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Abstract 22 

Understanding what drives protein abundance is essential to biology, medicine, and biotechnology. 23 

Driven by evolutionary selection, the amino acid sequence is tailored to meet the required 24 

abundance of proteomes, underscoring the intricate relationship between sequence and functional 25 

demand. Yet, the specific role of amino acid sequences in determining proteome abundance remains 26 

elusive. Here, we demonstrate that the amino acid sequence predicts abundance by shaping a 27 

protein’s conformational stability. We show that increasing the abundance provides metabolic cost 28 

benefits, underscoring the evolutionary advantage of maintaining a highly abundant and stable 29 

proteome. Specifically, using a deep learning model (BERT), we predict 56% of protein abundance 30 

variation in Saccharomyces cerevisiae solely based on amino acid sequence. The model reveals 31 

latent factors linking sequence features to protein stability. To probe these relationships, we 32 

introduce MGEM (Mutation Guided by an Embedded Manifold), a methodology for guiding protein 33 

abundance through sequence modifications. We find that mutations increasing abundance 34 

significantly alter protein polarity and hydrophobicity, underscoring a connection between protein 35 

stability and abundance. Through molecular dynamics simulations and in vivo experiments in yeast, 36 

we confirm that abundance-enhancing mutations result in longer-lasting and more stable protein 37 

expression. Importantly, these sequence changes also reduce metabolic costs of protein synthesis, 38 

elucidating the evolutionary advantage of cost-effective, high-abundance, stable proteomes. Our 39 

findings support the role of amino acid sequence as a pivotal determinant of protein abundance and 40 

stability, revealing an evolutionary optimization for metabolic efficiency.  41 
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Introduction 42 

The intricate interplay between protein synthesis and degradation defines intracellular protein levels, 43 

with implications for therapeutic strategies, as well as efficient protein and cellular engineering. The 44 

complex regulation of protein homeostasis suggests that multiple factors contribute to the overall 45 

proteome makeup, with the evolutionarily encoded sequence potentially playing a pivotal role in 46 

proteome composition. For instance, protein synthesis is strongly regulated at the initiation step 1,2, 47 

whose rate varies broadly between mRNAs, depending not only on the transcript sequence features 48 

but also on the amino acids at the N-terminal 3,4. In bacteria, the amino acid composition of the C-49 

terminal is a strong determinant of protein degradation rates, explaining a wide range of protein 50 

abundances 5,6. These, along with the multiple mechanisms of post-translational regulation 7,8, 51 

suggest that this rather tight regulation occurs at the degradation level and is encoded, at least 52 

partially, in the amino acid sequence. Empirically, amino acid composition and sequence features 53 

were seen to correlate with protein abundance 9–11, transcending mere codon composition influences 54 

on protein abundance12. While the importance of protein sequence in determining abundance is 55 

recognised, the quantitative relationship between sequence and abundance remains elusive, as 56 

does the link between the evolutionary mechanisms that underlie this relationship. 57 

 58 

On a broader scale, proteins situated as central players in cellular processes or as critical nodes in 59 

interaction networks often exhibit higher abundances 13. Evolutionarily, these highly abundant 60 

proteins face stringent constraints, evolving at a slower pace due to their potential large-scale impact 61 

on cellular fitness 14,15. Remarkably, the conservation of steady-state protein abundances spans 62 

across diverse evolutionary lineages, ranging from bacteria to human 16–18. Theoretical models 63 

suggest that increasing protein abundance slows evolution due to reduced fitness, with the least 64 

stable proteins adapting the fastest 19. Yet, under strong selection, proteins can evolve faster by 65 

adopting mutations that enhance stability and folding 20. Experimental evidence also suggests that 66 

a protein's capacity to evolve is enhanced by the mutational robustness conferred by extra stability 67 
21–23, meaning that protein stability increases evolvability by allowing a protein to accept a broader 68 

range of beneficial mutations while still folding to its native structure. Thermostability gains of highly 69 

expressed orthologs are often accompanied by a more negative ΔG of folding, indicating that highly 70 

expressed proteins are often more thermostable 24, as often explained by the so-called misfolding 71 

avoidance hypothesis (MAH), because stable proteins are evolutionarily designed to tolerate 72 

translational errors 25–27. On the contrary, several empirical studies revealed no substantial 73 

correlation between protein stability and protein abundance 28,29. Likewise, the overall cost (per 74 

protein) of translation-induced misfolding is low compared to the metabolic cost of synthesis 30,31, 75 

suggesting that MAH does not explain why highly abundant proteins evolve slower 29. On the other 76 

hand, cells may have fine-tuned protein sequences to balance their functional importance with the 77 

metabolic costs they incur, reflecting an optimisation between functional necessity and energy 78 
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efficiency 32–34. Given the intricate interplay of evolutionary constraints, protein stability, abundance, 79 

and metabolic cost, it still remains unclear how cells evolved their sequences to strike an optimal 80 

balance between functional demands of proteome and cellular fitness associated with synthesis and 81 

maintenance of protein abundance. 82 

 83 

In this study, we explored the relationship between a protein's amino acid sequence and its 84 

abundance. Using a deep neural network transformer (BERT) trained on data from 21 proteome 85 

studies, we could predict over half of the protein copy number variation (R2
 test = 56%) in 86 

Saccharomyces cerevisiae based solely on amino acid sequences. Delving into the neural network's 87 

self-attention mechanism to understand which protein sequence features are predictive of their 88 

abundances, we revealed that the network indirectly identified specific physicochemical properties 89 

inherently encoded in amino acid sequences related to a protein’s conformational stability. We then 90 

introduced MGEM (Mutation Guided by an Embedded Manifold) to probe sequence space and found 91 

that abundance-enhancing mutations notably affected protein polarity and hydrophobicity, hinting at 92 

a stability-abundance connection. Molecular dynamics simulations further confirmed the enhanced 93 

stability of abundance-increasing mutants. Using a proteomics experiment in yeast, we revealed that 94 

mutant protein remained more abundant over the course of yeast growth phases compared to a wild 95 

type variant. Importantly, we found that mutants with increased abundance had lower amino acid 96 

synthesis costs than their native versions, underscoring the fitness benefits of abundant, stable 97 

proteins. Our research shows that the amino acid sequence is a key factor influencing intracellular 98 

protein levels. This is achieved by boosting protein stability, which is driven by cost-effective amino 99 

acid substitutions, providing evolutionary benefits by reducing the metabolic costs of protein 100 

synthesis. 101 

 102 

  103 
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Results 104 

The amino acid sequence is predictive of protein abundance. 105 

To investigate the relationship between amino acid sequence and protein abundance, we used a 106 

compendium of 21 experimental systematic quantitative studies employing mass spectrometry and 107 

microscopy to estimate absolute protein abundances of over 5000 proteins (copy numbers per cell) 108 

in Saccharomyces cerevisiae grown predominantly in the exponential phases across multiple 109 

conditions essentially capturing proteome variation 35. The gene-wise dynamic range of protein 110 

abundances spanned an average of 5 orders of magnitude, while individual protein expression 111 

values for 95% of proteins varied within only one relative standard deviation (RSD) across all 112 

experimental conditions (Figure S1). A similar phenomenon has been observed previously with 113 

mRNA levels encoded in the DNA sequences 36,37. This result suggests that individual protein 114 

expression across experimental conditions primarily fluctuates around a specific expression value, 115 

suggesting its deterministic nature. 116 

 117 

Next, to investigate the relationship between amino acids and intracellular protein levels, we 118 

formulated a regression problem by utilising protein sequences to model protein abundance values. 119 

To learn sequences, we chose the Bidirectional Encoder Representations from Transformers 120 

(BERT) architecture 38,39, which allows for transparency in weighing the contributions of amino acid 121 

residues on protein levels and provides insights into the most relevant sequence features the model 122 

uses 39–41 to make predictions about protein abundances, using an intrinsic attention mechanism42. 123 

Due to deep learning's need for extensive training data and the yeast dataset's limited size, we used 124 

repeated measurements (up to 21 sequence copies from all experiments in the dataset) to account 125 

for inter-experimental variability (equivalent to regression with replicates). Our augmented dataset 126 

included 199,206 training examples, with 10% of random sequences uniquely chosen for validation 127 

during model training and 10% for a hold-out test during final model evaluation (Methods M1). By 128 

training BERT from scratch, we found that the model predicts 56% of protein abundance variation 129 

(R2 = 56% on a holdout test set) using only an amino acid sequence as input, suggesting that the 130 

sequence predominantly encodes protein abundance. In contrast, the model predictions failed 131 

completely when performing a randomization test with shuffled sequences (R2 = -73%, Figure 1A 132 

inset), confirming that the model relies on residue interdependencies in a sequence rather than 133 

simply learning amino acid frequencies when predicting protein levels. Further analysis confirmed 134 

that amino acid frequency is uniformly distributed across the entire dynamic range of protein 135 

abundances, with a mean CV of 7% over abundance deciles (Figure S1D), supporting the neural 136 

network's ability to pick up information encoded in the sequence.  137 
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 138 

Figure 1. The amino acid sequence is predictive of protein abundance. 139 
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A) BERT performance on a hold-out test set, coloured by density. Inset: Random prediction control using 140 
shuffled versions of the test sequences. The poor performance on randomized input, effectively predicting a 141 
single value, demonstrates that the model has learned sequence structure and not amino acid frequencies. 142 
B) Attention profiles correlate with amino acid metabolic costs (see also Table S1 for full description). Shown 143 
are distributions across all sequences of maximum (absolute) Pearson correlations of any attention profile with 144 
p-value < 1e-5. Inset: A BERT attention matrix example (top) and derived attention profile (bottom) for a short 145 
sequence. Attention matrices consist of directional association weights between pairs of residues, normalized 146 
as a percentage. The profiles were obtained by averaging along the “attends-to” axis, as the “attended-by” 147 
variation is generally more informative, resulting in one-dimensional attention profiles. 148 
C) Attention profiles correlate with 10 non-redundant AAindex variables (colored by index type), showing that 149 
profiles capture information pertaining to backbone conformation, physicochemical properties, domain linkage, 150 
and secondary structure. While some AAindex types correlate with attention profiles both positively and 151 
negatively (e.g. backbone conformation), individual AAindex variables within these types are overall either 152 
positively or negatively correlated. The categories shown span AAindex variables that are both positively and 153 
negatively correlated with attention. 154 
D) Proteins are split into two subpopulations of sequences with high attention values (z-score > 1) that are 155 
either enriched in turns and helices (S, I, G, and T in DSSP notation) and, to a lesser extent, extended strand 156 
(E), or largely depleted in extended strand (E) and turn (T), as assessed with one-sided hypergeometric tests 157 
(p-value < 0.05). 158 
E) Overlap of attention patterns with protein domains from the yeast InterPro database, grouped by member 159 
databases. The attention coverage of domains (fraction overlapping with attention profiles) is significantly 160 
higher than control for 10 out of 12 member databases (Wilcoxon two-sided signed-rank test, p-value < 0.05), 161 
with the highest coverage in PRINTS and PROSITE. 162 
  163 
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The attention mechanism identifies sequence and structural features 164 

linked to protein abundance. 165 

Next, we wanted to interpret the features learned by the transformer which explain protein 166 

abundance. Models generated by deep neural networks are often difficult to interpret 43, however the 167 

self-attention mechanism used by transformers has been shown to match multiple physicochemical 168 

properties and substitution likelihoods of amino acids 40. To increase interpretability of the model as 169 

a map of sequence-to-protein abundances, we trained the model from scratch, as opposed to fine-170 

tuning pretrained large protein language models  44–47. Protein language embeddings, including 171 

sequence representations learned from structural models 48, have been shown to have limited 172 

generalization to all protein functions and properties 49,50, thus making it difficult to use for generalized 173 

interpretation. Instead, by training the model from scratch in a regression setting, we ensured that 174 

our model learned relevant sequence representations related to protein abundance, easing 175 

interpretation. Thus, we next attempted to identify abundance-related links to physicochemical 176 

protein features using the attention values derived from yeast protein sequences. We extracted the 177 

attention weights of each input sequence and obtained one-dimensional per-residue attention 178 

profiles, which reflected the average percentage of attention that each residue receives from all 179 

others in the sequence when making the corresponding abundance prediction (see Figure S2 and 180 

Methods M2).  181 

 182 

To examine the determinants of protein abundance, we first correlated attention profiles with amino 183 

acid costs 51 (Methods M3), as amino acid synthesis cost is known to be a determinant of protein 184 

abundance 32,52–54. The strongest correlations were found between attention profiles and the 185 

energetic cost of amino acids (craig_energy) 55 averaged over all proteins (mean Pearson’s r = 0.32, 186 

BH adj. p-value < 1e-5). Conversely, anticorrelations were observed with synthetic cost under both 187 

respiratory and fermentative growth (wagner_resp, wagner_ferm, respectively) 54 as well as the 188 

number of synthesis steps (craig_steps) 55 (mean Pearson’s r = -0.35, -0.33, and -0.31, respectively, 189 

BH adj. p-value < 1e-5). Additionally, some of the systemic costs introduced by Barton et al. 51 using 190 

genome-scale flux balance analysis calculations 56 showed positive and negative correlations with 191 

attention, such as the impact of the relative change of the amino acid requirement on the minimal 192 

intake of glucose (yeast_car_rel, mean Pearson’s r = 0.32 over 1855 proteins and -0.33 over 705 193 

proteins) and the absolute change of the amino acid requirement on the minimal intake of ammonium 194 

(yeast_nit_abs, mean Pearson’s r = 0.25 over 1833 proteins and -0.28 over 1165 proteins, Figure 195 

1B and Table S1). A negative correlation with synthesis cost implies that the model assigns more 196 

weight to "cheaply" synthesized amino acids. In contrast, a positive correlation with energy cost 197 

implies paying attention to more energy-rich amino acids when predicting protein abundance. We 198 

stress that the correlations reported here do not directly link cost values to the predicted abundance, 199 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2023. ; https://doi.org/10.1101/2023.10.02.560091doi: bioRxiv preprint 

https://paperpile.com/c/wdnpAS/Ns5h
https://paperpile.com/c/wdnpAS/ahkI
https://paperpile.com/c/wdnpAS/oCCB+szo1+UTDe+9o6o
https://paperpile.com/c/wdnpAS/DIyj
https://paperpile.com/c/wdnpAS/NqxM+xq3z
https://paperpile.com/c/wdnpAS/7pvX
https://paperpile.com/c/wdnpAS/TsSq+HYtj+jVyM+W6pv
https://paperpile.com/c/wdnpAS/wIMH
https://paperpile.com/c/wdnpAS/W6pv
https://paperpile.com/c/wdnpAS/wIMH
https://paperpile.com/c/wdnpAS/7pvX
https://paperpile.com/c/wdnpAS/lF7s
https://doi.org/10.1101/2023.10.02.560091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

but rather underline the relevant latent features learned from protein sequence that the model picked 200 

up intrinsically prior to mapping sequence to protein levels.  201 

 202 

Based on our observation that amino acid frequency is uniformly distributed across the entire 203 

dynamic range of protein abundances (Figure S1D), we did not expect to find specific single amino 204 

acids that would determine abundances. Instead, we hypothesized that the neural network would 205 

capture higher-order interactions important for structural and functional protein features. Thus, we 206 

correlated attention profiles with a subset of 18 non-redundant AAindex values representing various 207 

physicochemical and biochemical protein properties 57 (see Methods M4). We identified significant 208 

correlations with measures of backbone conformation propensity (both positively and negatively 209 

correlated indices, with the strongest mean correlations being 0.38 and -0.38, respectively, p-value 210 

< 1e-5), preference for position at α-helix cap (both positively and negatively correlated indices, with 211 

the strongest mean correlations per sequence being 0.37 and -0.33, respectively, p-value < 1e-5), 212 

polarity (highest mean correlation = 0.35, p-value < 1e-5), domain linker propensity (mean correlation 213 

= -0.31, p-value < 1e-5), and the composition of extracellular domains seen in membrane proteins 214 

(two protein subpopulations, one with mean correlation = 0.36, the other with mean anticorrelation = 215 

-0.33, p-value < 1e-5) (Figure 1C, see Tables S2 and S3 for a detailed description). Physicochemical 216 

properties of amino acids, such as polarity, have been shown to affect translation speed 11 and 217 

protein stability 58. The correlations with backbone conformation and preference for α-helix cap 218 

indicators suggest a link to secondary structure, while the correlation with domain linker propensity 219 

points to the model having learned to some extent the boundaries of domain separation.  220 

 221 

We next assessed the connection between secondary structure and attention profiles by analyzing 222 

the enrichment of per-residue DSSP annotations 59,60 in high-attention positions using AlphaFold2 -223 

generated48 structures for 4745 yeast proteins. We counted the annotations at positions with 224 

attention profile z-scores > 1 and compared them to background annotation counts across all 225 

proteins (using one-sided hypergeometric tests for enrichment and depletion, p-value < 0.05) 226 

(Methods M5). The results showed that attention values were enriched in turns and helices (S, I, G, 227 

and T in DSSP notation) but depleted in extended strands (E) for most proteins (3254 proteins) 228 

(Figure 1D). For turns (T), the protein subpopulations were more evenly split, with this structure 229 

enriched in 505 proteins and depleted in 754 proteins. These findings suggest that helical structures 230 

may be implicated in protein abundance, while the contribution of turns and sheets towards the model 231 

prediction may be more complex. 232 

 233 

As structural properties imply function, we also investigated whether abundance-driven attention 234 

specifically focuses on any functional regions of protein sequences. We examined the extent to 235 

which the attention patterns cover the domains from the S. cerevisiae InterPro 61 database. To allow 236 

for comparison with controls, we focused only on domains with a length less than half of the protein 237 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2023. ; https://doi.org/10.1101/2023.10.02.560091doi: bioRxiv preprint 

https://paperpile.com/c/wdnpAS/gBTR
https://paperpile.com/c/wdnpAS/elaE
https://paperpile.com/c/wdnpAS/g1Zv
https://paperpile.com/c/wdnpAS/QbTv+5Dtu
https://paperpile.com/c/wdnpAS/DIyj
https://paperpile.com/c/wdnpAS/HDcX
https://doi.org/10.1101/2023.10.02.560091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

sequence, analyzing a total of 18,000 domains (Methods M6). For 10 out of 12 member databases, 238 

domains were significantly more covered by high attention than random regions of the same length 239 

(Wilcoxon two-sided signed-rank test, adj. p-value < 0.05) (Figure 1E). The results are  particularly 240 

striking as our BERT model was trained from scratch, not pre-trained on domains as in the study by 241 

Rao et al. 39. We next performed a GO enrichment analysis on proteins with well-covered domains 242 

(chosen as at least 30% domain length overlapping with attention patterns, well above the random 243 

control), a total of 832 domains in 517 proteins (Methods M7). From the enriched terms, GO-slim 244 

terms were produced for summarization (Table S4). The enriched (Hypergeometric test, adj. p-value 245 

< 0.05) biological processes are diverse and, among others, include translation, protein folding, 246 

modification, and metabolic processes; the molecular functions include cytoskeletal protein binding, 247 

unfolded protein binding, DNA and RNA binding, transmembrane transporter activity and others. 248 

This variety points at widespread domain patterns to which the model attends across different protein 249 

classes rather than specific functional motifs, which hints at the role of sequence across the entire 250 

proteome. On the technical side of the attention mechanism itself, it is interesting to note that 251 

domains were predominantly captured by a single (and deeper) network layer (Figure S3). 252 

Navigating the sequence space to control protein abundance. 253 

We next hypothesized that our model could facilitate precise control over protein abundance by 254 

introducing targeted changes to the protein sequence. To achieve this, we developed a Mutation 255 

procedure Guided by an Embedded Manifold (MGEM), which enables us to navigate the BERT 256 

model's embedded sequence manifold and perform individual amino acid substitutions that increase 257 

abundance. The approach involves traversing a uni-dimensional UMAP projection of the BERT 258 

encoder's high-dimensional embedded space, which assigns a scalar importance value to each 259 

residue in a sequence based on its impact on protein abundance (i.e. as determined by both position 260 

and amino acid that the model learned) (Figure 2A). MGEM substitutes low-importance residues in 261 

a starting wild type sequence with high-importance residues from a set of guide sequences selected 262 

based on their topmost abundance levels (Figure 2B, see details in Methods M8 and M9). Thus, by 263 

borrowing important amino acids (as measured by their order in the UMAP projection) from highly 264 

abundant proteins, the modified sequence is “moved” towards higher abundance. This is based on 265 

the posited property of the high-dimensional BERT embedded space by which the sequence 266 

representations are approximately ordered (or “ranked”) according to the target value (Figure 2A). 267 

The per-residue importance values obtained with UMAP are a good approximation of this ordering 268 

(Spearman’s ρ = 0.8, p-value < 1e-16) (Figure 2C), enabling the sorting of all residues on a univariate 269 

scale that spans all sequences, according to their importance towards prediction (see Methods M8). 270 

Our novel method relies on the learned relationship between sequences and only minimally changes 271 

wild types by deterministically substituting the individual amino acids directly related to the 272 

abundance, without relying on probabilistic or stochastic optimization searches. 273 

 274 
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We next performed a series of in silico sequence perturbation experiments by introducing 275 

substitutions that would increase protein abundance. This was done across the entire set of protein 276 

sequences, in different substitution schemes, each consisting of changing a given number of lowest 277 

importance residues per sequence (a fixed number of 2, 5, 10, and 20 residues, as well as 10%, 278 

20%, and 30% of residues in each sequence). We observed that MGEM enables control of target 279 

values (protein abundance) significantly more than a random control (paired t-test, adj. p-value <1e-280 

16 for all schemes) in which a random set of residues of the same size as the MGEM set for the 281 

given scheme was selected and mutated to random amino acids (Figure 2D). Indeed, on average, 282 

random mutations yielded a decrease in protein abundance. The greatest MGEM increase was 283 

obtained when mutating 20% of the sequence, achieving an average 675% predicted abundance 284 

increase. 285 

 286 

By inspecting MGEM mutants, we discovered that in terms of sequence position, the N-terminus is 287 

the most important for abundance prediction. The average wild type embedded ordering 288 

(importance) profile peaks over the leading 20% of the sequence (Figure 2E), and as a consequence 289 

of the MGEM selection process, results in most amino acids being left unchanged in this region 290 

(Figure 2F). Additionally, there is a much shorter hotspot of frequently mutated amino acids at the 291 

very last positions of the C-terminus. In accordance with other studies 3,4, this would suggest that the 292 

N-terminus is generally evolutionarily optimized for expression efficiency. Indeed, the composition of 293 

the first 30% of sequences significantly differs from the composition of the full sequences (one-sided 294 

hypergeometric test, p-value < 1e-3), with the leading region enriched in Ala (A), His (H), Met (M), 295 

Pro (P), Gln (Q), Arg (R), Ser (S), Thr (T) (Table S5). The observation that distributions of substituted 296 

amino acids differ from the above (some are replaced uniformly across the entire sequence length) 297 

is another indication of the role of both the position and the nature of the amino acid. In terms of 298 

replacement amino acids, we observed that the vast majority are A, G, and V (Figure 2G). In terms 299 

of physicochemical AAindex variables, mutants show significant perturbations (paired t-test, p-value 300 

< 1e-80) (see Table S6 and Figure S4), especially in indices that describe polarity (specifically 301 

amphiphilicity, with a 19% average decrease), backbone conformation propensity (with the largest 302 

index average decrease by 18% and the highest average index increase by 9%), and in the 303 

preference for position at α-helix cap (average decrease by 5%), which suggests a change in the 304 

likely secondary structure and a shift towards higher hydrophobicity in the mutants.  305 

306 
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 307 
Figure 2. Navigating the sequence space to control protein abundance through guided 308 

mutation. 309 
A) Conceptual illustration showing the posited structure of the BERT encoder embedded space and the 310 
embedded ordering construction that supports our guided mutation procedure. The encoder maps each 311 
residue in a sequence to a high-dimensional point in the embedded space E and sequences thus appear as 312 
point clouds. From a point cloud, a thin feedforward predictor yields an abundance prediction. The embedded 313 
space is posited to be structured in such a way as to allow a “traversal” of the point clouds, on a path or 314 
geodesic between all points (curved red line) connecting the points that are part of the lowest abundance 315 
sequences to the highest, in an increasing order of predicted values. This path in high-dimensional space is 316 
approximated with a parametric UMAP projection from the embedded space E to a single dimension, thus 317 
giving a simple linear ranking (or ordering) oij for each residue j, in each sequence i. This ranking serves to 318 
indicate the global weight of a given residue towards the final prediction, compared with all other residues 319 
across all sequences. 320 
B) Simplified illustration of MGEM (mutation guided by embedded manifold) procedure, which takes advantage 321 
of the global embedded order value (“importance”) obtained for each residue, across all sequences. The 322 
residues with the lowest order value in a sequence are selected for substitution (the “I” residue at position 4 in 323 
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the illustration) and their order values are increased by a large amount, as a higher value would yield a greater 324 
abundance. As we do not have an inverse mapping from this new value to an amino acid, we find the substitute 325 
by taking “inspiration” from guide sequences, chosen as the top 10 highest abundance sequences. The residue 326 
with closest ordering value to the newly increased value (“O” in the example) is taken and this amino acid 327 
replaces the original one in the wild type sequence. 328 
C) The UMAP projection is a good approximation of the embedded manifold, as it generally correlates well 329 
with abundance (Spearman p-value < 1e-308) (the plot is colored by density). Each point corresponds to the 330 
centroid of a sequence point cloud, projected through the learned UMAP function. The horizontal axis is 331 
normalized to the smallest and largest values in the set of projected points. The centroid of the lowest 332 
abundance sequence is marked with a black square and that of the highest abundance sequence with a black 333 
triangle. The approximation is worse for lower abundance sequences, as the red square should have appeared 334 
as the minimum ordering value. 335 
D) Predicted abundance increase on sequences mutated with MGEM (black bars showing averages, with 95% 336 
confidence intervals). An increasingly higher number of residues with lowest ordering (2, 5, 10, 20 residues, 337 
as well as 10%, 20%, and 30% of the sequence) were selected in each scheme shown in the figure. The 338 
highest overall increase occurred for the scheme consisting of mutating the 20% lowest-order residues. All 339 
schemes showed significantly higher values than random control (blue), which on average decreases predicted 340 
abundance. 341 
E) The most important part of the sequence for the model is the N-terminus, as measured by the embedded 342 
ordering value, here normalized to the inverse ranking of residue values (as the relative order is the important 343 
information) divided by sequence length. The plot shows the average such profile for sequences of length 200 344 
to 400, the profiles of which were upsampled by linear interpolation to maximum length. 345 
F) The high importance of the N-terminus for abundance leads to fewer residues being mutated by MGEM, as 346 
a consequence of the embedded ordering values (shown in F). Except for the first few positions in the 347 
sequence, most amino acids in the leading 20% of the sequence are generally untouched (the leading M is 348 
avoided by MGEM). The plot shows for each amino acid the normalized MGEM substitution rate over sequence 349 
length bins spanning the leading 30% of sequences (computed over all sequences and mutation schemes). 350 
The position has been normalized to sequence length and binned to 2 decimals (resulting in 100 bins). For 351 
each amino acid, the number of times MGEM has replaced it in a bin was divided by the wild type count of that 352 
amino acid in the same bin. The z-scores of these values were obtained separately for each amino acid. 353 
G) Average fraction of wild type (left) and MGEM mutant (right) amino acid over the leading 30% of all mutated 354 
sequences (error bars showing 95% confidence intervals). The amino acids are colored by their normalized 355 
hydrophobicity 62, which highlights the overall mutation shift toward more hydrophobic proteins. The binning 356 
was performed as in F), i.e. over 30 of the position 100 bins for each sequence.  357 
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Highly abundant proteins show greater conformational stability at a 358 

lower metabolic cost. 359 

Mutational analysis from MGEM indicates increased protein abundance primarily from non-polar A, 360 

G, V amino acid substitutions (Figure 2G). Alanine is known to stabilize helices while glycine varies 361 

in its effects 63. Glycine can enhance stability in β-turns  64. Valine is common in thermophilic proteins 362 
58, and both alanine and valine substitutions often show similar helix impacts 65. Cysteine, 363 

infrequently substituted by our procedure (Figure 2G), is vital for stability due to its potential for 364 

disulfide bridge formation  66. Likewise, it has been observed that highly expressed proteins are often 365 

more thermostable 24,67. Using our method which allows for mutations that increase protein 366 

abundance, we sought to determine if the model-learned sequence to abundance mapping  is linked 367 

to overall protein stability. To corroborate this, we applied molecular dynamics (MD) simulations to 368 

100 pairs (mutant and wild types, WTs) of non-membrane yeast proteins (Figure 2D, 20% mutation 369 

regime). Both mutated and their original WT versions were modeled using AlphaFold2 structures 370 

(Methods M10) and molecular systems were simulated for 100 ns.  While our model does account 371 

for entire protein abundance variation (Figure 1A), there is a risk that introduced mutations could 372 

destabilize proteins. Therefore, we only considered WT and mutant pairs that converged at the end 373 

of the simulation trajectory (Methods M10) considering ~46% of the simulations in our subsequent 374 

analyses. To quantify the degree of protein backbone conformational changes, we started by first 375 

comparing the fluctuations of atomic positions, expressed as the standard deviation of residue alpha 376 

carbons across the entire course of the MD trajectory (root mean square fluctuations, RMSF) 377 

between mutant and WT sequences. 33% of converged systems showed significantly lower RMSF 378 

in comparison to WT proteins  (Wilcoxon rank sum test,  adj. p-value < 1e-2)  (Figure 3A, Figure S5). 379 

Decreases in protein backbone fluctuations might be a sign of protein stabilization68–70. 59% of 380 

atomic fluctuations of highly abundant mutants were at least 2 standard deviations lower than the 381 

corresponding positions of the WT trajectory (Figure 3B). About 81% of mutations had no direct 382 

impact on atomic fluctuations, i.e. we observed changes in fluctuations in residues as high as two 383 

standard deviations away from corresponding WT positions with no mutations, suggesting that 384 

changes in atomic fluctuations caused by abundance-changing mutations affect overall global 385 

protein dynamics, rather than just local residues (Figure 3C).  386 

 387 

Although large structural changes from mutations can destabilize proteins 68,71, backbone 388 

conformational changes do not directly indicate protein stability. To delve deeper, we examined 389 

intermolecular interactions, specifically the number of contacts between neighboring amino acids 390 

(Methods M11). Stable proteins with robust hydrophobic cores generally have more native 391 

contacts72. In our comparison, 84% of the high-abundance mutants exhibited significantly more 392 

contacts than their wild types (Wilcoxon rank sum test, adj. p-value < 1e-4) (Figure 3D, Figure S6). 393 

Proteins that easily denature expose their hydrophobic core, resulting in lost hydrophobic 394 
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interactions and increased solvent accessibility68,73,74. Investigating the effects of A, G, V 395 

substitutions on hydrophobic cores, we computed the Solvent Accessible Surface Area (SASA) for 396 

all proteins. We found a significant decrease (Wilcoxon rank sum test, p-value < 1e-4) in SASA for 397 

abundance-increasing mutants versus wild types, supporting our hypothesis (Figure 3E). 398 

 399 

Next, we closely examined the dynamic effects of mutations on the IOC2 protein (UniprotID: Q12072) 400 

based on its top decreased RMSF (Figure 3A). Although the mutant and WT IOC2 started similarly, 401 

they diverged dynamically over 100 ns of simulation (Figure 3F, Figure S7). The stable core, largely 402 

less mutated, differed from the more mutated C-terminal region (Figure 3F, bar plot). A notable 403 

change was the breaking of an alpha-helix in the mutant, enabling the C-terminus to fold closer to 404 

the protein core. This change led to an increase (WT: 53.0%, mutant: 59.9%; Mann-Whitney U test, 405 

p-value < 1e-16) in the median unstructured secondary structure (Figure 3F, DSSP) but formed a 406 

more compact shape than its WT counterpart. Despite imperfect alignment in the C-terminal region, 407 

an overall increase in hydrophobicity is seen in the mutant (mean -0.07 with the WT vs. 0.17 with 408 

the mutant, Mann-Whitney U test p-value < 1e-4), reflected in a reduced RMSF (Figure 3A, Figure 409 

S5). To experimentally validate whether the abundance-increasing mutations could potentially 410 

stabilize protein expression in vivo, we performed an experiment in S. cerevisiae by comparing the 411 

changes in protein expression between exponential (E) and stationary (S) phases. Specifically, we 412 

genetically replaced the native WT variant with the synthetically mutated IOC2 protein (Methods 413 

M12). Using a liquid chromatography-coupled mass spectrometer (LC-MS) in data-independent 414 

acquisition mode 75,76, we monitored the IOC2 expression in exponential and stationary growth 415 

phases (Methods M12), growing yeast in triplicates to compare the WT and mutant variant (n = 3 416 

per group). We observed that the quantified IOC2 peptides of the mutant variant were on average 417 

~50% more highly expressed (Figure 3G) between S and E phases in comparison to the WT control 418 

(Methods 12), demonstrating that the mutant version of IOC2 extended the expression into the 419 

stationary phase in contrast to the wild type. 420 

 421 

Finally, we analyzed the metabolic cost implications of abundance-increasing mutants compared to 422 

wild types, given concerns that increased protein copies might affect fitness 19. Overall, abundance-423 

increasing mutant metabolic costs decreased significantly compared to random controls (Figure 3H, 424 

paired t-test, p-value < 1e-16). The most notable reductions were in synthesis under fermentative 425 

growth (wagner_ferm, -14% average) 54 and biosynthetic steps from central metabolism to the 426 

resulting amino acid (craig_steps, -13% average) 55. Both factors had a strong inverse relationship 427 

with BERT attention (Figure 1B & Table S1) confirming that the embedded space ordering (Figure 428 

2A) and the model’s attention indirectly pick up the same evolutionary phenomenon. The exceptions 429 

were the impact of the relative change of the amino acid requirement on the minimal intake of 430 

ammonium 51 (yeast_nit_rel, 11% increase on average), which had the lowest correlation with 431 

attention, and the impact of relative change of the amino acid requirement on the minimal intake of 432 
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glucose 51 (yeast_car_rel, 2% increase on average, see Table S7 for a full list). In summary, the 433 

significant cost reduction observed is especially striking since neither the BERT model nor the 434 

MGEM procedure were specifically trained with cost as a factor. This suggests that the neural 435 

network inherently recognized the connection between sequence cost and protein abundance, 436 

aligning with earlier observations on the cost-effective metabolism of highly abundant proteomes32.  437 

  438 
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 439 
Figure 3. Abundant proteins exhibit higher conformational stability and are synthesized at a 440 

lower cost. 441 
A) Root mean square fluctuations between abundance-increasing mutants and wild type (WT) structures over 442 
100 ns of molecular dynamics trajectory. B) Fraction of atomic fluctuation that are at least 2 standard deviations 443 
lower in mutant (red) vs wt (blue). C)  Fraction of total significant (absolute z-score > 2) changes in RMSF per 444 
introduced mutation. Indirect denotes the regions of protein sequence with no mutations. D) Comparison of 445 
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contacts between WT and abundance-increasing mutants. Normalization is done with reference to WT using 446 
frames after half of the 100 ns trajectory, contacts are considered at 8Å proximity of carbon backbone (Methods 447 
M11). E) Comparison of solvent accessible solvent ares (SASA) between WT and abundance-increasing 448 
mutants. Normalization is done with reference to WT using frames after half of the 100 ns trajectory. F) 449 
Structure (top) and DSSP plot (bottom) of the wild type (left) and the mutant (right) of IOC2 yeast protein. The 450 
structures represent the last frame of the respective simulation (100 ns). The coloring denotes the amino acid 451 
index as shown by the colorbar in the center (N-terminus: blue to C-terminus: red). In the DSSP plot, helical 452 
structures are highlighted in blue, extended structures in red and everything else (e.g. coil, turn, unstructured) 453 
in yellow. The bar plot represents the mutation rate per ~32 amino acids per bar; the dashed line represents 454 
the average mutation rate per bar. On the right hand side the mutated spots are highlighted. G) Ratios of IOC2 455 
(UniprotID: Q12072) peptides between exponential and stationary phases in WT and mutant strains. The 456 
experiment was performed in biological triplicates (Methods M12). H) MGEM reduces protein cost. The 457 
average sequence costs of mutants obtained with MGEM (20% mutated sequence) show significant overall 458 
decrease compared with random control (paired t-test, p-value < 1e-308), particularly in terms of synthesis 459 
costs (see also Table S7). The exceptions were two systemic costs from Barton et al. 51, one having the lowest 460 
correlation with attention (12% cost increase on average), and the other having both weakly positively and 461 
negatively correlated subpopulations (2% cost increase on average). 462 
  463 
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Discussion 464 

 465 
Intracellular protein levels are determined by a delicate interplay of synthesis, regulation, and 466 

degradation. Despite the vast codon variability seen both within and between species at the DNA 467 

level 77,78, the conservation of protein ortholog abundances across diverse evolutionary lineages 468 

suggests an evolutionary imprint on amino acid sequences 16–18. While intricate cellular dynamics 469 

play a role in immediate protein concentrations, it is likely that significant evolutionary information 470 

resides within the primary sequence itself. Supporting this notion, the analysis of a consolidated 471 

proteomics dataset from a comprehensive list of yeast studies 35 showed that, while individual protein 472 

expressions vary, they mostly fluctuate around a specific value for 95% of proteins, but with the 473 

difference between proteins spanning over five orders of magnitude (Figure S1). This led us to 474 

postulate that amino acid sequences may inherently encode protein abundance. To explore this, we 475 

trained a deep neural network to predict protein abundance accounting for over half of the variability 476 

in abundance of the entire proteome dynamic range (Figure 1A, R2
test = 56%). By observing that 477 

amino acid composition across deciles of the dynamic range of protein expression is rather uniform 478 

(Figure S1), we confirmed that it is the amino acid arrangement in the sequence and not merely 479 

amino acid composition that is coding for protein abundance (Figure 1A inset). 480 

 481 

The contributions of the various protein features on abundance have been studied mostly in isolation 482 

using linear models 10,11,79. However, given the dynamic nature of protein synthesis and degradation 483 

processes and their interactions, nonlinear models that integrate or abstract over the multiple levels 484 

are desired, especially given the loose coupling between some of these (e.g. the dynamic range of 485 

protein abundance is larger than that of mRNA and the former have longer half-lives 79). Thus, to 486 

decipher the biological insights gained by the neural network in predicting protein abundance, we 487 

analyzed the patterns within the BERT self-attention mechanism. Notably, attention profiles showed 488 

correlations with known protein abundance determinants (Figure 1B), including amino acid synthesis 489 

costs, suggesting that the model recognised the cell's energetic currency concerning amino acid 490 

synthesis. The attention mechanism identified multiple associations between residues throughout 491 

the sequence, hinting at the neural network’s ability to discern overarching structural and 492 

physicochemical sequence patterns (Figure 1C). Our analysis further revealed that the network 493 

prioritizes regions with distinct secondary structure elements and functional domains when predicting 494 

protein abundance (Figure 1D, E). Moreover, the correlations found between attention, sequence 495 

structure, and physicochemical properties like polarity and hydrophobicity underscore the potential 496 

relationship between protein abundance and stability (Figure 1C). 497 

 498 

The attention values in our model highlight crucial residue pairs for predicting protein abundance. 499 

While this theoretically points to specific sequence positions which are important for abundance 500 
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prediction, understanding the encoder embedded space – a reflection of the sequence grammar 501 

grasped by BERT – is more challenging. This high-dimensional space encapsulates intricate 502 

sequence semantics and isn't straightforward to interpret, resulting in a "semantic gap" between 503 

features and (human) meaning, often seen in deep learning models 80,81. To enhance our model's 504 

explainability, we introduced the MGEM analytical framework. It simplifies the sequence space 505 

exploration by first establishing a one-dimensional reference (Figure 2A, B), then guiding mutations 506 

towards target sequence regions. Unlike methods that can produce unreliable predictions (predictor 507 

pathologies) 82–84 or local minima problems 85, MGEM deterministically modifies sequences based 508 

on their mapped target value, offering a deterministic solution for amino acid substitutions, beneficial 509 

for multiple applications. Furthermore, we believe this type of approach towards transparency and 510 

explainability of deep models warrants further work. As a future improvement, the procedure could 511 

be made free of guide sequences (and free of any bias towards these or inherent limitations 512 

stemming from the choice of the guide set), by constructing or training an inverse embedded-space-513 

to-sequence mapping.  514 

 515 

We applied the MGEM framework to perform a series of control-perturbation experiments to identify 516 

amino acids and protein properties that are intrinsically related to abundance (Figure 2A, B). In 517 

comparison to the random control that resulted in a decrease in protein abundance, MGEM-guided 518 

mutations achieved an average abundance prediction increase of over six times compared to the 519 

wild type sequences (Figure 2D). By inspecting MGEM mutants, we discovered that in terms of 520 

sequence position, the N-terminus was the most important, with the majority of amino acids 521 

remaining unchanged in this region (Figure 2E,F). This suggested that the N-terminus is generally 522 

evolutionarily optimized for expression efficiency, which also supports why it is widely used for 523 

protein expression optimization 86–88. A short hotspot at the very last position in the C-terminus was 524 

frequently mutated, which is known as a signal involved in protein degradation 5,6. Besides the C-525 

terminus, however, most of the amino acids were substituted uniformly across the entire sequence 526 

length, mainly with the hydrophobic amino acids A (alanine), G (glycine) and V (valine) (Figure 2G). 527 

The introduction of hydrophobic amino acid residues into protein secondary structural components, 528 

such as helices, sheets and turns, is known to affect a protein’s conformational stability 58,63,65. We 529 

therefore hypothesized that there is a link between increased abundance and protein structure, and 530 

hence its stability.  531 

 532 

We tested our hypothesis using extensive molecular dynamics (MD) simulations, an established 533 

technique for studying protein dynamics at the atomic level 68,89. Our data, derived from 200 MD 534 

simulations of random yeast proteins, showed that the majority of abundance-increasing mutations 535 

had increased the number of protein contacts and reduced solvent accessibility as reflected in 536 

reduced root mean square fluctuations (Figure 3A,D,E), phenotypes representative of stable proteins 537 
90–92 (Figure 3D,E, Figure S6). The in vivo yeast proteomics experiment showed that these mutations 538 
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resulted in sustained higher expression during growth phases (Figure 3G), further supporting our 539 

hypothesis that mutations increasing abundance also enhance protein stability. Note that here we 540 

kept codon frequencies the same as in the wild type strain, focusing solely on amino acid 541 

substitutions without modifying native gene regulatory regions, e.g. promoters. This approach likely 542 

leaves gene synthesis, transcription, and translation unaffected, while by observing long-term 543 

expression during the stationary phase, we assessed whether in vivo protein levels differed from the 544 

wild type due to changes in stability. While it is still unclear if the introduced mutations directly reduce 545 

in vivo protein degradation via stabilization of its conformation or operate through other mechanisms, 546 

our sequence perturbation experiments align well with previous observations that highly abundant 547 

proteins are generally more stable 19,30,67,93. This phenomenon is often explained by the so-called 548 

misfolding avoidance hypothesis and related hypotheses, which have dominated evolutionary 549 

discussions for the past decade, all aimed at explaining the slower evolutionary rates observed with 550 

highly abundant proteomes 14,15. An alternative explanation for the slow evolution of abundant 551 

proteins suggests that higher benefits come with higher costs 15,33,34. However, our findings indicate 552 

that proteins with mutations enhancing their stability are not only more abundant but also more cost-553 

effective to produce. This explains their evolutionary advantage, as a structurally stable protein 554 

incurs fewer synthesis-associated costs to maintain consistent protein levels.  555 

 556 

In conclusion, while the primary goal of our study was to investigate the relationship between a 557 

protein's amino acid sequence and its abundance by examining a BERT network’s self-attention 558 

mechanism, our analysis revealed intricate connections between amino acid sequence, protein 559 

abundance, and metabolic cost related to protein stability. Remarkably, even without explicit 560 

conditioning on synthesis cost, both our BERT model and MGEM procedure succeeded in 561 

uncovering these latent relationships. This demonstrates the power of deep neural networks to 562 

decode complex biological systems. By manipulating the deep model's semantics of these latent 563 

relationships, we unintentionally produced sequences optimized for cost. We demonstrate that 564 

mutations leading to increased abundance also contribute to enhanced protein stability, which in turn 565 

offers an evolutionary advantage by reducing the metabolic costs of protein synthesis. In addition, 566 

the MGEM approach opens new avenues in protein engineering by providing a robust, targeted 567 

method for amino acid substitution mapped to any continuous (real-valued) property. This has the 568 

potential for the design of proteins that are not only functionally efficient but also metabolically cost-569 

effective, thereby offering a critical advantage in biotechnological applications. While no single theory 570 

can likely fully explain the complex relationships between protein sequence, abundance, and 571 

stability, our work identifies a critical link among these factors. By integrating insights from neural 572 

network predictions, extensive MD simulations, and in vivo experiments, we present a unified 573 

hypothesis that reaffirms the evolutionary advantage of stable, abundant proteins: they offer 574 

functional efficacy at a reduced metabolic cost.   575 
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Methods 576 

M1. Neural Network Training 577 

Saccharomyces cerevisiae (strain S288C) protein sequences were obtained from the UniProt94 578 

reference proteome UP000002311 on 20th January 2020. To avoid technical challenges when 579 

training neural networks, we restricted the set of proteins to those with a length between 100 and 580 

1000 residues (yielding 5202 out of 6049 proteins). The intersection of this set with the proteins with 581 

available abundance values from Ho et al. 35 resulted in 4750 unique sequences in our initial 582 

sequence-abundance dataset. To assemble the final dataset we added repeated measurements for 583 

each protein sequence, namely, each sequence appeared up to 21 times, each time with a different 584 

experimental target value from the Ho et al. dataset35, as in a regression with replicates, resulting in 585 

99,603 training examples used as input/independent variable. Subsequently, for each sequence, a 586 

shuffled version was introduced with an “effective null” target value, a very small fractional value of 587 

1e-5 (the unit for absolute abundance is molecules per cell), to allow for power transformations, 588 

resulting finally in 199,206 sequences. This was performed in order to expose the neural network to 589 

nonsense counter-example sequences so that it may learn to distinguish and to facilitate sequence 590 

interpretation, similar to training for classification problems 95,96 (here, with real and nonsense 591 

classes) or similar to using decoy sequences for distinguishing signal from noise in mass 592 

spectrometry 97. The data was randomly partitioned as 80% training, 10% validation, and 10% test, 593 

by splitting on unique sequences, i.e. ensuring repeated measurements of the same sequence were 594 

placed in the same data partition to avoid data leakage. Protein sequences (X’s / independent 595 

variable) and their corresponding target raw abundances (Y’s / dependent variable) were loaded as-596 

is to BERT as input lists. To make the abundance distribution mass-centered, the preprocessing was 597 

configured to Box-Cox transform the raw abundances with λ = − 0.05155 using the expectation-598 

maximization procedure as implemented in SciPy, on data based on medians of the initial dataset. 599 

 600 

The training task’s preprocessing routine tokenized the sequences with the TAPE IUPAC39 tokenizer, 601 

each amino acid being assigned a unique integer value and the sequence flanked with special start 602 

and stop integer tokens. The TAPE39 implementation of the BERT ProteinBertForValuePrediction 603 

class was adapted for the model training. The model was trained as a regression task to minimize 604 

mean squared error (MSE). The model performance reported here was calculated by taking the 605 

median abundance across experiments for the proteins in the hold-out test set (436 values), as the 606 

test set obtained as above contained sequence repeats. The coefficient of determination was 607 

calculated on median values of the hold-out test using the Scikit-learn function. Hyperparameters 608 

search was performed using the BOHB algorithm 98 of the HyperBand scheduler 99 provided by the 609 

Ray library 100. Details about model architecture and hyperparameters are provided in Tables S9-610 

S10. The best hypermodel thus found was then retrained. The best model consisted of 8 attention 611 
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layers with 4 heads each (see Tables S8). The model was trained on a multi-GPU cluster using a 612 

mixture of A100 and V100 NVIDIA GPUs.  613 

M2. Attention profile analysis 614 

As it is generally unclear 101 at which depth one might find lower or higher level features in such 615 

architectures, we considered all non-redundant attention profiles for a given sequence when 616 

measuring matches. Specifically, as BERT networks are known to have relatively high redundancy 617 

(i.e. different layers and attention heads learn very similar weights), we performed pairwise Pearson 618 

correlation of attention matrices from all layers and heads and kept only those that were uncorrelated 619 

(r < 0.01) with the majority (at least 90%) of other matrices, for each sequence. This left on average 620 

4 non-redundant attention matrices per sequence. Moreover, attention matrices exhibited strong 621 

asymmetry (see Figure S2), often consisting of effectively uniform vertical streaks (i.e. the majority 622 

of residues “attend to” a single residue near-uniformly), thus making the “attended-by” values more 623 

informative (i.e. which residues receive such attention from all others). These “attended-by” values 624 

were averaged to produce one-dimensional attention profiles, which could be correlated with various 625 

per-residue measures. To match against qualitative data such as protein domains, we extracted 626 

residue attention patterns by keeping only the sequence positions that had an attention value z-627 

score of at least 1 in the corresponding profile, to keep only those positions with the most signal.  628 

M3. Cost analysis 629 

Per-residue cost profiles were computed for all proteins in the dataset (N = 4750) using the S. 630 

cerevisiae amino acid costs from Barton et al.51, with the exception of yeast_sul_abs, and 631 

yeast_sul_rel, which were deemed trivial for this task since they featured zero cost for all but a few 632 

amino acids. These profiles were then Pearson-correlated to all attention profiles for each protein 633 

(on average 4 attention profiles per protein), keeping only the maximum correlation with p-value < 634 

1e-5 for each protein. The p-value was set using the Bonferroni correction for multiple testing at a 635 

target threshold of 0.05, thus resulting in 0.05 / 4750 = 1.053e-05. 636 

M4. AAindex Correlations 637 

All 544 AAindex measures (https://www.genome.jp/aaindex, release 9.1 2006) were computed on a 638 

subsample of 1000 S. cerevisiae proteins using the R package Bio3D 2.4-3102. An average absolute 639 

correlation matrix was computed across the protein sequence subset and the AA indices were 640 

filtered using the R findCorrelation function (with a cutoff of 0.5) from the caret package 6.0-88, to 641 

only keep an non-redundant subset of 18 AA indices: BUNA790103, FINA910104, GEOR030103, 642 

GEOR030104, LEVM760103, MITS020101, NADH010107, NAKH920107, PALJ810107, 643 

QIAN880138, RICJ880104, RICJ880117, ROBB760107, TANS770102, TANS770108, 644 
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VASM830101, WERD780103, WOEC730101. These per-sequence profiles for these indices were 645 

then computed for all proteins in the dataset (N = 4750) and Pearson-correlated to all attention 646 

profiles. Only the maximum correlation with p-value < 1e-5 was kept for each protein. The p-value 647 

was set using the Bonferroni correction for multiple testing at a target threshold of 0.05, thus resulting 648 

in 0.05 / 4750 = 1.053e-05. Note that the polar requirement (WOEC730101) was not part of the non-649 

redundant list and was added manually due to its frequent description in the literature and the low 650 

correlation (r < 0.4) to the other indices. The resulting correlation distributions were filtered to only 651 

those AA indices with an absolute mean correlation of above 0.3 across all proteins. 652 

M5. Secondary structure analysis (DSSP) 653 

Available S. cerevisiae PDB files (4745) generated by AlphaFold2 were downloaded from RCSB-654 

PDB (on 2022-03-18). For each of these, DSSP 3.0.0 annotations were obtained using the 655 

BioPython 1.79103  dssp_dict_from_pdb_file function. For each protein and all its attention profiles (4 656 

/ protein, on average), DSSP annotations at positions with attention z-scores > 1 were counted. To 657 

avoid small numbers for significance testing, only structures with counts > 10 were kept. For all 658 

attention profiles, one-sided hypergeometric tests with a threshold p-value of 0.05 were performed 659 

both for enrichment and depletion of structure annotation counts, against the total background count 660 

of annotations across all proteins. Finally, this was summarized as the number of proteins that have 661 

attention profiles enriched or depleted in each type of DSSP structural annotation.  662 

M6. Domain analysis 663 

Each InterPro domain was overlapped with the attention patterns produced for its protein (i.e. the 664 

positions of the sequence with attention z-score > 1), recording the highest overlap fraction (i.e. the 665 

largest fraction of attended-to domain residues) among all patterns produced for the sequence 666 

(output from all network layers and heads). To have a balanced control set, only domains that 667 

stretched to at most 50% of their protein length were kept (18,000 domains), so that the attention 668 

coverage inside the domain could be weighted against that outside of it. This was done (for each 669 

domain) by taking the number of high-attention positions outside the domain and dividing it by the 670 

number of times the domain could fit in the outside region (i.e. the number of windows the same 671 

length as the domain). This yielded an expected count corresponding to repeatedly randomly 672 

sampling subsequences the same length as the domain. The coverage fractions were taken as the 673 

the number of high-attention positions (either in the domain or the expected value outside) divided 674 

by the length of the domain. To assess the significance of the difference in domain coverage fraction 675 

distribution between attention and control, we performed a two-sided Wilcoxon signed-rank test, 676 

separately for each domain member database. The adjusted p-values were < 0.05 for 10 out of 12 677 

member databases, where SFLD and HAMAP differences were not significant. 678 
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M7. GO term enrichment analysis 679 

The GO enrichment analysis for domains that overlap with attention was performed considering the 680 

proteins that have well-covered domains ( >= 30% of their positions overlapping attention patterns) 681 

against the full set of proteins, with the Python library GOATOOLS 1.0.15104 using the Holm-682 

Bonferroni p-value correction method and a significance threshold of 0.05. To summarize the results, 683 

GOATOOLS was used to obtain yeast GO slim terms (Table S4). 684 

M8. Embedded Ordering 685 

To assess how individual amino acids in a sequence affect the abundance prediction, we probed the 686 

embedded space that the BERT encoder maps to. We call an embedded ordering the parametric 687 

UMAP projection 105 that we trained to map from this space down to a one-dimensional scale. The 688 

encoder’s embedded space contains 1024-dimensional point clouds (one cloud for each sequence) 689 

(Figure 2A), with every amino acid being assigned a (1024-dimensional) point. And because BERT 690 

uses a learned positional encoding, each residue in the sequence may be assigned a different value 691 

depending on position (i.e. regardless of the type of amino acid). From this space, a relatively simple 692 

feed-forward network (2 weight-normalized linear layers) is used for predicting values on the real 693 

line (Box-Cox-transformed protein abundances). The fundamental assumption of our construction is 694 

that (good) training induces a structure on the embedded encoder space that reflects the total order 695 

of abundance values (i.e. all scalar values are comparable and arranged in a strict succession). 696 

Under this assumption, we posit there exists a relatively low-dimensional manifold on which a 697 

geodesic connects all points in the (full) embedded space, resulting in an arrangement from lowest-698 

prediction-value point clouds to highest-prediction-value point clouds (Figure 2A). The geodesic thus 699 

gives a total order within the embedded space. To retrieve a manageable approximation of the 700 

geodesic (and thus, of the order), we trained a parametric UMAP projection down to one-dimensional 701 

space. The embedded ordering thus constructed assigns a scalar value to each residue in the 702 

sequence, reflecting its contribution to the prediction. Moreover, these scalar values reflect a global 703 

ranking across the entire sequence space, i.e. lower abundance sequences will have residues with 704 

overall low order values, and the converse for higher abundance sequences. This enables easy 705 

assessment of the importance of each residue and enables mutation procedures. 706 

 707 

The training set for the parametric UMAP consisted of the embedded start token point of each 708 

sequence, as information from the entire sequence is “routed” through these network nodes in the 709 

attention layers, and 10% of these were kept as a hold-out test set. The training was performed over 710 

multiple values of the UMAP number of neighbors hyperparameter, spanning an inclusive range from 711 

1% to 25% of the number of sequences in the training set (aiming to balance local versus global 712 

structure). The performance was evaluated as the Spearman correlation between the centroids of 713 

the UMAP-projected point clouds and the corresponding abundance targets over test sequences. 714 
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M9. Mutation Guided by an Embedded Manifold (MGEM) 715 

The guided mutation was performed by sorting the residues according to their embedded ordering 716 

value and selecting the lowest of these for substitution, a different number for each scheme: the 717 

lowest 2, 5, 10, and 20 residues in each sequence, as well as the lowest 10%, 20%, and 30% of 718 

residues in each sequence. The 10 highest abundance sequences were selected as guides. This 719 

gives a pool of 4480 points distributed on the higher range of ordering values, available for 720 

substitution. For each residue selected to be substituted, its order value was increased by a large 721 

value, set as the width of the interval containing 99% of the embedded ordering (UMAP-projected) 722 

values, intuitively inducing a large shift in contribution to the prediction. To obtain a substitute residue 723 

that would match this shifted value, the guide sequences were used. The residue with the closest 724 

ordering value to this shifted value in each guide sequence was then chosen as a substitution 725 

candidate. This substitution was repeated for 10 guide sequences, and the one resulting in the 726 

highest prediction increase was finally selected. Both for the guided and the random substitution, the 727 

leading M residue was avoided. Random control was performed by choosing random residues (the 728 

same number as for each respective scheme) and substituting them with random amino acids. 729 

M10. Molecular dynamics (MD) simulations 730 

We randomly subsampled 100 proteins with an increased abundance of at least 100% (from the 731 

20% mutation regime, Figure 2D), ignoring transmembrane proteins. We applied molecular 732 

dynamics (MD) simulations to 100 mutated non-membrane yeast proteins showing higher 733 

abundance (Figure 2D, 20% mutation regime). Structures were generated both for mutated 734 

sequences and their corresponding wild types using AlphaFold248. The structures were generated 735 

utilizing the full big fantastic database (BFD) and all five CASP 14 models 48. For each sequence, 736 

the structures with the highest average pLDDT score were then selected for molecular dynamics 737 

simulations. Simulations were carried out using the GROMACS simulation package 2022 106–108, the 738 

AMBER99*-ILDN force field 109 and the TIP3P water model110. The protein was centered in a 739 

dodecahedron box with 1 nm distance to the box’s boundaries, solvated and neutralized by adding 740 

ions. The energy of the solvated system was minimized using a steepest descent algorithm (steps = 741 

50,000, emtol = 1000 kJ/mol/nm, emstep = 0.01). Afterwards, the system was equilibrated for 100 742 

ps in an NVT ensemble followed by a 100 ps equilibration in an NpT ensemble. For the productive 743 

run an NpT ensemble was chosen using the Parrinello-Rahman barostat (ref_p = 1 bar, tau_p = 2 744 

fs, compressibility = 4.5e-5 bar^(-1))111. The temperature was set to 300 K using the v-rescale 745 

thermostat (tau = 0.1)112.  For all steps periodic boundary conditions were applied in all dimensions. 746 

For the simulations a leap-frog integrator113 with a time-step of 2 fs was chosen. Covalent bonds 747 

involving hydrogens were constrained using the LINCS algorithm (lincs_iter = 1, lines_order = 4)114. 748 

Short range non-bonding interactions were cut off at 1 nm. For the van-der-Waals interactions a 749 

Verlet-cutoff scheme (ns_type = grid, nstlist = 10 steps, DispCorr = EnerPres), for the electrostatic 750 
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interactions a Particle-Mesh-Ewald summation (pme_order = 4, fourierspacing = 0.16 nm)115 was 751 

applied. For each mutant and WT version of proteins, simulations were run for 100 ns. Protein 752 

coordinates were written to file every 1 ps. Simulations were considered converged if the RMSD was 753 

within a 10% error margin for 80% of the time points in the final quarter (Figure S8). Only these 754 

converged simulations (entire 100 ns) were selected for RMSF profile comparisons (Figure 3A). 755 

M11. Analysis of MD simulations 756 

For the analysis, first, the periodic boundary conditions were fixed, and afterwards, the frames were 757 

rotationally and translationally fitted onto the protein atoms of the last frame of the trajectory using a 758 

least-square fit as implemented in GROMACS gmx trjconv. RMSF values were extracted using the 759 

GROMACS simulation package. Solvent accessible surface area (SASA) was computed using the 760 

implementation in GROMACS gmx sasa. The fraction of native contacts (Q2) were calculated from 761 

the last frame of the trajectory using the Python module MDAnalysis 2.2.0 116,117. Contacts were 762 

defined as pairs of residues with an alpha carbon distance of 8Å or less. For the calculation of the 763 

DSSP60 and the solvent accessible surface area118 for the analysis of the protein UniprotID:Q12072 764 

python package MDTraj 1.9.7 119 was used. Dynamics were analyzed using VMD 1.9.4 and 765 

ChimeraX 1.4 120–122. The structural images shown in Figure 3 were made with VMD. VMD is 766 

developed with NIH support by the Theoretical and Computational Biophysics group at the Beckman 767 

Institute, University of Illinois at Urbana-Champaign. 768 

 769 

M12. Proteomics analysis 770 

The S. cerevisiae IOC2 knockout strain (ioc2Δ::kanMX) in the BY4741 (MATa his3Δ1 leu2Δ0 771 

met15Δ0 ura3Δ0) background was requested from the Yeast Knockout (YKO) Collection 123 in 772 

Gothenburg University and used for genomic engineering in the following procedures. Predicted 773 

mutant (UniprotID: Q12072) DNA sequences flanking with 90 bp overlap to the specific genome sites 774 

on both ends were ordered as gene fragments from either TWIST Bioscience 775 

(www.twistbioscience.com). The mutant DNA sequence was designed such that it does not change 776 

original wild type codons to minimally affect the translation. The predicted mutated amino acids were 777 

substituted using most frequent corresponding codon.  778 

To replace the kanMX gene 123 with the mutant gene in the genome, a gRNA plasmid targeting 779 

kanMX was constructed based on an All-In-One plasmid pML104 124. The 20 bp gRNA sequence 780 

targeting at the kanMX gene (GCCGCGATTAAATTCCAACA) was designed with the CRISPR tool 781 

in Benchling (https://benchling.com). Primer sets pFA6-KanMX 488-507 FWD / pML_F and pFA6-782 

KanMX 488-507 REV / f1 ori_R  (Table S11) were used to amplify pML104 into 2 fragments 783 

pML104.part1 and pML104.part2 with 20 bp homologous sequences on both ends and gRNA 784 

sequence integrated in the pFA6-KanMX 488-507 FWD / pFA6-KanMX 488-507 REV primers. 785 
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pML104.part1 and pML104.part2 were ligated into a circular plasmid named as 786 

pML104.gRNA_kanMX by Gibson Assembly 125 and was sequence-verified by Eurofins 787 

(https://www.eurofins.com/) with M13R primer (Table S11). pML104.gRNA_kanMX and mutant gene 788 

was transformed into knockout strain with PEG/LiAc method 126 and selected on synthetic minimal 789 

medium without uracil (SD-URA) plates. Colonies were verified with PCR using the primer set 790 

YLR095C_F / YLR095C_R (Table S1), and the amplified fragments were sequence-verified by 791 

Eurofins (https://www.eurofins.com/) with YLR095C_F / YLR095C_R primer set. SD medium 792 

supplemented with 5-fluoroorotic acid (SD+5-FOA) 127 was used to select colonies for loss of 793 

pML104.gRNA_kanMX.  794 

Recombinant colonies without plasmids and the wild type BY4741 colony were picked into YPD 795 

medium. After overnight growth, 1% was inoculated into 1.5 ml YPD medium in a 48 well flower plate 796 

(M2P labs) and each sample had triplicates. The 48 well flower plates were cultured in 30 ℃, 1200 797 

rpm for either around 10 h in a Biolector (M2P labs), until the cell growth reached mid-exponential 798 

phase, or 24 h until the cell growth reached stationary phase. 1 ml cells from both phases were 799 

collected and washed with MilliQ water once. After centrifugation, the supernatant was removed and 800 

cell pellets were kept in -80 ॰C until send to perform proteomics analysis at High Throughput Mass 801 

Spectrometry Core Facility, Charité (Berlin, Germany). Data independent acquisition was performed 802 

using the TimsTOF PRO mass spectrometer (Bruker) was coupled to the UltiMate 3000 RSL 803 

(Thermo). The peptides were separated using the Waters ACQUITY UPLC HSST3 1.8 µm column 804 

at 40°C using a linear gradient ramping from 2% B to 40% B in 30 minutes (Buffer A: 0.1% FA; Buffer 805 

B: ACN/0.1% FA) at a flow rate of 5 μl/min. The column was washed by an increase in 1 min to 80% 806 

and kept by 6 min. In the following 0.6 min the composition of B buffer was changed to 2% and 807 

column was equilibrated for 3 min. For MS calibration of ion mobility dimension, three ions of Agilent 808 

ESI-Low Tuning Mix ions were selected (m/z [Th], 1/𝐾0 [Th]: 622.0289, 0.9848; 922.0097, 1.1895; 809 

1221.9906, 1.3820). The dia-PASEF windows scheme was ranging in dimension m/z from 400 to 810 

1200 and in dimension 1/K	0 0.6– 1.43, with 32 x 25 Th windows with Ramp Time 100 ms. Data 811 

quantification was performed using the DIA-NN 1.8 software, using library-free mode. Q12072 812 

protein’s expression analysis in exponential and stationary phases (Figure 3G) was carried out using 813 

only the peptides that were detected in both growth phases in mutant and wild types correspondingly, 814 

i.e. the protein changes are calculated as fold-changes of corresponding Q12072 measured peptides 815 

in each strain. For the expression experiment three biological replicates from mutant and wild type 816 

were analyzed (6 samples in total). The raw mass spectrometry data have been deposited to the 817 

ProteomeXchange Consortium via the PRIDE partner repository 128 with the dataset identifier 818 

PRIDE:XXXXXXX. 819 

M13. Statistical analyses 820 

All statistical analyses were performed using the Python (3.9) package Scipy 1.8.1129 and R 4.2.0. 821 
For data manipulation and visualization we used pandas 1.4.0 130, seaborn 0.12.2 131 , scikit-learn 822 
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0.24.2 132  , and the R tidyverse 2.0.0 133 package collection. Hypothesis testing was performed using 823 
the non-parametric Wilcoxon Rank Sum test, unless indicated otherwise. 824 

M14. Data and Software Availability 825 

Scripts, training parameters, and software versions are provided in the following repository: 826 
https://github.com/fburic/protein-mgem  827 
The models and data required to reproduce figures are stored in the following Zenodo record: 828 
https://doi.org/10.5281/zenodo.8377127 829 
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