1 Induced pluripotent stem cell derived pericytes

² respond to endogenous mediators of proliferation

and contractility

4	Natalie E. King ¹ , Jo-Maree	Courtney ¹ , Lachlan S	. Brown ¹ , Alastair	J. Fortune ² , Nicholas B.
---	---	-----------------------------------	---------------------------------	---------------------------------------

5 Blackburn², Jessica L. Fletcher², Jake M. Cashion¹, Jana Talbot³, Alice Pébay^{4,5}, Alex W.

6 Hewitt^{1,2,4,5,6}, Gary P. Morris¹, Kaylene M. Young², Anthony L. Cook³, Brad A. Sutherland¹

8	1. Tasmanian	School of I	Medicine,	College	of Health and	Medicine,	The Univer	sity of
---	--------------	-------------	-----------	---------	---------------	-----------	------------	---------

- 9 Tasmania
- 10 2. Menzies Institute for Medical Research, The University of Tasmania, Hobart, Australia
- 11 3. Wicking Dementia Education and Research Centre, College of Health and Medicine, The
- 12 University of Tasmania
- 13 4. Department of Anatomy and Physiology, The University of Melbourne
- 14 5. Department of Surgery, Royal Melbourne Hospital, The University of Melbourne
- 15 6. Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital
- 16
- 17 *Corresponding author:
- 18 A/Prof. Brad A. Sutherland, <u>brad.sutherland@utas.edu.au</u>
- 19 Level 4, Medical Sciences Precinct, Tasmanian School of Medicine, University of Tasmania,
- 20 Hobart, TAS 7000, Australia

21 Abstract

22 Background

23	Pericytes are multifunctional contractile cells that reside on capillaries. Pericytes are critical
24	regulators of cerebral blood flow and blood-brain barrier function, and pericyte dysfunction
25	may contribute to the pathophysiology of human neurological diseases including Alzheimers
26	disease, multiple sclerosis, and stroke. Induced pluripotent stem cell (iPSC)-derived
27	pericytes (iPericytes) are a promising tool for vascular research. However, it is unclear how
28	iPericytes functionally compare to primary human brain vascular pericytes (HBVPs). We
29	differentiated iPSCs into iPericytes of either the mesoderm or neural crest lineage using
30	established protocols. We compared iPericyte and HBVP morphologies, quantified gene
31	expression by qPCR and bulk RNA sequencing, and visualised pericyte protein markers by
32	immunocytochemistry. To determine whether the gene expression of neural crest
33	iPericytes, mesoderm iPericytes or HBVPs correlated with their functional characteristics in
34	vitro, we quantified EdU incorporation following exposure to the key pericyte mitogen,
35	platelet derived growth factor (PDGF)-BB and, contraction and relaxation in response to the
36	vasoconstrictor endothelin-1 or vasodilator adenosine, respectively. iPericytes were
37	morphologically similar to HBVPs and expressed canonical pericyte markers. However,
38	iPericytes had 1864 differentially expressed genes compared to HBVPs, while there were
39	797 genes differentially expressed between neural crest and mesoderm iPericytes.
40	Consistent with the ability of HBVPs to respond to PDGF-BB signalling, PDGF-BB enhanced
41	and PDGF receptor-beta inhibitors impaired iPericyte proliferation. Administration of
42	endothelin-1 led to iPericyte contraction and adenosine led to iPericyte relaxation, of a
43	magnitude similar to the response evoked in HBVPs. We determined that neural crest

44	iPericytes were less susceptible to PDGFR beta inhibition, but responded most robustly to
45	vasoconstrictive meditators. iPericytes express pericyte-associated genes and proteins and,
46	exhibit an appropriate physiological response upon exposure to a key endogenous mitogen
47	or vasoactive mediators. Therefore, the generation of functional iPericytes would be
48	suitable for use in future investigations exploring pericyte function or dysfunction in
49	neurological diseases.

50 Keywords

- 51 Induced pluripotent stem cells (iPSCs), pericytes, human brain vascular pericytes (HBVPs)
- 52 proliferation, platelet-derived growth factor BB (PDGF-BB), platelet-derived growth factor
- receptor β (PDGFR β), contractility, adenosine, endothelin-1

55 Background

56	Pericytes are contractile cells that reside within the capillary bed. In the cerebrovasculature,
57	pericytes are essential regulators of cerebral blood flow and contribute to blood-brain
58	barrier formation and function (1). Pericyte dysfunction may contribute to the
59	pathophysiology of neurological diseases including Alzheimer's disease, stroke, and multiple
60	sclerosis (1, 2). For example, the aggregation of amyloid- β , a key protein associated with
61	Alzheimer's disease pathology, induces pericyte constriction by modulating the endothelin-1
62	receptor signalling pathway (3). Furthermore, pericytes die during stroke, in a way that
63	constricts capillaries and prevents tissue reperfusion even after large vessels reopen – a
64	phenomenon known as 'no-reflow' (4). In addition, pericytes can also have reparative
65	properties as it has been shown that activation of the pericyte PDGFR eta signalling pathway
66	can facilitate repair following a stroke, by supporting fibrotic scar formation (5).
67	iPSC-derived pericytes (iPericytes) are increasingly used in place of primary pericyte lines to
	in Sevenived pericytes (in encytes) are increasingly used in place of primary pericyte intes to
68	model pericyte function in health and disease (6-11). iPericytes have several advantages
68 69	
	model pericyte function in health and disease (6-11). iPericytes have several advantages
69	model pericyte function in health and disease (6-11). iPericytes have several advantages over primary pericyte lines, as they can be derived from iPSCs reprogrammed from
69 70	model pericyte function in health and disease (6-11). iPericytes have several advantages over primary pericyte lines, as they can be derived from iPSCs reprogrammed from individuals of various genetic backgrounds and disease diagnoses (12), allowing them to be
69 70 71	model pericyte function in health and disease (6-11). iPericytes have several advantages over primary pericyte lines, as they can be derived from iPSCs reprogrammed from individuals of various genetic backgrounds and disease diagnoses (12), allowing them to be used for basic biological studies as well as disease modelling or phenotyping. It is also
69 70 71 72	model pericyte function in health and disease (6-11). iPericytes have several advantages over primary pericyte lines, as they can be derived from iPSCs reprogrammed from individuals of various genetic backgrounds and disease diagnoses (12), allowing them to be used for basic biological studies as well as disease modelling or phenotyping. It is also possible to co-culture iPericytes with cells derived from the same iPSC line, to model the
69 70 71 72 73	model pericyte function in health and disease (6-11). iPericytes have several advantages over primary pericyte lines, as they can be derived from iPSCs reprogrammed from individuals of various genetic backgrounds and disease diagnoses (12), allowing them to be used for basic biological studies as well as disease modelling or phenotyping. It is also possible to co-culture iPericytes with cells derived from the same iPSC line, to model the neurovascular unit (NVU) (13). Finally, iPericytes may be compatible with personalised

10-day method for generating iPericytes of two developmental lineages: neural crest or

78	mesoderm iPericytes (16). The iPericytes had morphological features that were consistent
79	with primary pericyte lines and expressed key pericyte markers including PDGFR eta , alanyl
80	aminopeptidase (CD13) and neuron-glial antigen 2 (NG2) (16). While the expression of key
81	pericyte markers is promising, it is essential to understand the functional capacity of
82	iPericytes relative to primary pericyte lines. iPericytes can increase endothelial cell
83	expression of BBB markers in co-culture, improve trans-endothelial electrical resistance
84	(TEER) and enhance the formation of 3D endothelial cell tubes (7, 9, 10, 15, 16). However,
85	the proliferative and contractile functions of iPericytes have not been explored, and a side-
86	by-side comparison of iPericytes and primary HBVPs is also lacking.
87	In this study, we therefore aimed to characterise the gene expression profiles, and
87 88	In this study, we therefore aimed to characterise the gene expression profiles, and proliferative and contractile properties of neural crest and mesoderm iPericytes and
88	proliferative and contractile properties of neural crest and mesoderm iPericytes and
88 89	proliferative and contractile properties of neural crest and mesoderm iPericytes and compared them to HBVPs. We compared the PDGF-BB and PDGFRβ-mediated mitogenic
88 89 90	proliferative and contractile properties of neural crest and mesoderm iPericytes and compared them to HBVPs. We compared the PDGF-BB and PDGFRβ-mediated mitogenic response of neural crest and mesoderm iPericytes, and quantified cell area change in
88 89 90 91	proliferative and contractile properties of neural crest and mesoderm iPericytes and compared them to HBVPs. We compared the PDGF-BB and PDGFRβ-mediated mitogenic response of neural crest and mesoderm iPericytes, and quantified cell area change in response to the vasoconstrictor, endothelin-1 and vasodilator, adenosine. We report that
88 89 90 91 92	proliferative and contractile properties of neural crest and mesoderm iPericytes and compared them to HBVPs. We compared the PDGF-BB and PDGFRβ-mediated mitogenic response of neural crest and mesoderm iPericytes, and quantified cell area change in response to the vasoconstrictor, endothelin-1 and vasodilator, adenosine. We report that iPericytes have functional PDGFRβ signalling, capable of mediating proliferation.

97 Materials and Methods

98 Pluripotent Stem Cell Lines

- 99 The TOB-00220 iPSC line (from a 67 year-old male apparently healthy donor) (17) was
- 100 cultured to generate mesoderm and neural crest iPericytes with approval from the
- 101 University of Tasmania Human Research Ethics Committee (Project H26563). Additional
- 102 healthy control iPSC lines were used as specified in text: MNZTASi019-A (from a 53 year-old
- 103 female donor); MNZTASi021-A (76 year-old male donor), and MNZTASi022-A (56 year-old
- 104 female donor) were purchased from the MS Stem biobank (Menzies Institute for Medical
- 105 Research, Hobart, Tasmania, Australia). MS Stem iPSCs were generated and characterised as
- 106 previously described (18, 19) with approval from the University of Tasmania Human
- 107 Research Ethics Committee (Project H16915). All iPSC lines were shown to have
- 108 karyotypically normal karyograms within 10 passages of use for experiments and were used
- 109 between passage 5-35.

110 Pluripotent Stem Cell Culture

- 111 iPSCs were grown on Matrigel (Merck, cat.#354277) coated plates in mTeSR+ cell culture
- medium (Stem Cell Technologies, cat.#05825) maintained at 37° C in a 20% O₂ / 5% CO₂
- 113 humidified incubator. The culture medium was exchanged every 2 days, and iPSCs were
- 114 cultured to generate large colonies (\sim 60- 100 μ m diameter) with distinct round edges. iPSC
- 115 colonies were passaged using Versene Solution (Gibco, cat.#15040066).

116 Differentiation of iPSCs into mesoderm or neural crest iPericytes

- 117 iPSCs were differentiated to produce iPericytes by adapting a previously published protocol
- (16) (see Fig. S1). Induction into mesoderm iPericytes was achieved by culturing in

119	Mesoderm Induction Media (Stem Cell Technologies, cat.#05221). Induction into neural
120	crest iPericytes was achieved by culturing in DMEM/F-12 plus GlutaMAX (Thermofisher
121	Scientific, cat.#10565018) supplemented with 0.5% (v/v) Bovine Serum Albumin (Sigma
122	Aldrich, cat.#A9418), 2% (v/v) B27 (ThermoFisher Scientific, cat.#17504-044) and $3\mu M$ CHIR
123	99021 (GSK3 inhibitor; Tocris Bioscience, cat.#TB4423-GMP). Medium was exchanged daily
124	for 5 days before it was replaced with Complete Pericyte Medium (CPM, ScienCell Research
125	Laboratories, cat.#1201), which was exchanged daily for a further 5 days. After 10-days, the
126	resulting iPericytes were maintained as outlined below.

127 **Pericyte culture**

Human brain vascular pericytes (HBVPs, ScienCell, cat.#1200) and iPericytes were grown in
CPM which was replaced every second day. Pericytes were passaged at 60%-90% confluence
by washing with Dulbecco's phosphate buffered saline without magnesium or calcium
(DPBS^{-/-}, ThermoFisher Scientific, cat.#14190-144) prior to treatment with TrypLE Express
(Thermofisher Scientific, cat.# 12604013). Pericytes were passaged and the cells allowed to
adhere for ≥ 16h prior to commencing experiments. All HBVPs and iPericytes were used
between passage 2-8.

135 **Real Time qPCR**

136 To quantify the expression of pericyte-associated genes in HBVPs, iPSCs, mesoderm

137 iPericytes or neural crest iPericytes using real time quantitative polymerase chain reaction

- 138 (qPCR), cells were grown to 95% confluence in 6-well plates (Interpath, cat.#657160). Cells
- 139 were collected from n = 3 wells per cell type of the same differentiation, and RNA was
- 140 extracted using an RNeasy mini kit (Qiagen, cat. #74104), following the manufacturer's
- 141 recommendations. RNA concentration was quantified using a NanoDrop (ND-1000,

142	Thermofisher Scientific) and RNA quality was evaluated in a subset of samples using an
143	Agilent 4200 Tape Station system (cat.#G2991AA) with an RNA ScreenTape Ladder (Agilent,
144	cat.#5067-5578), following the manufacturer's instructions. cDNA synthesis was performed
145	using the High Capacity cDNA Reverse Transcription Kit (Thermofisher Scientific,
146	cat.#4368814). For reverse transcription a SuperCycler Trinity (Kyratec, cat.#SC-200) was set
147	to the program: step 1- 25°C, 10 min; step 2 - 37°C, 120min; step 3 - 85°C, 5 min; step 4 –
148	4°C, infinity. 200ng of cDNA was added to the TaqMan Fast Advanced Master Mix
149	(Thermofisher Scientific, cat.#4444557) and TaqMan primers for mRNAs of interest for each
150	20 μ L qPCR reaction. MicroAmp Optical 96 Well Reaction Plates (Thermofisher,
151	cat.#N8010560) were placed in a QuantStudio 3 (Thermofisher Scientific, cat.#A28567)
152	operating the following program: step 1- 50°C, 2 min; step 2 - 95°C, 2 min; step 3 - 95°C, 1
153	sec then 60°C, 20 sec (X 40). Raw data were exported into the QuantStudio Design and
154	Analysis Software (v1.5.1, Applied Biosystems) to calculate Cycle threshold (Ct) values for
155	each sample. Delta Ct values, delta delta Ct values and 2^-delta delta Ct were calculated in
156	Microsoft excel, using HPRT1 as a housekeeping gene. Primers included: CSPG4
157	(Hs00361541_g1, Thermofisher Scientific, cat.# 4331182), <i>OCT4</i> (Hs01895061_u1,
158	Thermofisher Scientific, cat.# 4331182), NANOG (Hs04399610_g1, Thermofisher Scientific,
159	cat.# 4331182), ACTA2 (Hs00426835_g1, Thermofisher Scientific, cat. #4331182), PDGFRB
160	(Hs01019589_m1, Thermofisher Scientific, cat.# 4331182) and HPRT1 (Hs02800695_m1,
161	Thermofisher Scientific, cat.# 4331182).

162 Immunocytochemistry

163 For immunocytochemical studies, HBVPs, mesoderm iPericytes and neural crest iPericytes

were plated in Greiner 24 Well Plates (Interpath, cat.#662160X) and grown to 50%

165	confluency.	Medium was removed	d and cells were fixed by	y immersion in ice-cold methanol
-----	-------------	--------------------	---------------------------	----------------------------------

- 166 (100%) for 10 min prior to washing with ice-cold PBS (Gibco, cat.#18912014). Cells were
- 167 washed thrice with 0.1% (v/v) tween-20 / PBS and incubated in Serum Free Protein Block
- 168 (DAKO, cat.#X0909) for 1h at 21°C. Primary antibodies (rabbit anti-CD13, Abcam Ab108310,
- 169 RRID:AB_10866195; rabbit anti-NG2, Sigma Aldrich AB5320, RRID:AB_91789; rabbit anti-
- 170 PDGFR β , Abcam Ab32570, RRID:AB_777165; rabbit anti- α SMA, Abcam Ab5694,
- 171 RRID:AB_2223021) were diluted 1:200 in Antibody Diluent (DAKO, cat.#S302283-2) and
- applied to cells overnight at 4°C. Cells were washed thrice in 0.1% (v/v) tween-20 / PBS
- 173 before applying secondary antibody (Alexa Fluor 488-conjugated Donkey anti-rabbit,
- 174 ThermoFisher Scientific, cat.# A-21206) diluted 1:1000 in Antibody Diluent for 2 h at 21°C in
- the dark. Cells were washed thrice in PBS and incubated with 42,6-diamidino-2-phenylindole
- 176 (DAPI) (Sigma, #D9542) diluted 1:10,000 in PBS for 5 min. Cells were imaged at 10x using a
- 177 Cytation 5 Cell Imaging Multi-Mode Reader (Biotek, USA).

178 RNA sequencing, data processing and differential gene expression analysis

Samples containing > 10 ng/µl RNA with a RIN of > 8 were sent to the Australian Genome Research Facility for bulk RNA sequencing. Libraries were generated using an Illumina Stranded mRNA workflow with polyA capture. RNA sequencing, processing of raw sequencing data, and quantification of gene expression are described in the supplementary methods. Differential gene analysis, principal components analysis (PCA), gene ontology analysis and heatmap generation were performed using DESeq2 and other tools as described in supplementary methods.

186 **Proliferation Assay**

187	An EdU assay was used, as described previously (20), to quantify proliferation in mesoderm
188	or neural crest iPericytes compared to HBVPs. Briefly, pericytes were plated in 96 well plates
189	(Interpath, cat.#655180) and grown to 50% confluency (~5,000 cells per well). CPM was
190	replaced with either: CPM containing the complete array of pericyte growth factors,
191	incomplete pericyte media (PM) which did not contain any growth factors, PM
192	supplemented with 100 ng/mL PDGF-BB (Sigma Aldrich, SRP3138) or PM supplemented with
193	100 ng/mL PDGF-BB with either 0.1 μ M, 10 μ M or 100 μ M imatinib (Sapphire Bioscience,
194	00022120). Pericytes were cultured for 24 h prior to fixation by immersion in 4% (w/v) PFA
195	in PBS for 15 mins at 21°C. EdU incorporation into the DNA was revealed using a Click-iT EdU
196	Cell Proliferation Kit (Invitrogen, cat.#C10340) following the manufacturer's instructions,
197	and the nuclei of all cells were identified by staining with DAPI. EdU and DAPI labelling was
198	visualised and imaged at 20x magnification using a Nikon Ti2 SRRF microscope. A region of
199	interest spanning 3 mm ² (20x magnification, 3x3) was defined, imaged and stitched to
200	create a single image spanning the region of interest for quantification. QuPath V0.2.3 was
201	used to identify total cells from the DAPI channel as well as proliferative cells from the EdU
202	channel using techniques previously described (21). Briefly, channel colours (DAPI, EdU)
203	were set for all images as a batch using the script "Channels and colours.groovy", described
204	previously (21). The rectangle annotation tool was used to draw a ROI around each image
205	using the script "Select all ROI.groovy". DAPI and EdU positive cells were detected using the
206	Positive Cell Detection tool using the script "EDU Analysis". Proliferation was calculated as:
207	% EdU positive cells = $\left(\frac{EdU \text{ positive cells}}{DAPI \text{ positive cells}}\right) \times 100.$

208 Contraction Assay

209	An xCelligence Real-Time cell analysis electrical impedance assay was used, as previously
210	published (22), to quantify contractility in mesoderm or neural crest iPericytes compared to
211	HBVPs. 5,000 pericytes were plated in each well of an E-Plate (ACEA Biosciences, cat.#
212	05469830001), with 200 μL of CPM. After ~16 h, cells were above 50% confluence and CPM
213	was replaced with CPM alone (control) or CPM containing 50 nM endothelin-1 or 10 μM
214	adenosine, concentrations as used previously (22, 23) (n = 4 wells per condition) and the
215	plate was placed in the xCelligence system. The xCelligence system measures the relative
216	impedance of electron flow expressed as arbitrary 'cell index' units as an indicator of cell
217	area (Fig. S4). Cell index was measured every minute for 2 h at 37°C and 5% CO_2 . The
218	normalised cell index value was calculated by normalising the raw cell index values to the
219	cell index value at baseline t=0 as described previously (24). Area under the curve (AUC)
220	was calculated using GraphPad prism for the normalised cell index graphed over the first 20
221	mins following drug exposure. Change (Δ) in cell index was calculated at the maximum
222	point of contraction in each well (Maximum Δ Cell Index) using the equation:
223	$Max \Delta Cell Index = baseline cell index (1) - cell index at maximum contraction$
224	Change in cell index was also calculated after 2h (Δ Cell index after 2 h) to determine the
225	maintenance of contraction after 2 h using the equation:
226	Δ Cell index after 2 h = baseline cell index (1) – cell index at 2 hours

227 See Fig. S4 for more details about the xCelligence system and calculations.

228 Statistical Analyses

229 Statistical analyses were performed using Prism 9.3.1 (GraphPad, USA) except for RNA-seq

230 data where DESeq2 and R were used (see supplementary methods for details about RNA-

231	seq analysis). Prior to performing statistical comparisons in Prism, outliers were removed
232	using the ROUT's outlier test ($Q = 1\%$). Each data set was tested for normality of residuals
233	using the Shapiro-Wilk test, and either a Y=Log(Y) transformation was performed to enable
234	parametric testing, or data sets were analysed with non-parametric Mann-Whitney U or
235	Kruskal-Wallis tests. To compare qPCR data generated from iPSCs and iPericytes, we
236	performed a one-way ANOVA with a Dunnett's multiple comparisons test or Sidak's multiple
237	comparisons test. To determine the effect of experimental conditions on proliferation, we
238	performed a one-way ANOVA, with differences between conditions versus control
239	determined using a Dunnett's multiple comparisons test. For the contraction assay, we
240	performed a two-way ANOVA to determine the effect of cell type (mesoderm iPericytes,
241	neural crest iPericytes, or HBVPs) or treatment (control, endothelin-1 or adenosine) on cell
242	index parameters, followed by a Tukey's multiple comparison test for pair-wise
243	comparisons. A <i>p</i> 2<2.05 was considered statistically significant. Statistical tests and results
244	for each analysis are reported in the figure legends.

246 **Results**

247 iPericytes display characteristic pericyte morphology and express canonical pericyte

248 markers

249	To determine whether iPericytes have the morphological characteristics of pericytes, we
250	collected phase contrast micrographs of mesoderm and neural crest iPericytes and HBVPs
251	and assessed the morphological features of each cell type. Mesoderm and neural crest
252	iPericytes had elongated fusiform cell bodies, that were similar in morphology to HBVPs (Fig.
253	1A). In vitro, HBVPs adopt several morphological phenotypes, that relate to different
254	contractile "subsets" (23). Mesoderm and neural crest iPericytes cultures also contained
255	each of these morphological phenotypes (Fig. S2) and in proportions similar to those
256	reported for HBVPs (23). To determine whether iPericytes express classical pericyte
257	markers, we isolated RNA and generated cDNA to conduct a qPCR analysis. iPericytes
258	expressed mRNAs that are integral to pericyte function, particularly: PDGFRB, which
259	encodes the PDGFR β protein; CSPG4 which encodes NG2 proteoglycan, and ACTA2 which
260	encodes alpha-smooth muscle actin ($lpha$ SMA). Compared to iPSCs, HBVPs, mesoderm and
261	neural crest iPericytes expressed significantly higher levels of <i>CSPG4</i> (HBVP, p = 0.0009;
262	neural crest iPericytes, p < 0.0001; mesoderm iPericytes, p < 0.0001), ACTA2 (HBVP, p =
263	0.0489; neural crest iPericytes, $p = 0.0022$; mesoderm iPericytes, $p = 0.0190$), and <i>PDGFRB</i>
264	(HBVP, p = 0.0947; neural crest iPericytes, p < 0.0001, mesoderm iPericytes, p = 0.0002)
265	mRNA (Fig. 1B). Conversely, HBVPs, neural crest and mesoderm iPericytes expressed
266	pluripotency genes at a very low level; expressing less <i>OCT4</i> (HBVP, p < 0.0001; neural crest
267	iPericyte, p < 0.0001; mesoderm iPericyte, p < 0.0001) and <i>NANOG</i> (HBVP, p < 0.0001;

268 neural crest iPericyte, p < 0.0001; mesoderm iPericyte, p < 0.0001) mRNA than iPSCs

269 (Fig.1B).

- 270 To extend these mRNA expression findings, we performed immunocytochemistry to
- 271 determine whether iPericytes expressed proteins synonymous with pericyte identity: CD13,
- 272 NG2 and PDGFRβ. Mesoderm and neural crest iPericytes displayed a pattern of labelling
- 273 which indicated that proteins were expressed within similar sub-cellular locations with anti-
- 274 CD13, anti-NG2 and anti-PDGFRβ antibodies compared to HBVPs (Fig. 1C). Overall, these
- 275 data show that iPericytes are morphologically similar to HBVPs and express mRNAs and
- 276 proteins that are consistent with pericyte identity.

277 Mesoderm and neural crest iPericytes have different gene expression profiles

278 To identify differences in gene expression between mesoderm and neural crest iPericytes,

and to determine how similar these cells are to HBVPs, we performed bulk RNA sequencing.

A PCA revealed that the majority of the variance was accounted for through the difference

between HBVPs and iPericytes regardless of lineage (PC1: 78% variance), whereas PC2 (12%

variance) accounted for the variation between neural crest and mesoderm iPericytes (Fig.

283 2A). Differential gene expression analysis was used to explore differences between HBVPs

and iPericytes (Fig. 2B-D), or neural crest and mesoderm iPericytes (Fig. 2E-G). There were a

substantial number of differentially expressed genes between HBVPs and iPericytes, with

286 984 genes upregulated and 880 genes downregulated in iPericytes compared to HBVP (Fig.

287 2B). This is also reflected in the heat map with clear differences in gene expression between

- 288 HBVPs and iPericytes, regardless of lineage (Fig. 2C). Gene ontology analysis of differentially
- 289 expressed genes between HBVPs and iPericytes showed enrichment for genes related to

tissue development, cellular division, morphology, extracellular matrix production and

291 protein binding (Fig. 2D).

292	Next, we assessed for differential gene expression between mesoderm and neural crest
293	iPericytes, which revealed 458 genes upregulated and 339 genes downregulated in neural
294	crest iPericytes compared to mesoderm iPericytes (Fig. 2E). Visualisation of these
295	differentially expressed genes via a heat map demonstrated the separation between
296	mesoderm iPericytes and neural crest iPericytes (Fig. 2F). Gene ontology analysis showed
297	enrichment for genes related to tissue development, extracellular matrix production,
298	DNA/RNA processing and growth factor binding and activity (Fig. 2G). These differences
299	could reflect changes in cellular function between mesoderm and neural crest iPericytes and
300	HBVPs.
301	Validation of the mesoderm iPericyte differentiation protocol using multiple iPSC lines
302	To confirm that iPericyte differentiation is highly reproducible, multiple unrelated iPSC lines
303	(MNZTASi019-A, MNZTASi021-A, and MNZTASi022-A) were cultured and used to generate
304	mesoderm iPericytes. RNA was collected from the iPSCs and the iPericytes for bulk RNA
305	sequencing. PCA of the gene expression profile of the iPSCs and mesoderm iPericytes
306	revealed that each cell type (iPSCs and iPericytes) clustered separately along the first
307	principal component, accounting for 93% of sample variation (Fig. 3A). Variation between
308	replicates accounted for only 5% of sample variation, showing a remarkable similarity
309	between replicates (Fig. 3A). We then selected genes associated with iPSC, pericyte,
310	endothelial cell, microglia, oligodendrocyte progenitor cell (OPC), oligodendrocyte,
311	astrocyte, or neuronal identity, and generated a heat map of gene expression for each iPSC
312	

successfully downregulated the pluripotency genes NANOG, POU5F1 and SOX2, and
upregulated pericyte-associated genes, including PDGFRB, CSPG4, ANPEP and ACTA2 (Fig.
3B). Gene expression was consistent across iPericytes generated from different iPSC lines
(Fig. 3B). Importantly, iPericytes did not express genes synonymous with other
neurovascular cell types (Fig. 3B). These data indicate this differentiation protocol can be
applied to distinct iPSC lines and produce iPericytes with a consistent mRNA expression
profile.

PDGFRβ signalling promotes iPericyte proliferation

321 mRNA expression differences between HBVPs and iPericytes could influence their capacity 322 to respond to environmental signals, and so we next compared the proliferative capacity of 323 these cells. A key ligand-receptor pathway that pericytes utilise for survival and proliferation 324 is the PDGFR β signalling pathway (20). We exposed HBVPs or iPericytes to basal pericyte 325 medium alone (PM) or PM containing the PDGFR β ligand, PDGF-BB (100 ng/ml), in the 326 presence of the thymidine analogue, EdU, as previously described (20). The addition of 327 PDGF-BB increased the proportion of HBVPs and iPericytes that incorporated EdU over a 24 328 h period, indicative of increased proliferation (Fig. 4A &B, Fig.S3; HBVP, p < 0.0001; neural 329 crest iPericytes, p = 0.01; mesoderm iPericytes, p < 0.0001). The magnitude of response to 330 PDGF-BB was similar between all three pericyte lines. Similar results were observed when 331 complete pericyte media (CPM), containing specialised pericyte growth supplement 332 (ScienCell, USA), was used compared to PM (Fig. 4B). These results indicate that iPericytes can proliferate in response to the pericyte growth factor PDGF-BB. 333 334 To confirm that the proliferative response was mediated by PDGFR β , HBVP and iPericyte 335 proliferation was assessed in the presence of imatinib. In pericytes, imatinib inhibits PDGFR β

336	phosphorylation to prevent proliferation (20). In HBVPs and iPericytes, imatinib produced a
337	dose dependent inhibition of PDGF-BB-induced proliferation (Fig. 4C, Fig. S3). For HBVPs,
338	0.01 μM imatinib did not alter proliferation (p= 0.9851), while 10 μM imatinib and 100 μM
339	imatinib significantly reduced proliferation by 31% and 96% of PDGF-BB alone, respectively
340	(p < 0.0001). Mesoderm iPericytes also failed to respond to 0.01 μ M imatinib (51%, p =
341	0.6517), while 10 μM and 100 μM imatinib significantly reduced proliferation to 37% and 8%
342	of PDGF-BB alone, respectively (p < 0.0001). Neural crest iPericytes were less sensitive to
343	PDGFR eta blockade, as neither 0.01 μ M (p = 0.9723) or 10 μ M (p = 0.3121) altered PDGF-BB-
344	induced proliferation. However, 100 μM imatinib significantly reduced the proliferation rate
345	to 11% of that recorded for PDGF-BB alone (p = 0.0009). These findings indicate that neural
346	crest iPericytes are less sensitive than mesoderm iPericytes or HBVPs to PDGFR eta inhibition.
347	To determine why neural crest iPericytes have altered susceptibility to PDGFR eta inhibition,
348	we interrogated our RNA-sequencing dataset, and identified differences between HBVPs,
349	mesoderm and neural crest iPericytes, in the relative expression of mRNAs downstream of
350	the PDGF-BB:PDGFR β pathway. In particular, <i>PIK3CA</i> (log2FoldChange = -0.67, p _{adj} = 2.76E ⁻⁵),
351	NFKB1 (log2FoldChange = -1.28, p_{adj} = 2.47E ⁻²⁶), NFKB2 (log2FoldChange = -0.78, p_{adj} =
352	0.00096), CREB1 (log2FoldChange = -0.46, p _{adj} = 2.39E ⁻⁶) and PTPN11 (log2FoldChange = -
353	0.36, $p_{adj} = 0.003$) were differentially expressed between HBVPs and iPericytes, while <i>PIK3CA</i>
354	(log2FoldChange = -0.44, p_{adj} = 0.039) and <i>NFKB2</i> (log2FoldChange = 0.68, p_{adj} = 2.24E ⁻⁵)
355	were differentially expressed between mesoderm and neural crest iPericytes (Fig. 4D).
356	RNAseq analysis also revealed that the expression of PDGFR8 was significantly higher
357	(log2FoldChange = -1.06, p_{adj} = 6.26E ⁻⁶) in neural crest iPericytes compared to mesoderm
358	iPericytes (Fig. 4D), which is in line with the qPCR data (Fig. 1B). These differences could

359 explain why neural crest iPericytes required a higher concentration of imatinib to prevent

- 360 PDGF-BB mediated proliferation.
- 361 iPericytes contract in response to endothelin-1

362	A primary function of pericytes is to contract and dilate to modulate capillary diameter,
363	thereby altering cerebral blood flow (4). We previously used a single cell imaging assay (23)
364	and the xCelligence electrical impedance assay (22) to show that HBVPs can respond to
365	vasoactive mediators. To assess the responses of mesoderm and neural crest iPericytes to
366	endothelin-1, we again used the xCelligence system. Cells were plated on specialised cell
367	culture plates that allow resistance to electron flow to be measured to provide an
368	assessment of cell index (Fig. S4A). Normalised cell index values can be analysed to compare
369	differences in slope, AUC and change in cell area after treatment with contractile mediators
370	(Fig. S4B). It is important to note that a small reduction in normalised cell index is ordinarily
371	observed over the first few minutes of an experiment, even under control conditions (Fig.
372	5A & B, (22)). When mesoderm iPericytes (Fig. 5A) and neural crest iPericytes (Fig. 5B) were
373	treated with endothelin-1, normalised cell index decreased compared to vehicle suggesting
374	pericytes had contracted, which was confirmed when AUC was calculated (treatment: $p =$
375	0.0033, Fig. 5C; treatment: p < 0.0001, Fig. 5F). Compared to HBVPs, contraction of
376	mesoderm iPericytes (p = 0.9995, Fig. 5C) and neural crest iPericytes (p = 0.1464, Fig. 5F)
377	was similar in the first 20 min of endothelin-1 exposure. The maximum contraction achieved
378	by mesoderm iPericytes was the same as HBVPs in response to endothelin-1 (treatment: $p =$
379	0.0021, Fig. 5D), and this was maintained over 2 h (treatment: p = 0.0026, Fig. 5E). However,
380	there was a different effect of treatment with endothelin-1 on neural crest iPericytes in
381	comparison to HBVPs (interaction of cell type x treatment: p = 0.0010, Fig. 5G). Post-hoc

382	analysis revealed that neural crest iPericytes maximum contraction was greater in response
383	to endothelin-1 compared to HBVPs (p = 0.0007, Fig. 5G) and they also sustained a greater
384	level of contraction compared to HBVPs for up to 2 h (p = 0.0001, Fig. 5H). These findings
385	suggest that iPericytes derived through different lineages display distinct responses to
386	endothelin-1.
387	To determine whether the lineage specific responses of iPericytes were due to differences in
388	endothelin-1 receptor expression, we determined whether endothelin-1 receptor genes
389	were differentially expressed between HBVPs, neural crest iPericytes and mesoderm
390	iPericytes. EDNRA and EDNRB, genes which code for the two major endothelin-1 receptors,
391	were differentially expressed in our RNA-seq dataset. There was a significantly different
392	expression of both subtypes of endothelin-1 receptor between HBVPs and neural crest
393	iPericytes (EDNRA Fig. 51 log2FoldChange = 2.53, p _{adj} = 6.12E ⁻²³ ; EDNRB Fig. 5J
394	log2FoldChange = 5.14, p_{adj} = 9.13E ⁻²⁶), while there was no difference between HBVP and
395	mesoderm iPericytes (Fig. 51, J). There was also significantly higher expression of both
396	subtypes of endothelin-1 receptor in neural crest iPericytes compared to mesoderm
397	iPericytes (EDNRA Fig. 51 log2FoldChange = -2.52, p _{adj} = 3.12E ⁻²⁵ ; EDNRB Fig. 5J
398	log2FoldChange = -7.22, p_{adj} = 6.77E ⁻¹⁵), which might be driving their greater response to the
399	endothelin-1 ligand. These data indicate that iPericytes can respond to endothelin-1, and
400	that neural crest iPericytes display a greater contractile response to endothelin-1 compared
401	to mesoderm iPericytes and HBVPs.
402	iPericytes have functional responses to the vasodilator adenosine

402 iPericytes have functional responses to the vasodilator adenosine

403 Given we observed differences in the response of neural crest iPericytes and mesoderm

404 iPericytes to endothelin-1, we also tested the response of iPericytes to adenosine which can

405	initiate pericyte relaxation in vitro (22). Similar to HBVPs, when mesoderm iPericytes (Fig.
406	6A) and neural crest iPericytes (Fig. 6B) were exposed to adenosine, normalised cell index
407	increased compared to vehicle conditions, indicative of pericyte relaxation. When treated
408	with adenosine, mesoderm iPericytes relaxed (treatment: p = 0.0002, Fig. 6C) and the
409	maximum relaxation achieved by mesoderm pericytes was the same as HBVPs in response
410	to adenosine (treatment: $p = 0.0002$, Fig. 6D), however, this was not maintained over 2 h
411	(treatment: p = 0.7317, Fig. 6E). There was a different response following adenosine
412	treatment on neural crest iPericyte relaxation in comparison to HBVPs (interaction of cell
413	type x treatment: p = 0.0202, Fig. 6F). Post-hoc analysis revealed that neural crest iPericytes
414	relax less in response to adenosine compared to HBVPs (p = 0.0112, Fig. 6F), which was also
415	observed in assessment of maximum relaxation (p = 0.0336, Fig. 6G) and relaxation at 2 h (p
416	= 0.0170, Fig. 6H). These findings indicate that neural crest iPericytes display reduced ability
417	to relax in response to adenosine compared to mesoderm iPericytes.
417 418	to relax in response to adenosine compared to mesoderm iPericytes. To determine whether the lineage specific responses of iPericytes were due to differences in
418	To determine whether the lineage specific responses of iPericytes were due to differences in
418 419	To determine whether the lineage specific responses of iPericytes were due to differences in adenosine receptor expression, we determined whether adenosine receptor genes were
418 419 420	To determine whether the lineage specific responses of iPericytes were due to differences in adenosine receptor expression, we determined whether adenosine receptor genes were differentially expressed between HBVPs, neural crest iPericytes and mesoderm iPericytes.
418 419 420 421	To determine whether the lineage specific responses of iPericytes were due to differences in adenosine receptor expression, we determined whether adenosine receptor genes were differentially expressed between HBVPs, neural crest iPericytes and mesoderm iPericytes. <i>ADORA1</i> and <i>ADORA2B</i> , genes which code for two of the major adenosine receptors, were
418 419 420 421 422	To determine whether the lineage specific responses of iPericytes were due to differences in adenosine receptor expression, we determined whether adenosine receptor genes were differentially expressed between HBVPs, neural crest iPericytes and mesoderm iPericytes. <i>ADORA1</i> and <i>ADORA2B</i> , genes which code for two of the major adenosine receptors, were differentially expressed in our RNA-seq dataset. There was a significantly different
418 419 420 421 422 423	To determine whether the lineage specific responses of iPericytes were due to differences in adenosine receptor expression, we determined whether adenosine receptor genes were differentially expressed between HBVPs, neural crest iPericytes and mesoderm iPericytes. <i>ADORA1</i> and <i>ADORA2B</i> , genes which code for two of the major adenosine receptors, were differentially expressed in our RNA-seq dataset. There was a significantly different expression of adenosine receptors type <i>ADORA1</i> and <i>ADORA2B</i> between HBVPs and neural
418 419 420 421 422 423 424	To determine whether the lineage specific responses of iPericytes were due to differences in adenosine receptor expression, we determined whether adenosine receptor genes were differentially expressed between HBVPs, neural crest iPericytes and mesoderm iPericytes. <i>ADORA1</i> and <i>ADORA2B</i> , genes which code for two of the major adenosine receptors, were differentially expressed in our RNA-seq dataset. There was a significantly different expression of adenosine receptors type <i>ADORA1</i> and <i>ADORA2B</i> between HBVPs and neural crest iPericytes (<i>ADORA1</i> Fig. 61 log2FoldChange = 3.92, p _{adj} = 1.65E ⁻¹¹ ; <i>ADORA2B</i> Fig. 6J
418 419 420 421 422 423 424 425	To determine whether the lineage specific responses of iPericytes were due to differences in adenosine receptor expression, we determined whether adenosine receptor genes were differentially expressed between HBVPs, neural crest iPericytes and mesoderm iPericytes. <i>ADORA1</i> and <i>ADORA2B</i> , genes which code for two of the major adenosine receptors, were differentially expressed in our RNA-seq dataset. There was a significantly different expression of adenosine receptors type <i>ADORA1</i> and <i>ADORA2B</i> between HBVPs and neural crest iPericytes (<i>ADORA1</i> Fig. 61 log2FoldChange = 3.92, p _{adj} = 1.65E ⁻¹¹ ; <i>ADORA2B</i> Fig. 6J log2FoldChange = -1.71, p _{adj} = 2.93E ⁻¹⁹). There was also significantly higher expression of

- 429 exist between HBVPs, mesoderm and neural crest iPericytes, they do not reflect differences
- 430 in functional responses to adenosine. These findings suggest that iPericytes can respond to
- 431 adenosine, and that neural crest iPericytes display a reduced relaxation response compared
- 432 to HBVPs.
- 433

434 **Discussion**

435	iPSC-derived neurovascular cells are becoming a popular model of choice to investigate the
436	function of the NVU <i>in vitro</i> . Methods to generate iPericytes reveal a novel avenue that will
437	allow researchers to determine how patient specific genetic variants affect pericyte
438	function, will help to create more accurate <i>in vitro</i> models of the NVU and disease and,
439	ultimately, may provide a reproducible and personalised tool for implantation in
440	regenerative medicine. To confidently use these cells to study pericyte function, it is
441	important to establish how representative they are of primary pericytes in vitro. We derived
442	mesoderm and neural crest iPericytes using a previously published protocol (16) and
443	showed they express classical pericyte mRNAs, but do not express other brain cell markers.
444	We then found that there were differences between mesoderm and neural crest iPericytes
445	in their functional response to the PDGF-BB:PDGFR eta signalling pathway that mediates
446	proliferation, and in response to known vasoactive mediators endothelin-1 and adenosine,
446 447	proliferation, and in response to known vasoactive mediators endothelin-1 and adenosine, in comparison to HBVPs.
447	in comparison to HBVPs.
447 448	in comparison to HBVPs. Mesoderm and neural crest iPericytes express key pericyte markers and morphologies
447 448 449	in comparison to HBVPs. Mesoderm and neural crest iPericytes express key pericyte markers and morphologies Using both qPCR and immunocytochemistry, we sought to test the expression of key
447 448 449 450	in comparison to HBVPs. Mesoderm and neural crest iPericytes express key pericyte markers and morphologies Using both qPCR and immunocytochemistry, we sought to test the expression of key pericyte mRNAs or proteins in neural crest and mesoderm iPericytes derived from the TOB-
447 448 449 450 451	in comparison to HBVPs. Mesoderm and neural crest iPericytes express key pericyte markers and morphologies Using both qPCR and immunocytochemistry, we sought to test the expression of key pericyte mRNAs or proteins in neural crest and mesoderm iPericytes derived from the TOB- 00220 line. We found that both developmental lineages of iPericytes express three classical
447 448 449 450 451 452	in comparison to HBVPs. Mesoderm and neural crest iPericytes express key pericyte markers and morphologies Using both qPCR and immunocytochemistry, we sought to test the expression of key pericyte mRNAs or proteins in neural crest and mesoderm iPericytes derived from the TOB- 00220 line. We found that both developmental lineages of iPericytes express three classical pericyte mRNAs <i>ANPEP</i> (encoding CD13), <i>CSPG4</i> (encoding NG2) and <i>PDGFRB</i> (encoding
447 448 449 450 451 452 453	in comparison to HBVPs. Mesoderm and neural crest iPericytes express key pericyte markers and morphologies Using both qPCR and immunocytochemistry, we sought to test the expression of key pericyte mRNAs or proteins in neural crest and mesoderm iPericytes derived from the TOB- 00220 line. We found that both developmental lineages of iPericytes express three classical pericyte mRNAs <i>ANPEP</i> (encoding CD13), <i>CSPG4</i> (encoding NG2) and <i>PDGFRB</i> (encoding PDGFRβ), with immunocytochemistry confirming their protein expression, in line with a

457 compared to the iPSCs from which they were derived. In addition, iPericytes display the five
458 morphological subtypes previously described for primary HBVPs (23). The majority of cells
459 exhibited standard morphology, which we have previously shown possess contractile
460 capacity (23). These data highlight that iPericytes express pericyte markers and are
461 morphologically similar to HBVPs.

462 iPericytes retain lineage specific differences in gene expression

463 We next sought to understand whether separate iPericyte lineages could display altered 464 gene expression and which biological processes these were related to. Following RNA 465 sequencing, we showed that gene expression in HBVPs was markedly different compared to 466 both mesoderm and neural crest iPericytes. Differentially expressed genes appeared to be 467 related to tissue development and protein binding, which could impact the function of these 468 cells. It has already been shown that pericytes contribute to the development of the 469 vascular network in multiple organs and they can assist in the development of key cellular 470 structures such as the extracellular matrix (25). It is possible that differences in the genetic 471 background of HBVPs compared to the iPSC line we used could explain the extent of 472 differential gene expression. In addition, HBVPs could include both mesoderm and neural 473 crest-derived pericytes given that both lineages reside in the brain (7). We also identified 474 that there were gene expression differences between neural crest and mesoderm iPericytes 475 that was related primarily to organ development. These differences could be explained by 476 the mesoderm lineage being more prominent in organ development throughout the body whereas cells from the neural crest pathway would be restricted to the nervous system (26). 477 Interestingly, genes related to growth factor binding and activity were also differentially 478 479 expressed which could indicate differences in function of pericytes derived from these two

lineages. This was evident in both the proliferation and contractility assays where functional
responses differed, suggesting pericytes of different lineages may have altered physiological
responses.

F

483 iPericytes can be consistently produced from different iPSC lines

- 484 Using RNA sequencing, we showed that gene expression profiles of iPericytes that had been
- differentiated from three separate iPSC lines derived from three unrelated individuals were
- 486 consistent between different lines. In particular, all three iPericyte lines had consistent
- 487 levels of enriched pericyte mRNA expression, while downregulating expression of known
- 488 stem cell genes. Notably, iPericytes did not express key markers of any other cell type such
- 489 as endothelial cells, microglia, OPCs, oligodendrocytes, astrocytes, or neurons. This suggests
- 490 that iPericytes can be produced with high consistency from different iPSC lines, supporting
- 491 their use for assessing pericyte function in disease contexts.

492 iPericytes proliferate in response to the PDGFRβ ligand PDGF-BB

- 493 Although consistent expression of key pericyte mRNAs and proteins by iPericytes is
- 494 encouraging, it is important that this translates into functional characteristics representative
- 495 of pericytes *in vivo*. To expand our knowledge on the relative similarities between
- 496 mesoderm and neural crest iPericytes, we compared their functional response to PDGF-BB,
- 497 a growth factor essential for pericyte proliferation and survival (27). We have previously
- shown that HBVPs proliferate in response to PDGF-BB *in vitro* through the PDGFRβ receptor
- 499 (20). Like HBVPs, mesoderm and neural crest iPericytes proliferated in the presence of
- 500 PDGF-BB. In addition, the specificity of this proliferative response to the PDGFRβ pathway
- 501 was confirmed by the blockade of this response with the PDGFR β inhibitor imatinib, similar
- to HBVPs. The PDGF-BB:PDGFRβ signalling pathway is essential for pericyte and endothelial

503	cell interactions at the NVU, mediating key endothelial cell processes such as angiogenesis
504	(27). A number of studies have assessed iPericytes in co-culture with endothelial cells (8-10,
505	15), showing that iPericytes can specifically support endothelial tube formation and the
506	strength of the endothelial barrier through trans-endothelial resistance measures (7-10, 16).
507	In addition, iPericytes have been used as part of functional blood-brain barrier models (7,
508	28-30). Furthermore, a recent study showed the capacity of iPericytes to aid in BBB repair in
509	pericyte deficient mice, suggesting functional signalling between endothelial cells and
510	iPericytes is also possible <i>in vivo</i> (31). These studies highlight the capacity for iPericytes to
511	support and enhance survival and differentiation of other key cells of the NVU.
512	Until now functional studies of iPericytes have typically focussed on one pericyte
513	developmental lineage at a time, either mesoderm (8-10) or neural crest (7, 11), restricting
514	comparisons between the two. Here, we demonstrate for the first time that neural crest
515	iPericytes display altered PDGFR eta signalling responses compared to HBVPs and mesoderm
516	iPericytes, with a higher concentration of the PDGFR eta receptor inhibitor imatinib required
517	to inhibit proliferation <i>in vitro</i> . This finding was supported by higher expression of the
518	PDGFRB gene by neural crest iPericytes. These differences may reflect an inherent
519	difference in the function of this receptor pathway between neural crest and mesoderm
520	pericytes that should be considered for future studies.
521	iPericytes are responsive to the vasoactive mediators endothelin-1 and adenosine
522	Another key function of pericytes is their role in blood flow regulation. It has previously

- 523 been shown that pericytes possess the contractile protein α SMA which can generate a
- 524 contractile response in these cells (32, 33). However, there has been some discordance in
- 525 the literature about expression of α SMA and contractility of pericytes (4, 34). This

526	discordance has also been observed with iPericytes in vitro with some studies showing
527	lphaSMA expression in iPericytes (10, 11) and some concluding that it is not expressed (7, 8).
528	Interestingly, Kumar <i>et al</i> . (10) found that α SMA expression could be triggered through a
529	specific pericyte differentiation protocol involving PDGF-BB, vascular endothelial growth
530	factor (VEGF), activin receptor-like kinase receptor (ALK) inhibitor SB-431542 and epidermal
531	growth factor (EGF), suggesting certain growth factors must be present for expression of
532	<code>$lpha$SMA</code> in iPericytes. Here, we showed that the <code>$lpha$SMA</code> gene <code>ACTA2</code> was expressed in both
533	neural crest and mesoderm iPericytes, with bulk RNA sequencing revealing reproducible
534	expression of ACTA2 in mesoderm iPericytes throughout three separate iPSC lines. Given
535	that HBVP expression of $lpha$ SMA was associated with contractile ability (23), the expression of
536	lphaSMA is suggestive of the potential to contract.
537	It has previously been shown that HBVPs contract in response to endothelin-1 and relax in
538	response to adenosine <i>in vitro</i> (22). Using a similar approach, we found that exposing neural
539	crest and mesoderm iPericytes to endothelin-1 led to a strong reduction in cell area
540	indicative of cell contraction. Interestingly, neural crest iPericytes had a much stronger
541	contractile response to endothelin-1 compared to both HBVPs and mesoderm iPericytes.
542	Further analysis into gene expression changes revealed that the two major endothelin-1
543	receptors (EDNRA and EDNRB) were more highly expressed in neural crest iPericytes. In
544	addition, the expression of ACTA2, the gene encoding the key contractile protein $lpha$ SMA, was
545	more highly expressed by neural crest iPericytes. However, neural crest iPericytes appear to
546	not relax in response to adenosine as much as HBVPs and mesoderm iPericytes. Given that
547	neural crest iPericytes expressed similar (ADORA2B) or higher (ADORA1) levels of adenosine
548	receptor compared to mesoderm iPericytes, this suggests other factors may be influencing
549	the extent to which neural crest iPericytes react to adenosine. Overall, these experiments

550 highlight the ability of iPericytes to contract and relax, with some reactivity differences

551 between lineages.

552 Conclusion

- 553 Collectively, we illustrate that neural crest and mesoderm iPericytes, derived from multiple
- 554 iPSC lines, are morphologically similar to HBVPs and express key pericyte markers. iPericytes
- are functionally active, demonstrated through proliferation in response to the key pericyte
- 556 growth factor PDGF-BB, contraction in response to endothelin-1, and relaxation in response
- 557 to adenosine. These findings suggest that iPericytes behave functionally like HBVPs,
- providing further support for their use as a tool to study pericyte function. We observed
- some differences between iPericytes of different lineages, notably that neural crest
- 560 iPericytes were less sensitive to $PDGFR\beta$ inhibition and more contractile compared to
- 561 mesoderm iPericytes. Therefore, differences between iPericytes derived through different
- 562 lineages must be taken into consideration when designing experiments using iPericytes to
- 563 assess pericyte function.

565 **Funding Sources**

	566	This project was	supported by	/ funding fr	om the University	/ of Tasmania	College of Healt
--	-----	------------------	--------------	--------------	-------------------	---------------	------------------

- 567 and Medicine Research Enhancement Program, National Health and Medical Research
- 568 Council (APP1137776 and APP1163384), Medical Research Future Fund (EPCD000008), MS
- 569 Australia (19-0696, 20-137, 21-3-023, 22-4-097), the Menzies Institute for Medical Research,
- and the Irene Phelps Charitable Trust. NEK, LSB and JMC were supported by Tasmanian
- 571 Graduate Research Scholarships. AJF was supported by a Research Training Program
- 572 Scholarship.

573 Conflicts of Interest

574 Authors declare no competing interests.

575 Author Contributions

576 NEK: methodology; validation; investigation; formal analysis; visualisation; writing - original

577 draft; writing – review and editing. J-MC: methodology; software; formal analysis;

578 investigation; resources; data curation; writing-review and editing; visualisation;

supervision. LSB: methodology; formal analysis; investigation; writing-review and editing;

visualisation. AJF: investigation; methodology; formal analysis; visualisation; writing -

- review and editing. NBB: data curation; methodology; formal analysis; visualisation;
- supervision; writing review and editing. JLF: investigation; methodology; supervision;
- 583 writing review and editing. JMC: methodology; investigation; writing-review and editing.
- JT: methodology; writing review and editing. AP: methodology; resources; writing review
- and editing. AWH: methodology; resources; writing review and editing. GPM:

586	methodology; supervision; writing - original draft; writing – review and editing. KMY:
587	conceptualisation; funding acquisition; methodology; project administration; resources;
588	supervision; writing – review and editing. ALC: conceptualisation; funding acquisition;
589	methodology; project administration; resources; supervision; writing – review and editing.
590	BAS: conceptualisation; funding acquisition; methodology; project administration;
591	resources; supervision; writing – original draft; writing – review and editing.

592 Acknowledgements

- 593 We would like to thank study participants who donated cells for iPSC generation. The
- 594 University of Tasmania provided core laboratory facilities for this work. We would like to
- acknowledge the use of the high-performance computing facilities provided by Digital
- 596 Research at the University of Tasmania. We would like to acknowledge the Australian
- 597 Genome Research Facility (AGRF) who performed all of the RNA sequencing for gene
- 598 expression analysis.

599 Data Availability

- 600 Please contact Kaylene Young (<u>Kaylene.young@utas.edu.au</u>) to source MS Stem iPSCs.
- 601 Imaging data are available from the corresponding author upon reasonable request. Bulk
- 602 RNA sequencing data will be made available online upon a revised submission.

604 Figure Legends

605	Figure 1. iPericytes are morphologically similar to HBVPs and express pericyte markers. (A)
606	Phase contrast bright 4x magnification images of iPSCs, HBVPs, mesoderm iPericytes and
607	neural crest iPericytes. Scale = 200 μ m. (B) Fold change gene expression measured by qPCR
608	of pericyte genes PDGFRB, CSPG4, ACTA2 and pluripotency genes OCT4 and NANOG by
609	iPSCs, neural crest iPericytes, mesoderm iPericytes and HBVPs (n = 3 per cell type). Data are
610	normalised to HBVP cells, and comparisons were made using a one-way ANOVA: PDGFRB (F
611	(3, 8) = 103.1, p < 0.0001), <i>CSPG4</i> (F (3, 8) = 4671, p < 0.0001), <i>ACTA2</i> (F (3, 8) = 9.340, p <
612	0.0054), OCT4 (F (3, 8) = 1686, p < 0.0001) and NANOG (F (3, 8) = 606.4, p < 0.0001). Post-
613	hoc comparisons performed using Dunnett's multiple comparisons test: * p < 0.05, ** p <
614	0.01, *** p < 0.001,**** p < 0.0001. Data are shown as mean ± SD. (C)
615	Immunocytochemistry showing expression of pericyte proteins CD13, NG2 and PDGFR eta
616	(green) by HBVP, mesoderm iPericytes and neural crest iPericytes. Nuclei counter-stained
617	with DAPI (blue). Scale = 20 μ m.
618	
619	Figure 2. iPericytes derived through different lineage pathways have differential
620	expression of genes. (A) PCA analysis showing separate clustering of mesoderm iPericytes,
621	neural crest iPericytes and HBVPs (n = 6 for HBVPs, n = 3 for mesoderm or neural crest
622	iPericytes). (B) Volcano plots showing upregulated and downregulated genes in iPericytes
623	compared to HBVPs. (C) Heat map showing differentially expressed genes in iPericytes
624	compared to HBVPs. (D) Gene ontology analysis of key biological processes, cellular
625	compartments and molecular function associated with 1,864 differentially expressed genes
626	between iPericytes and HBVPs. (E) Volcano plots showing upregulated and downregulated

627 genes in neural crest iPericytes compared to mesoderm iPericytes. (F) Heat map showing 628 differentially expressed genes in neural crest iPericytes compared to mesoderm iPericytes. 629 (G) Gene ontology analysis of key biological processes, cellular compartments and molecular 630 function associated with 797 differentially expressed genes between neural crest iPericytes 631 and mesoderm iPericytes. 632 Figure 3. Mesoderm iPericytes from multiple cell lines have similar mRNA expression. (A) 633 634 Principal components analysis showing separate clustering of mesoderm iPericytes and 635 iPSCs from n = 3 different cell lines. (B) Heat map showing relative expression levels in iPSCs 636 and mesoderm iPericytes of key genes typically expressed by iPSCs, pericytes, endothelial 637 cells (EC), microglia (MG), oligodendrocyte precursor cells (OPCs), oligodendrocytes (OL), 638 astrocytes (AST) and neurons (NEU). Warmer colours indicate higher expression, cooler 639 colours indicate lower expression. 640 641 Figure 4. Proliferation of iPericytes through the PDGF-BB: PDGFRß signalling pathway. (A) 642 iPericytes were incubated in basal pericyte media (PM) and treated with PDGF-BB (PM + 643 PDGF-BB) while being exposed to 100 μ M imatinib (PM + PDGF-BB + 100 μ M imatinib). 644 Proliferation was measured using an EdU uptake assay. iPericytes that are EdU-positive are 645 indicated by magenta, while total number of iPericytes were measured by DAPI (blue). Scale 646 bar = 50 μ m. (B) Quantification of HBVPs, neural crest iPericytes and mesoderm iPericytes

proliferating (as indicated by EdU-positive staining) as a percentage of total cells following

647

- 648 24 h exposure to PM, complete pericyte media with pericyte growth factors (CPM) or PM +
- 649 PDGF-BB (n = 8 per condition). Data were analysed using a one-way ANOVA: HBVP (F (2, 21)

650	= 35.52, p < 0.0001); neural crest iPericyte (F (2, 21) = 30.85, p < 0.0001); mesoderm
651	iPericyte (F (2, 21) = 191.4, p < 0.0001). (C) Quantification of changes to PDGF-BB-induced
652	proliferation with increasing concentrations of imatinib over 24 h in HBVPs, neural crest
653	iPericytes and mesoderm iPericytes (n = 8 per condition). Data were analysed using a one-
654	way ANOVA or Kruskal-Wallis test: HBVP (F (3, 26) = 259.2, p < 0.0001); neural crest
655	iPericyte (H (3) = 24.41, p < 0.0001); mesoderm iPericyte (F (3, 28) = 221.5, p < 0.0001). For
656	(B) and (C), post-hoc comparisons were performed using Dunnett's multiple comparisons or
657	Dunn's test: * p < 0.05, ** p < 0.01, *** p < 0.001,**** p < 0.0001. Data shown as mean ±
658	SD. (D) Heat map of key genes involved in pericyte proliferation in the PDGF-BB: PDGFR eta
659	signalling pathway in HBVP, neural crest iPericytes and mesoderm iPericytes selected from
660	Sweeney et al. 2016 (27).

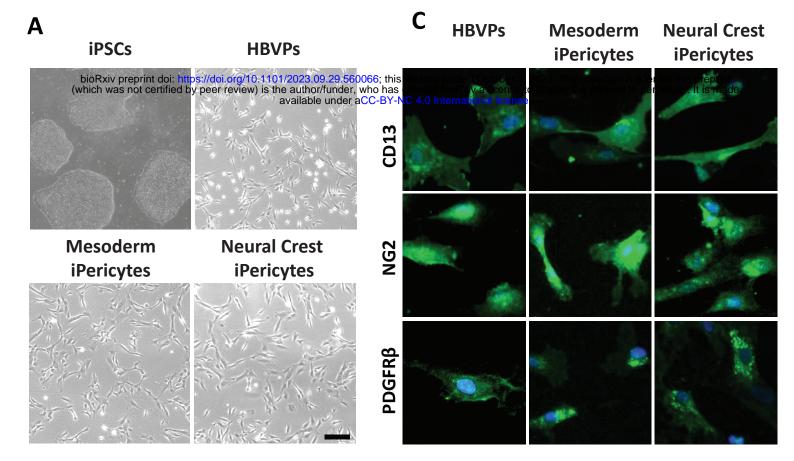
661

Figure 5. Endothelin-1 induces iPericyte contraction. (A-B) Normalised cell index of neural 662 663 crest iPericytes, mesoderm iPericytes and HBVPs treated with endothelin-1 or vehicle (CPM) 664 over a period of 2 h (n = 4 per condition). (C-E) Quantified AUC, Δ cell index and Δ cell index after 2 h for mesoderm iPericytes and HBVPs treated with control or endothelin-1 analysed 665 using two-way ANOVA: AUC (cell type: F (1, 12) = 0.6953, p = 0.4206; treatment: (F (1, 12) = 666 13.35, p =0.0033; interaction: F (1, 12) = 0.1006, p = 0.7565); Δ cell index (cell type: F (1, 12) 667 668 = 0.02309, p = 0.8817; treatment: F (1, 12) = 15.21, p = 0.0021; interaction: F (1, 12) = 669 0.5773, p = 0.4620; Δ cell index after 2 h (cell type: F (1, 12) = 1.590, p = 0.2313; treatment: 670 F (1, 12) = 14.31, p = 0.0026; interaction: F (1, 12) = 0.5518, p = 0.4719). (F-H) Quantified 671 AUC (indicator of volume of contraction), Δ cell index (maximum contraction) and Δ cell index after 2 h (contraction at 2 h time point) for neural crest iPericytes and HBVPs treated 672

673	with control or endothelin-1 analysed using two-way ANOVA: AUC (cell type: F (1, 12) =
674	1.563, p = 0.2351; treatment: (F (1, 12) = 54.67, p < 0.0001; interaction: F (1, 12) = 5.470, p =
675	0.0375); Δ cell index (cell type: F (1, 12) = 13.53, p = 0.0032; treatment: F (1, 12) = 66.11, p <
676	0.0001; interaction: F (1, 12) = 18.47, p = 0.0010); Δ cell index after 2 h (cell type: F (1, 12) =
677	34.64, p < 0.0001; treatment: F (1, 12) = 38.56, p < 0.0001; interaction F (1, 12) = 14.70, p =
678	0.0024). (С-Н) Post-hoc comparisons performed using Sidak's multiple comparisons test. * p
679	< 0.05, ** p < 0.01, *** p < 0.001,**** p < 0.0001. Data shown as mean ± SD. (I-J)
680	Normalised gene expression counts of differentially expressed endothelin-1 receptors in
681	HBVP, neural crest iPericytes and mesoderm iPericytes compared using DEseq: HBVPs and
682	neural crest iPericytes EDNRA Fig. 51 log2FoldChange = 2.53, p _{adj} = 6.12E ⁻²³ ; EDNRB Fig. 5J
683	log2FoldChange = 5.14, p_{adj} = 9.13E ⁻²⁶ ; neural crest iPericytes compared to mesoderm
684	iPericytes EDNRA (I) log2FoldChange = -2.52, p _{adj} = 3.12387E ⁻²⁵ ; EDNRB (J) log2FoldChange =
685	-7.22, $p_{adj} = 6.77016E^{-15}$.

686

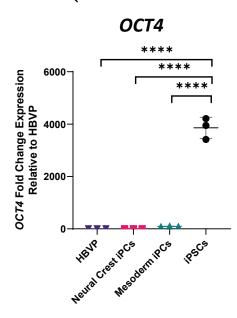
687 Figure 6. Adenosine induces iPericyte relaxation. (A-B) Normalised cell index of neural crest iPericytes, mesoderm iPericytes and HBVPs treated with adenosine or vehicle (CPM) over a 688 period of 2 h (n = 4 per condition). (C-E) Quantified AUC, Δ cell index and Δ cell index after 2 689 690 h for mesoderm iPericytes and HBVPs treated with control or adenosine analysed using twoway ANOVA: AUC (cell type: F(1, 12) = 6.583, p = 0.0247; treatment: (F(1, 12) = 26.84, p691 692 =0.0002; interaction: F (1, 12) = 6.027, p = 0.0303); Δ cell index (cell type: F (1, 12) = 6.387, p 693 = 0.0265; treatment: F (1, 12) = 28.26, p = 0.0002; interaction: F (1, 12) = 1.284, p = 0.2794); 694 Δ cell index after 2 h (cell type: F (1, 12) = 1.460, p = 0.2502; treatment: F (1, 12) = 0.1232, p = 0.7317; interaction: F (1, 12) = 1.174, p = 0.2999). (F-H) Quantified AUC, Δ cell index and Δ 695

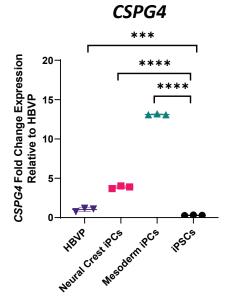

696	cell index after 2 h for neural crest iPericytes and HBVPs treated with control or adenosine
697	analysed using two-way ANOVA: AUC (cell type: F (1, 12) = 8.596, p = 0.0126; treatment: (F
698	(1, 12) = 50.38, p < 0.0001; interaction: F (1, 12) = 7.159, p = 0.0202); Δ cell index (cell type: F
699	(1, 12) = 7.881, p = 0.0158; treatment: F (1, 12) = 57.12, p < 0.0001; interaction: F (1, 12) =
700	3.777, p = 0.0758); Δ cell index after 2 h (cell type: F (1, 12) = 16.46, p = 0.0016; treatment: F
701	(1, 12) = 20.58, p = 0.0007; interaction: F (1, 12) = 1.500, p = 0.2442). (C-H) Post-hoc
702	comparisons performed using Sidak's multiple comparisons test. * p < 0.05, ** p < 0.01, ***
703	p < 0.001,**** p < 0.0001. Data shown as mean ± SD. (I-J) Normalised gene expression
704	counts of differentially expressed adenosine receptors in HBVP, neural crest iPericytes and
705	mesoderm iPericytes compared using DEseq: HBVPs and neural crest iPericytes ADORA1 (I)
706	$\log 2$ FoldChange = 3.92, $p_{adj} = 1.65E^{-11}$; <i>ADORA2B</i> (J) $\log 2$ FoldChange = -1.71, $p_{adj} = 2.93E^{-19}$;
707	HBVPs and mesoderm iPericytes ADORA1 (I) log2FoldChange = 2.72, p _{adj} = 0.00006;
708	ADORA2B (J) log2FoldChange = -2.33, p _{adj} = 1.52E ⁻²⁵ ; neural crest iPericytes compared to
709	mesoderm iPericytes ADORA1 (I) log2FoldChange = -1.19, p _{adj} = 0.001; ADORA2B (J)
710	$\log 2FoldChange = -0.61$, $p_{adj} = 0.03288$.

712 **References**

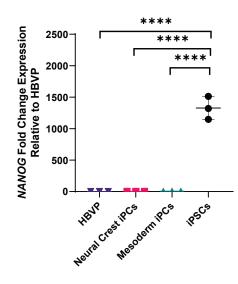
- Brown LS, Foster CG, Courtney J-M, King NE, Howells DW, Sutherland BA. Pericytes
 and Neurovascular Function in the Healthy and Diseased Brain. Frontiers in Cellular
 Neuroscience. 2019;13(282).
- Cashion JM, Young KM, Sutherland BA. How does neurovascular unit dysfunction
 contribute to multiple sclerosis? Neurobiology of Disease. 2023;178:106028.
- Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al.
 Amyloid beta oligomers constrict human capillaries in Alzheimer's disease via
 signaling to pericytes. Science. 2019;365(6450).
- Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary
 pericytes regulate cerebral blood flow in health and disease. Nature.
 2014;508(7494):55-60.
- Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al.
 Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis,
 Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. eNeuro.
 2020;7(2).
- Kusuma S, Shen YI, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S. Self-organized
 vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl
 Acad Sci U S A. 2013;110(31):12601-6.
- 73. Stebbins MJ, Gastfriend BD, Canfield SG, Lee MS, Richards D, Faubion MG, et al.
 732 Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain
 733 barrier properties. Sci Adv. 2019;5(3):eaau7375.
- Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al.
 Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125(1):87-99.
- 9. Orlova VV, Drabsch Y, Freund C, Petrus-Reurer S, van den Hil FE, Muenthaisong S, et
 al. Functionality of endothelial cells and pericytes from human pluripotent stem cells
 demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler
 Thromb Vasc Biol. 2014;34(1):177-86.
- Kumar A, D'Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, et al. Specification and
 Diversification of Pericytes and Smooth Muscle Cells from Mesenchymoangioblasts.
 Cell Rep. 2017;19(9):1902-16.
- Kelleher J, Dickinson A, Cain S, Hu Y, Bates N, Harvey A, et al. Patient-Specific iPSC
 Model of a Genetic Vascular Dementia Syndrome Reveals Failure of Mural Cells to
 Stabilize Capillary Structures. Stem Cell Reports. 2019;13(5):817-31.

747 748	12.	Fortune AJ, Fletcher JL, Blackburn NB, Young KM. Using MS induced pluripotent stem cells to investigate MS aetiology. Mult Scler Relat Disord. 2022;63:103839.
749 750	13.	Stanton AE, Bubnys A, Agbas E, James B, Park DS, Jiang A, et al. Engineered 3D Immuno-Glial-Neurovascular Human Brain Model. bioRxiv. 2023.
751 752 753	14.	Tachibana M, Yamazaki Y, Liu CC, Bu G, Kanekiyo T. Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid-β pathology in amyloid model mice. Exp Neurol. 2018;300:13-21.
754 755 756	15.	Orlova VV, van den Hil FE, Petrus-Reurer S, Drabsch Y, Ten Dijke P, Mummery CL. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc. 2014;9(6):1514-31.
757 758 759 760	16.	Faal T, Phan DTT, Davtyan H, Scarfone VM, Varady E, Blurton-Jones M, et al. Induction of Mesoderm and Neural Crest-Derived Pericytes from Human Pluripotent Stem Cells to Study Blood-Brain Barrier Interactions. Stem Cell Reports. 2019;12(3):451-60.
761 762 763	17.	Daniszewski M, Senabouth A, Liang HH, Han X, Lidgerwood GE, Hernández D, et al. Retinal ganglion cell-specific genetic regulation in primary open-angle glaucoma. Cell Genomics. 2022;2(6):100142.
764 765 766	18.	Fortune AJ, Taylor BV, Charlesworth JC, Burdon KP, Blackburn NB, Fletcher JL, et al. Generation and characterisation of four multiple sclerosis iPSC lines from a single family. Stem Cell Res. 2022;62:102828.
767 768 769	19.	Mehta A, Lu P, Taylor BV, Charlesworth J, Cook AL, Burdon KP, et al. Generation of MNZTASi001-A, a human pluripotent stem cell line from a person with primary progressive multiple sclerosis. Stem Cell Research. 2021;57:102568.
770 771 772	20.	King NE, Courtney JM, Brown LS, Foster CG, Cashion JM, Attrill E, et al. Pharmacological PDGFRβ inhibitors imatinib and sunitinib cause human brain pericyte death in vitro. Toxicol Appl Pharmacol. 2022;444:116025.
773 774 775	21.	Courtney JM, Morris GP, Cleary EM, Howells DW, Sutherland BA. An Automated Approach to Improve the Quantification of Pericytes and Microglia in Whole Mouse Brain Sections. eNeuro. 2021;8(6).
776 777 778	22.	Neuhaus AA, Couch Y, Sutherland BA, Buchan AM. Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. J Cereb Blood Flow Metab. 2017;37(6):2013-24.
779 780 781	23.	Brown LS, King NE, Courtney JM, Gasperini RJ, Foa L, Howells DW, et al. Brain pericytes in culture display diverse morphological and functional phenotypes. Cell Biol Toxicol. 2023.

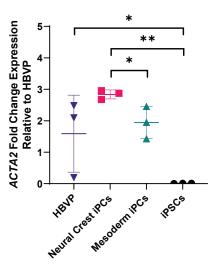

782 783 784	24.	Hibbs E, Love S, Miners JS. Pericyte Contractile Responses to Endothelin-1 and Aβ Peptides: Assessment by Electrical Impedance Assay. Frontiers in Cellular Neuroscience. 2021;15.
785 786	25.	Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005;7(4):452-64.
787 788 789	26.	Armulik A, Genové G, Betsholtz C. Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Developmental Cell. 2011;21(2):193-215.
790 791	27.	Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19(6):771-83.
792 793 794 795	28.	Canfield SG, Stebbins MJ, Faubion MG, Gastfriend BD, Palecek SP, Shusta EV. An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids and Barriers of the CNS. 2019;16(1):25.
796 797 798 799	29.	Linville RM, Sklar MB, Grifno GN, Nerenberg RF, Zhou J, Ye R, et al. Three- dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels. Fluids Barriers CNS. 2022;19(1):87.
800 801 802	30.	Mesentier-Louro LA, Suhy N, Broekaart D, Bula M, Pereira AC, Blanchard JW. Modeling the Blood-Brain Barrier Using Human-Induced Pluripotent Stem Cells. Methods Mol Biol. 2023;2683:135-51.
803 804 805	31.	Bosworth A, Griffin C, Chakhoyan A, Sagare AP, Nelson AR, Wang Y, et al. Molecular signature and functional properties of human pluripotent stem cell-derived brain pericytes. bioRxiv. 2023:2023.06.26.546577.
806 807 808	32.	Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kılıç K, Can A, et al. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. Elife. 2018;7.
809 810 811	33.	Hartmann DA, Berthiaume A-A, Grant RI, Harrill SA, Koski T, Tieu T, et al. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nature Neuroscience. 2021;24(5):633-45.
812 813 814	34.	Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes. Neuron. 2015;87(1):95-110.
815		

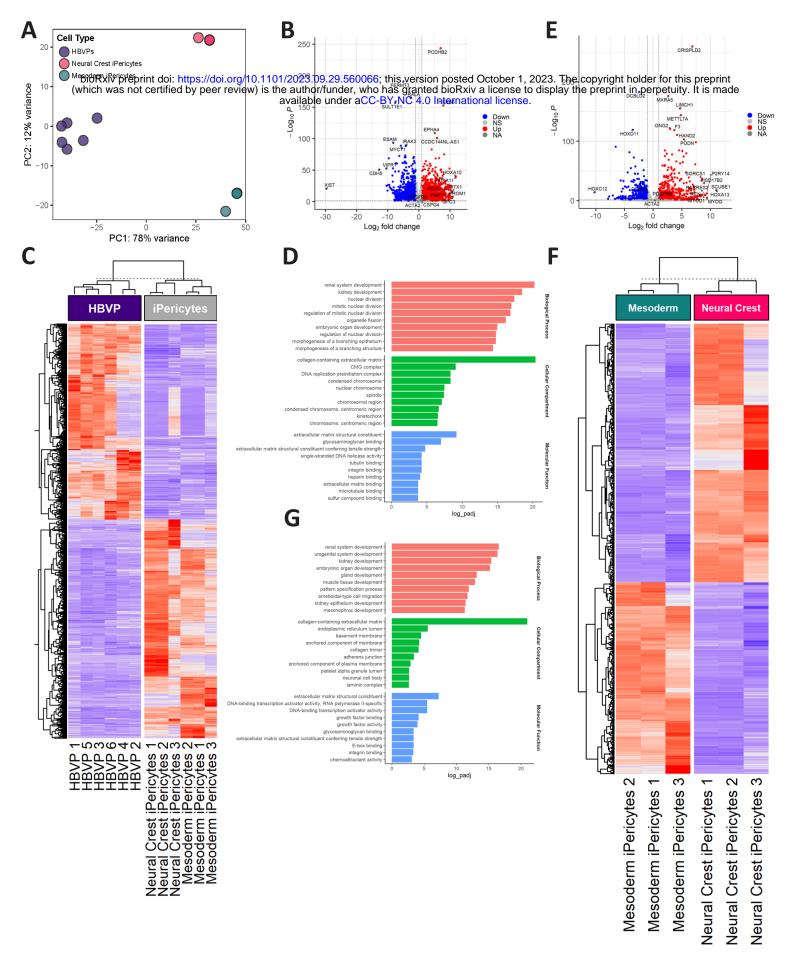


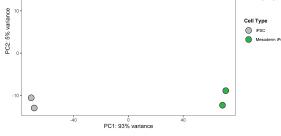
В


PDGFRB

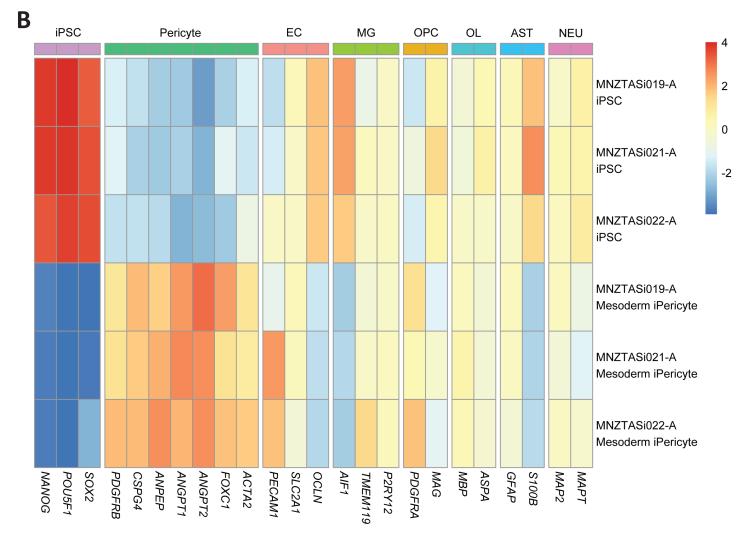
0.0947 PDGFRB Fold Change Expression Relative to HBVP 10 **** ** 8 6-4 2 Neural Creat IPCS 0 Ne^{sodern PCS} .18⁵⁰⁵





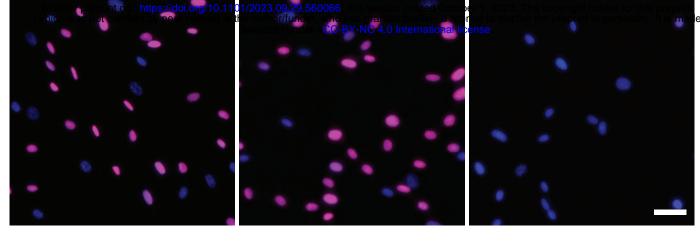

NANOG

ACTA2 (aSMA)



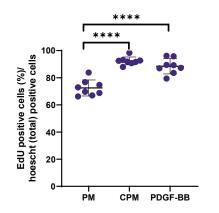
Α

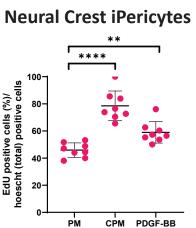
 \bigcirc

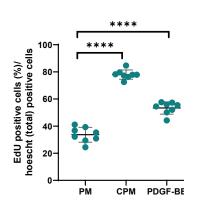


Α

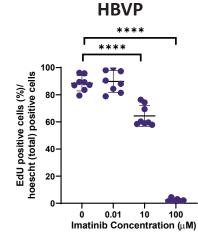
Base Pericyte Media (PM)


PM + PDGF-BB

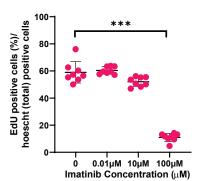

PM + PDGF-BB + 100μM Imatinib


В

HBVP

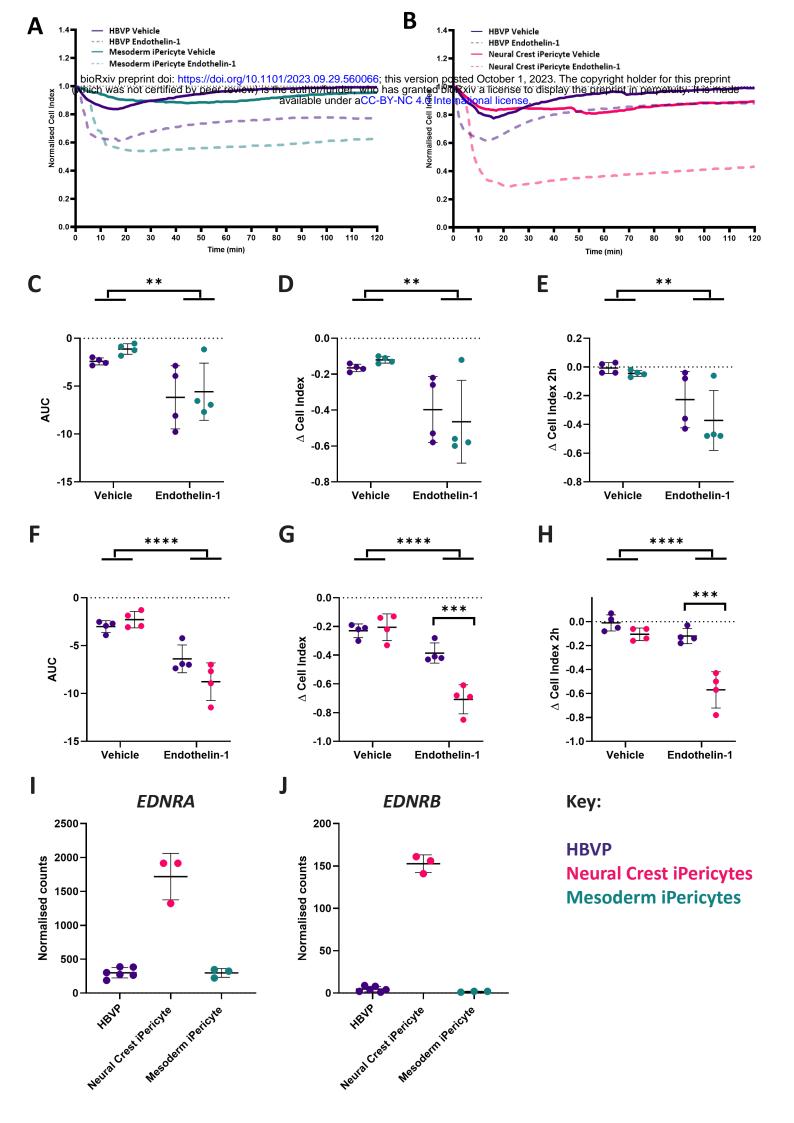


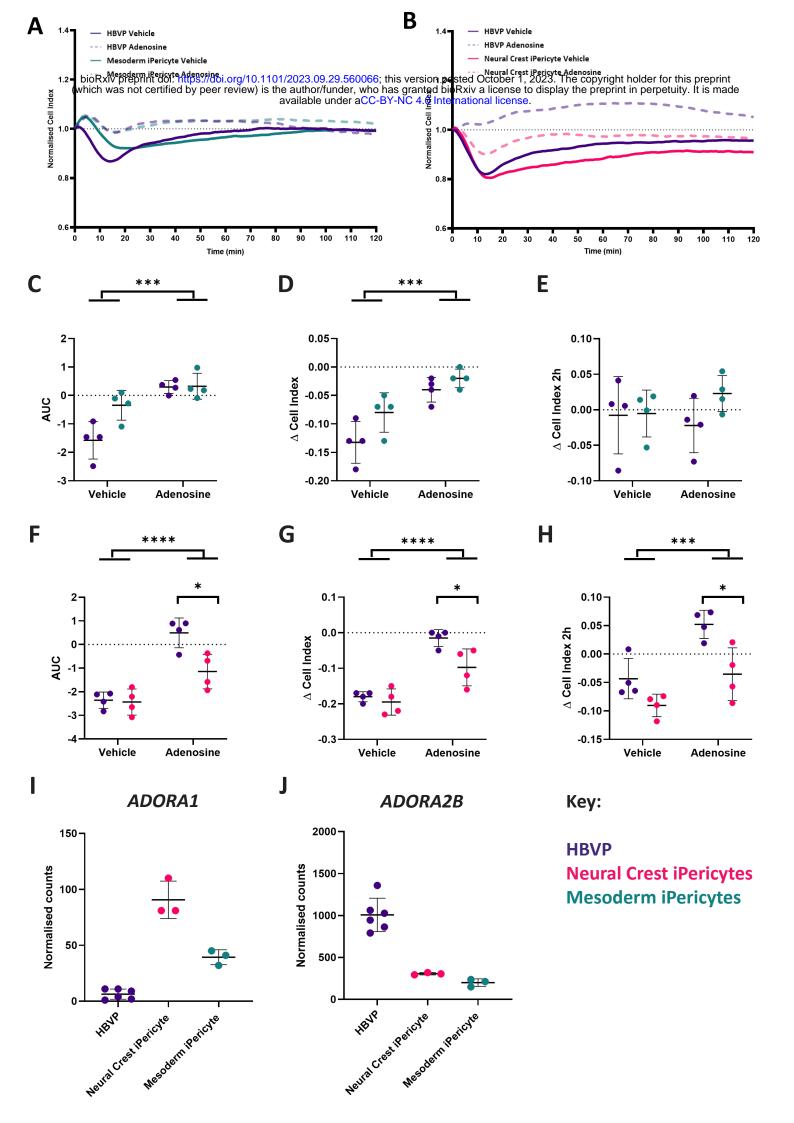
Mesoderm iPericytes



С

D


Neural Crest iPericytes



Mesoderm iPericytes

HBVP 1 HBVP 2 HBVP 3 HBVP 4 2 HBVP 5 HBVP 6 1 Neural Crest iPericytes 1 Neural Crest iPericytes 2 Neural Crest iPericytes 3 Mesoderm iPericytes 1 Mesoderm iPericytes 2 Mesoderm iPericytes 3 0 -1 -2 PDGFRB NFKB2 CREB1 NFKB1 PTPN11 **PIK3CA**

