a rotation around pT.

By denoting Ã = A− T ∗
A, we have by construction : Ã = R∗

AT, hence, pÃ = R∗
ApT.

Let M be a rotation matrix of axis pÃ × pT and of angle ρ the angle between these vectors, so that it
transforms one into the other. We can write :

pÃ = MpT (7)

M−1R∗
ApT = pT. (8)

Therefore, M−1R∗
A is a rotation around the axis pT by some angle θ, and we can write :

R∗
A = MRotpT,θ. (9)

A.2 Detailed architecture

We used a 3D Unet architecture. First let us define a conv_block(i,o) as three series of convolu-
tions (with kernel size three and stride one), batch normalization and PreLu activations. The first
convolution goes from i to o channels and the two others have o as a fixed number of channels.

In the encoding stage, we use a series of four conv_blocks of successive dimensions (1, 32, 64, 128,
256), alternated by a max pooling of kernel size 2 and stride 2.

In the decoding stage, we apply a transpose convolution (256, 256) with kernel size of 3 and stride
2 to the output of the encoder. We concatenate the result with the output from the third encoding
conv_block to get 384 channels. We then run a conv_block(384, 128) on this concatenation.

Finally, we apply a last conv_block(128, 128) with only two series on the resulting tensor and
replace the third one by a linear layer going from dimension 128 to dimension 10. The classification
output dimensions are followed by sigmoid activation.

A.3 Modifications to the SabDab database

We removed a few non canonical systems, such as fusion proteins as well as the obsolete 7ny5. We
then fixed edgy situations, often encountered when VHHs and Fabs are present in the system.

• When querying the Fabs, some chains were wrongly considered separate : 7YVN chain
HI 7YVP chains IJ, 8HHX chains HI, 8HHY chains FW-GI, 8DXS chains
FI-GJ, 7XOD chains RS-UV-XY, 7MLV chains KF, 6XJA (missing chain AB
and missing antigen)

• VHHs were present when querying Fabs. They were annotated as having just one chain
and no antigen partner : 7zlg-h-i-j chain K bound to L, 8hii-j-k chain N
bound to L, 7xw6 chain N bound to AB, 7sk7 chain K bound to C, 7sk5
chain E bound to C, 7zyi chain K bound to L, 7xod chain T-W-Z bound
to S-V-Y, 6ni2 chain A bound to B-V, 7wpe chain W-Z bound to V-Y,
6ww2 chain K bound to L, 7jhh chain N bound to L, 7ul3 chain C bound
to A, 7tuy chain K bound to L

• Fabs were present when querying VHHs (often interacting with this VHH) : 7pij
chain HL bound to N, 7wpd chain XY bound to A, 7wpf chain RS, UV, XY,
7wpf chain AC-HL bound to EN, 7php chain HL bound to N, 7m74 chain
HL bound to A

• VHHs with no antigens were present in the VHH file (actually always bound to a Fab)
: 7pij K bound to L, 7wpd Z bound to Y, 7nkr F bound to A, 7wpf T-W-Z
bound to S-V-Y, 7wpf chain K-F bound to L-C, 7php-7m74-7jhg chain K,
N, N bound to L, 7nis-7nk1-7nk2-7nk6-7nkc-7nj4-7nka chain F bound to
A/B-A-A/B-A/B-B/C-A-A
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A.4 Finding the optimal threshold

We present the error in the number of Abs detected for different thresholds in Figure S.1. Throughout
datasets, persistence diagrams seem to give a better estimate. The overall best value is achieved for a
threshold of approximately 0.2 and is not very sensitive to this threshold.
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Figure S.1: Finding the best threshold for selecting the right number of system. x-axis represents the
threshold value. y-axis represents the mean absolute error in the number of predicted systems over
the data set. Different colors represent different data sets. Darker lines represent a naïve approach for
NMS while the lighter ones are computed using persistence diagrams.

B Results

B.1 Fab detection performance

We compute the distances from prediction to ground truth obtained from our tool and dock_in_map.
For a nicer visualization, we cap all distances to 20Å. We also count failed systems and errors as 20Å
predictions so that the bar at 20Å represents all failures of a tool. We show the result in Figure S.2
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Figure S.2: Capped histogram of predicted distances on Fabs. random is on the left and sorted on
the right.
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As can be seen, our tool widely outperforms dock_in_map. Under the hit rate metric, we have the
following performances (by order of tools) : random : 94.1, 88.8, 62.2, 19.4 sorted : 97.3, 93.9,
71.1, 8.5.

B.2 Dependence in resolution

We concatenate the predictions for all our systems and scatter them as a function of the resolution
of the maps. We cap the predicted distances to 10Å and add a best fit curve. We show the result in
Figure S.3. We see a moderate dependency in resolution, and many successful ones for resolutions
above 4
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(Å

)

y = 0.30x+ 1.70
R2 = 0.01

Figure S.3: x-axis is the resolution of the maps. y-axis is the distance between a prediction and its
corresponding system, capped to 10Å for failed systems.

B.3 Prediction of the poses

We compute the angles between the actual and predicted poses for successful hits (below 10Å). We
then plot a histogram of the results for three settings : Fabs, VHHs and the model trained on u⃗y . We
show the results in Figure S.3.
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(a) A successful prediction for the Fab-containing system 8goo (resolution 4.4Å). The Fabs are predicted at the
right location.

(b) Partially successful prediction for the system 8cxi (resolution 3.4Å). Both Fabs are predicted correctly, but
the system predicts a third one. It turns out the extra prediction is simply the another copy of the asymmetric
unit.

(c) A successful prediction for the systems 7z85 (resolution 3.1Å). All three VHHs are predicted correctly.

Figure S.4: A few prediction examples. Our prediction (left) and the experimental structure (right)
are shown in the cryo-EM density. Antigens are displayed in orange, native antibodies in blue/green
and predictions in purple/red.
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