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Abstract

In molecular optimization, one popular way is R-groups decoration on molecular

scaffolds, and many efforts have been put to generate R-groups based on deep genera-

tive models. However, these methods mostly use information of known binding ligands,

without fully utilizing target structure information. In this study, we proposed a new

method, DiffDec, to involve three-dimensional pocket constraints by a modified diffu-

sion technique for optimizing molecules through molecular scaffold decoration. For an

end-to-end generation of R-groups with different sizes, we designed a novel fake atom

mechanism. DiffDec was shown able to generate structure-aware R-groups, and simul-

taneously generate multiple R-groups for one scaffold on different growth anchors. The

growth anchors could be provided by users or automatically determined by our model.

DiffDec achieved R-group recovery rates of 69.67% and 45.34% in the single and mul-

tiple R-group decoration tasks, respectively, and these values were significantly higher

than competing methods (37.33% and 26.85%). According to the molecular docking
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study, our decorated molecules obtained better average binding affinity than baseline

methods. The docking pose analysis revealed that DiffDec could decorate scaffolds with

R-groups that exhibited improved binding affinities and more favourable interactions

with the pocket. These results demonstrated the potential and applicability of DiffDec

in real-world scaffold decoration for molecular optimization.

Introduction

Computational methods have sped up the process of drug development in a cost-effective

manner and minimized the risk of failure in the later stages.1 Existing methods can uti-

lize known compounds to design novel compounds, also known as ligand-based drug design

(LBDD).2 Traditional LBDD methods like pharmacophore model3 or quantitative struc-

ture activity relationship model4 learn structure–activity relationship of ligands from bioac-

tive data to design new drug candidates.5 To efficiently explore the vast chemical space,

deep generative models have gradually become the main engine in the majority of drug

design tools.6,7 Based on different molecular representations, the existing molecular gen-

erative models can be roughly split into two categories: SMILES-based and graph-based.

SMILES-based methods8–12 generally generate desired compounds through language models

like long short-term memory13 and transformer,14 which usually have simple network ar-

chitectures and can be trained fast. Differently, graph-based methods represent a molecule

as a graph where its node-edge structure naturally matches the atom-bond information of

molecules.15–17 Such methods have rapidly developed especially with the recently developed

E(3)-equivariant graph neural network architectures18 that could embed the 3D molecular

information.

While most of these deep generative models focus on de novo molecular generation, an

important stage of drug design is lead optimization, which aims to optimize the favorable

properties of compounds by changing part of their atoms.19 In particular, one important type

of molecular optimization is scaffold decoration20,21 that retains the core scaffold and modifies
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molecules in specific motifs such as R-groups. Recently, LibINVENT22 leveraged chemical

reaction templates to slice the molecules into scaffolds and decorations, and then trained a

deep generative model to generate R-groups that decorated the extracted molecular scaffolds.

This reaction-based R-group decoration method guarantees that the generated molecules are

highly synthetic and accessible. However, this ligand-based generative model was based on

recurrent neural networks and SMILES molecular representation,23 which were not capable

to take the 3D structure information of protein pockets into consideration.

In parallel to LBDD, structure-based drug design (SBDD)24 directly learns protein struc-

ture information, aiming to design drugs that selectively and specifically target disease-

causing receptors.25 Nowadays, there is a rapid increase in the accessible structural data

because of the breakthrough in structural biology (e.g. X-ray crystallography26 and Cryo-

EM27) and protein structure prediction (e.g. AlphaFold28 and ESMFold29), which empow-

ers SBDD to be applied on most diseases with known protein targets. Traditional SBDD

methods like molecular dynamics simulation30 and molecular docking31 are mostly used for

virtual screening of known compounds but not good at designing novel molecules. Recently,

increasing works attempted to incorporate 3D protein structures in molecule design tasks.

For example, Pocket2Mol32 utilized equivariant graph neural networks to learn the chemical

and geometric constraints imposed by protein pockets, and sampled molecules in an auto-

regressive manner. FLAG33 generated 3D molecules using realistic substructures fragment-

by-fragment around the binding pocket. Unfortunately, these auto-regressive generation

methods are prone to suffering from inaccurate accumulation for unrealistic 3D molecular

structures.34 As a full-atom generation manner rather than an auto-regressive manner, the

diffusion model35 is recently applied to the field of small molecule generation. DiffLinker36

employed a conditional diffusion model and a linker size predictor to design molecular linkers

for a set of fragments and proteins. DiffSBDD37 proposed an E(3)-equivariant 3D-conditional

diffusion model to generate ligands conditioned on the binding pockets. However, such meth-

ods haven’t been used to decorate molecular scaffolds for optimization.
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In this study, we have developed a new method, DiffDec, to optimize molecules through

molecular scaffold decoration conditioned on the 3D protein pocket by an E(3)-equivariant

graph neural network and diffusion model. Specifically, we constructed two 3D scaffold deco-

ration datasets through reaction-based slicing of 3D protein-ligand complex in CrossDocked

dataset.38 According to the scaffold and the context pocket, we trained a 3D conditional

diffusion model to generate structure-aware R-groups. For an end-to-end generation of

different-sized R-groups, we newly introduced a fake atom mechanism. Through compre-

hensive evaluations, DiffDec exhibited superior performance compared to baseline methods

in terms of validity, R-group recovery, similarity, and binding affinity on the two benchmark

datasets. Notably, DiffDec could identify the growth anchors and generate R-groups well

for the scaffolds without provided anchors. More importantly, case studies revealed that the

compounds decorated using DiffDec exhibited realistic 3D structures and more protein-ligand

interactions compared to the reference molecules.

Materials and methods

Datasets

In the scaffold decoration dataset constructed by Fialková et al.,22 the sliced scaffolds and

R-groups are represented by SMILES and the 3D structural information is unavailable.

Therefore, we curated two benchmark datasets for single and multi R-groups scaffold dec-

oration based on three-dimensional protein-ligand complex structures by using the Cross-

Docked dataset38 and reaction-based slicing method. Specifically, the CrossDocked dataset

included 22.5 million protein-ligand complexes at various levels of quality. Following the

same data preparation and splitting strategies as in previous methods,39 we used 100,000

protein-ligand pairs for subsequent processing as the training set and 100 complexes from

the remaining clusters as the test set. The split was done by 30% protein sequence identity

using mmseqs2.40 The ligands were sliced into scaffolds and R-groups utilizing 37 customized
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reaction-based rules22 and ultimately the final training set and test set were obtained. This

reaction-based division method improved the validity and synthetic accessibility of scaffold

decoration with simple chemical reactions. For single R-group scaffold decoration dataset,

we set the maximum cut in the configuration file of slicing molecules to 1. It contained

76,108 tuples with molecular scaffolds, pockets, and R-groups in training set and 43 tuples

in test set. For a more challenging multi R-groups dataset, we changed the maximum cut

to 4. It contained 154,792 tuples in training set and 102 tuples in test set. The detailed

information of these two datasets is shown in Table S1 and Figure S1.

Overview of DiffDec

DiffDec is capable of performing scaffold decoration under the context of pockets in 3D

space. We use a set of atoms to represent molecules and proteins. Following the framework

of denoising diffusion probabilistic model (DDPM),41 atoms in the target pocket p and

given scaffold s are represented as context c = {s,p} = {(ri,hi)}Ni=1, where ri is the 3D

geometric coordinate of the ith heavy atom, hi is the corresponding element types and N is

the number of atoms of the scaffold s and protein p. As shown in Figure 1, our objective

is to generate the decorations, i.e. R-groups x = {(ri,hi)}Mi=1 to form a complete molecule

conditioned on the scaffold and protein pocket. The method consists of a diffusion process

and a generative process, where the diffusion process gradually adds noise at each time

step, while the generative process learns how to recover data distribution from the noise

distribution using a neural network.

Diffusion process

Following other recently developed diffusion-based models for molecule generation,37,42 we

iteratively add noise to the data points of R-groups x using a Gaussian distribution N at each

time step, but leave the corresponding context c unchanged throughout the diffusion process.

We depict the latent noised representation using zt for t = 0, ..., T . Given the previous state
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Figure 1: Overview of DiffDec. (a) Flowchart of structure-aware scaffold decoration using
DiffDec. (b) Implementation details of DiffDec. The diffusion process iteratively adds Gaus-
sian noise to the data, while the generative process gradually denoises the noise distribution
under the condition of scaffold and protein pocket to recover the ground truth R-groups. (c)
A detailed denoising procedure from time step t to t− 1 using EGNN.

zt−1, the conditional distribution of the data state zt at time step t is formulated by the

multivariate normal distribution:

q(zt|zt−1) = N (zt; ᾱtzt−1, σ̄
2
t I), (1)

where ᾱt ∈ R+ decides how much of the original signal to keep and σ̄t ∈ R+ controls how

much noise to add. Since the full diffusion process is Markov, the entire noising process can
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be written as:

q(z0, z1, ...zT |x) = q(z0|x)
T∏
t=1

q(zt|zt−1). (2)

For the distribution q is normal and independent at each time step, we can obtain the

derivation for the distribution of zt given x as follows:

q(zt|x) = N (zt|αtx, σ
2
t I), (3)

where ᾱt = αt/αt−1 and σ̄2
t = σ2

t − ᾱ2
t σ̄

2
t−1. Following Kingma et al.,43 we can obtain the

signal-to-noise ratio SNR(t) = α2
t/σ

2
t . In general, αt usually follows either a learned or

pre-defined schedule from α0 ≈ 1 towards αT ≈ 0.43 And we can also follow a variance-

preserving diffusion process, where αt =
√
1− σ2

t .44 This closed-form formula indicates that

we can achieve the noisy data distribution at any time step without iterative calculations.

With Bayes theorem, the posterior of the denoising transitions from time step t to t− 1

can be computed in closed-form conditioned on x:

q(zt−1|x, zt) = N (zt−1;µt(x, zt), ς
2
t I), (4)

where µt(x, zt) =
ᾱtσ2

t−1

σ2
t

zt +
αt−1σ̄2

t

σ2
t

x and ςt =
σ̄tσt−1

σt
.

For the continuous atom coordinates, a non-zero distribution invariant to the translation

can not be obtained.18 However, we can use the data distributions on the linear subspace

where the center of mass (COM) of the system is zero, and this strategy has been used

consistently in diffusion.45,46 In actuality, this is accomplished by translating the center of

mass of the system f(c) before diffusion process or generative process. Then, the noise can

be added from N (0, I) instead of N (f(c), I). The choice of f is highly related to the problem

being solved and prior knowledge. In our problem, we define the atoms connected to the

R-groups in the scaffold as anchors. Therefore, if the information of anchors is available,

f(c) can be defined as the coordinates of anchors, and the diffusion processes of multiple
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anchors are separate and independent of each other; if not, f(c) can be the center of mass

of the scaffold.

For the discrete atomic features, there are also quantities of categorical diffusion models,

where we prefer the strategy which places the discrete features on a continuous space.36,46

We encode the variables with one-hot representation and directly add Gaussian noise to it.

To incorporate R-group size prediction into the diffusion model in an end-to-end fashion,

we introduce the fake atom mechanism. In general, the size of the R-group does not exceed

10. R-groups with a size smaller than 10 are filled with fake atoms to reach the size of 10

before the diffusion process. The coordinates of these fake atoms are set to f(c), and an

additional dimension of atomic type is used to indicate them. The subsequent noising steps

remain the same as described previously. By using fixed-size noisy R-groups, denoising can

be performed and the sizes of the R-groups can be determined during the generative process,

eliminating the need for an additional prediction module.

Generative process

The generative process is the reverse of the diffusion process. It will gradually denoise the

Gaussian noise obtained from sampling under the fixed context of scaffold and pocket to

recover the ground truth R-groups. The generative transition distribution is defined as:

p(zt−1|zt, c) = q(zt−1|x̂, zt), (5)

where x̂ is an approximation of the data point. We use a neural network φ to predict the

Gaussian noise ϵ̂t = φ(zt, c, t) added from time step t − 1 to t to estimate x̂.41 Therefore,

we can obtain:

x̂ = (1/αt)zt − (σt/αt)ϵ̂t. (6)

The neural network φ mentioned above is implemented as an adjusted E(n)-equivariant

graph neural network (EGNN).47 It uses the noise-added R-groups zt, the context c and
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the time step t as input, and outputs the Gaussian noise that added from time step t − 1

to t, including coordinates and features ϵ̂t = [ϵ̂rt , ϵ̂
h
t ]. Since the output noises must be on a

subspace with a zero center of gravity, the coordinate noises ϵ̂rt should be projected down by

subtracting the initial coordinates:46

ϵ̂rt , ϵ̂
h
t = φ(zt, c, t) = EGNN(zt, c, t)− [zr

t ,0]. (7)

EGNN is made up of L layers of Equivariant Graph Convolutional Layers (EGCL),

rl+1,hl+1 = EGCL[rl,hl]. Specifically, at the lth layer, the atom coordinates r and features

h are updated alternately as follows:

mij = ϕm(h
l
i,h

l
j, d

2
ij), (8)

hl+1
i = ϕh(h

l
i,
∑
j ̸=i

mij), (9)

rl+1
i = rl

i +
∑
j ̸=i

rl
i − rl

j

dij + 1
ϕr(h

l
i,h

l
j, d

2
ij) · 1R-group, (10)

where dij =
∥∥rl

i − rl
j

∥∥ is the Euclidean distance between nodes i and j, ϕm, ϕh, ϕr are

learnable components parameterized by fully connected neural networks and 1R-group is the

R-group mask (the R-groups are 1 while the contexts are 0) since we want to keep the

context coordinates fixed throughout the EGCL layers. The equivariance of EGCL can be

inferred from its inputs. For the update of atom features, ϕm and ϕh is only related to

node features h and distance dij between nodes i and j, which are E(3)-invariant. For the

update of atom coordinates, it is related to the difference between ri and rj, which preserves

E(3)-equivariance. Therefore, EGNN, which is composed of EGCL, is also E(3)-equivariant.

For graph construction, we assign edges to atom pairs that are closer than 4Å in 3D

space. This ensures that the resulting graph is not too dense, reducing computational costs

while allowing for messages to be passed effectively.
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After passing messages through the EGCL layers, we can get new coordinates r̂ = [cr, ẑr
t ]

that aggregate information about neighbours as well as features ĥ = [ch, ẑh
t ]. We focus solely

on the generated R-groups and disregard the contextual information in the graph. Therefore,

the output of the EGNN specifically captures the information pertaining to the R-groups

[ẑr
t , ẑ

h
t ].

During the generative process, the initial noise can be sampled from N (0, I) instead of

N (f(c), I) due to the introduction of f(c) in the diffusion process. Moreover, during the

multi R-groups generative process, instead of treating each anchor’s generation task sequen-

tially, we incorporate the R-groups of the remaining anchors obtained from the previous

time step into the context during the message-passing process. This allows us to effectively

denoise one anchor’s R-group by leveraging the collective information from all anchors.

Model training

The model can be trained by optimizing the variational lower bound (VLB):43,46

−log(p(x)) ≤ DKL(q(zT |x)||p(zT ))− Eq(z0|x)[logp(x|z0)] +
T∑
t=1

Lt, (11)

where the first term is the prior loss, the second term is the reconstruction loss and the third

term is diffusion loss

Lt = DKL(q(zt−1|x, zt)||p(zt−1|x̂, zt)). (12)

It should be noticed that the prior loss without learnable parameters is always close to zero

while the reconstruction loss must be estimated.46 Thus, we instead minimize the simplified

training objective, i.e. the mean squared error between true noise and predicted noise:36,41,43

L = ∥ϵ− ϵ̂t∥2 . (13)

DiffDec was implemented in Python (version 3.10). The models were trained on one GPU
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(Quadro RTX 5000) for 1,000 steps and saved checkpoints per 100 steps. When training the

model, batch size, learning rate, EGCL layers, hidden states, and aggregation method were

set to 16, 0.0002, 6, 128, and summation, respectively. All generated candidate molecules

were canonicalized using RDkit48 and compared to the ground truth molecules. Ablation

studies in the Results section are based on three models trained with different pocket in-

formation and six models trained with different R-group size information. All these models

were trained separately.

Evaluation metrics

We assessed the generated molecules with a range of metrics:

• Validity refers to the percentage of generated molecules which preserve the original

scaffolds and can be parsed by RDkit.

• Uniqueness is the proportion of unique compounds in generated ones.

• Recovery counts the percentage of generated molecules that recover the reference

molecules in the test set.

• Similarity means the average Tanimoto similarity49 between the generated molecules

and reference molecules in the test set.

• Vina score estimates the binding affinity between the generated molecules and the

target protein. The Vina score (kcal/mol) is calculated by QVina.50

• High affinity is the percentage of test cases where the Vina scores of the generated

molecules are higher than or equal to that of the reference compound.

Baselines

We compared our approaches with the following baselines:
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• LibINVENT.22 LibINVENT utilized SMILES strings to encode molecules. It consisted

of an encoder-decoder architecture where both the encoder and decoder were recurrent

neural networks. It is a tool capable of proposing chemical libraries of compounds with

the same scaffolds while maximizing desirable properties using reinforcement learning.

• Pocket2Mol.32 Pocket2Mol employed an auto-regressive sampling scheme. It is a GNN-

based method that generates 3D molecules atom-wise under the context of the pocket.

This method has been successfully employed for the structure-based de novo drug

design.

• FLAG.33 FLAG is a GNN-based model that generates 3D molecules with valid and

realistic substructures fragment-by-fragment based on the structure information of pro-

teins. This approach is also applicable to structure-based de novo drug design.

Notably, these algorithms were not designed for 3D structure-aware scaffold decoration.

Therefore, we adjusted them to our tasks for fair comparison. The experiment setup is shown

in Supporting Information Text S1.

Results

DiffDec achieved state-of-the-art performance. We compared our method with three

deep generative models on two newly constructed reaction-based scaffold decoration datasets,

i.e. the single R-group and multi R-groups datasets. For each pair of scaffold and pocket in

the test sets (43 pairs on single R-group dataset and 102 pairs on multi R-groups dataset),

we generated 100 molecules for evaluation to avoid random fluctuation.

On the single R-group decoration task, our method achieved the best performances on

metrics validity, recovery, and similarity (Table 1). Specifically, our model attained a va-

lidity of 98.00%, while LibINVENT, Pocket2Mol, and FLAG maintained 87.35%, 51.14%,

and 87.95%, respectively, indicating that our model could preserve the scaffolds better or
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generate fewer R-groups in conflict with the scaffolds. The significantly lower performance

of Pocket2Mol could be attributed to its atom-wise method in an auto-regressive manner

to generate atoms and bonds. In terms of the recovery rate, our model exhibited the high-

est recovery of 69.67%, which was significantly higher than that of LibINVENT (37.33%),

Pocket2Mol (4%), and FLAG (0%). These suggested that our method could effectively re-

cover the reference R-groups, which were regarded as realistic decorations for the scaffolds.

The worse performance of Pocket2Mol and FLAG maybe due to their auto-regressive gen-

eration scheme, which would lead to error accumulation and difficulties in recovery of the

reference R-groups at each step. In addition, DiffDec reached a uniqueness of 48.54%, in-

dicating that DiffDec could generate a diverse set of R-groups, not just restricted to the

references. For the similarity of generated molecules to the references, DiffDec achieved an

average value of 0.86, higher than 0.80, 0.69, and 0.70 by LibINVENT, Pocket2Mol, and

FLAG, respectively.

To evaluate the binding performance of generated molecules in the target proteins, we

docked the compounds to the target protein pockets and computed the corresponding binding

affinities, i.e. Vina scores. As expected, our method showed the best performance, with an

average docking score of -8.25 kcal/mol and about 55.06% of generated molecules exhibited

higher affinity than the reference ligand, compared with those of LibINVENT (-8.10 and

43.76%), Pocket2Mol (-8.11 and 44.18%), and FLAG (-7.62 and 34.53%). Then, we compared

the binding performance of these methods in different cases in detail (Figure 2a). In most

cases, the average docking score differences of DiffDec were significantly larger than the other

three baselines. The molecules generated from DiffDec exhibited the best binding affinity in

about 52% cases, while the ones from LibINVENT, Pocket2Mol, and FLAG were best for

8%, 28%, and 12% of all cases.

On the multi R-groups decoration task, the trend was roughly the same as that of the

single R-group task: our DiffDec model still achieved the best performance (Table 2) with

validity of 97.13%, recovery of 45.34%, similarity of 0.80, Vina score of -8.19 kcal/mol and
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Table 1: Performance comparison of four methods on single R-group decoration task.

Method Validity
(%, ↑)

Uniqueness
(%, ↑)

Recovery
(%, ↑)

Similarity
(↑)

Vina Score
(kcal/mol, ↓)

High Affinity
(%, ↑)

Scaffolds - - - - -7.73 -
Reference molecules - - - - -8.47 -
LibINVENT 87.35 41.05 37.33 0.80 -8.10 43.76
Pocket2Mola 51.14 44.27 4.00 0.69 -8.11 44.18
FLAGa 87.95 65.3065.3065.30 0.00 0.70 -7.62 34.53
DiffDec (w/o anchors) 93.05 55.33 60.67 0.83 -8.16 42.11
DiffDec 98.0098.0098.00 48.54 69.6769.6769.67 0.860.860.86 -8.25-8.25-8.25 55.0655.0655.06
a Pocket2Mol and FLAG were adjusted to the structure-aware scaffold decoration task.

Table 2: Performance comparison of four methods on multi R-groups decoration task.

Method Validity
(%, ↑)

Uniqueness
(%, ↑)

Recovery
(%, ↑)

Similarity
(↑)

Vina Score
(kcal/mol, ↓)

High Affinity
(%, ↑)

Scaffolds - - - - -7.77 -
Reference molecules - - - - -8.46 -
LibINVENT 8.62 6.93 26.85 0.70 -7.83 4.57
Pocket2Mola 60.90 50.84 1.34 0.68 -8.04 31.32
FLAGa 88.18 64.73 0.00 0.62 -7.73 38.62
DiffDec (w/o anchors) 89.84 71.7571.7571.75 29.54 0.73 -8.15 34.67
DiffDec 97.1397.1397.13 60.12 45.3445.3445.34 0.800.800.80 -8.19-8.19-8.19 40.5040.5040.50
a Pocket2Mol and FLAG were adjusted to the structure-aware scaffold decoration task.

high affinity of 40.50%. Among these methods, LibINVENT exhibited a low validity and

uniqueness of 8.62% and 6.93%. This is because LibINVENT was prone to generating invalid

sequences that did not conform to the SMILES syntax rules. For the binding performance

comparison of these models, Figure 2b showed that the molecules generated by DiffDec ex-

hibited the best binding affinity in large amounts of the targets (46% vs 9%, 26%, 19%

for LibINVENT, Pocket2Mol, FLAG respectively). These results implied that DiffDec still

exhibited strong scaffold decoration capability in the more challenging multi R-groups dec-

oration task.

We further visualized the distributions of R-groups on the single and multi R-groups

decoration tasks. As shown in Figure 3a-d, most of the R-groups generated by LibINVENT

and FLAG appeared in the training set, while Pocket2Mol generated a large proportion

of compounds outside of the training sets due to its sequential atom-by-atom generation

strategy that would lead to unrealistic unseen substructures. On the contrary, DiffDec
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Figure 2: Average Vina score differences between generated molecules and scaffolds across
(a) single R-group test cases and (b) multi R-groups test cases.

achieved a balanced result to keep the distribution of training data and to generate novel

R-groups outside the training space. On the multi R-groups decoration task, all methods

showed similar distributions except LibINVENT which generated quite a small number of R-

groups (Figure 3e) due to the low validity (8.62%). These results demonstrated that DiffDec

could primely recover the R-groups in the training set and also generate novel molecules.

DiffDec could generate R-groups well without provided anchors. In the actual

scenarios of lead optimization, the specific location of anchors are usually not known, so
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Figure 3: The t-SNE plots of training R-groups and generated R-groups from LibINVENT,
Pocket2Mol, FLAG, and DiffDec on single and multi R-groups decoration tasks.

we investigated the R-groups generation performance of DiffDec without provided anchors

(w/o anchors). When not providing anchors information, on the single R-group decoration

task, DiffDec (w/o anchors) achieved validity, recovery, and similarity of 93.05%, 60.67%, and

0.83, which were only 4.95%, 9.00%, and 0.03 lower than DiffDec (98.00%, 69.67%, and 0.86)

(Table 1). For binding affinity of generated molecules to the target pocket, DiffDec (w/o

anchors) exhibited the average Vina score and high affinity percentage of -8.16 kcal/mol and

42.11%, which were comparable to those of DiffDec (-8.25 and 55.06%). The reason for these

declines is that DiffDec without anchors information needed to consider both the generation

of the R-group and the appropriate anchor to attach it to, which resulted in more challenging

generation. On the multi R-groups decoration task, DiffDec (w/o anchors) achieved validity

of 89.84%, recovery of 29.54%, similarity of 0.73, Vina score of -8.15 kcal/mol, and high

affinity of 34.67%, which decreased by 7.29%, 15.80%, 0.07, -0.04, and 5.83% compared to

DiffDec (97.13%, 45.34%, 0.80, -8.19, and 40.50%) (Table 2). Even so, DiffDec (w/o anchor)
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outperformed the other three baseline models with anchor information on most metrics.

Therefore, even if not providing anchors, our method could automatically identify anchors

and generate R-groups with acceptable quality and comparable performance.

The importance of pocket information. To illustrate DiffDec’s awareness of pocket

information, we retrained DiffDec and evaluated the performances under two conditions:

with pocket backbone information and without any pocket information. We calculated the

number of clashes between the generated R-groups and surrounding pockets for comparison.

The clash is defined as if the distance between two atoms is less than the sum of their van der

Waals radius. As shown in Figure 4a, the number of clashes generated by DiffDec with full-

atomic pocket representation (with an average of 8 clashes per molecule) was almost identical

to that of the reference complex in the test set (with an average of 7 clashes per molecule).

When the protein pocket was represented as the backbone or removed, the average number

of clashes was increased to 15 or 18 respectively. Then, we performed R-groups generation

for ABL2/ARG kinase (4xli)51 as an example by DiffDec without pockets and with pockets

as the context for comparison (Figure 4b). When using DiffDec without pocket information,

the generated R-groups collided with the surrounding amino acid residues in the pocket

(the red dashed box). While in DiffDec with full-atomic pocket information, the R-groups

were generated according to the condition of the surrounding pockets and orientated to an

appropriate position to make fewer clashes with the pocket.

The importance of the fake atom module. To illustrate the importance of the fake

atom module in DiffDec, we removed the module from DiffDec and utilized a trained graph

neural network to predict the size of R-groups (size GNN). By comparison, we showed the

results of DiffDec using the R-group sizes in ground truth (given size). As shown in Table 3,

DiffDec with size GNN achieved recovery of 54.67%, Vina score of -8.15 kcal/mol, and high

affinity ratio of 49.89%. These values were significantly lower than those of DiffDec (69.67%,

-8.25 kcal/mol, and 55.06%) and DiffDec (given size) (79.33%, -8.29 kcal/mol, and 60.97%).

In addition, the DiffDec (w/o anchors) model also exhibited better recovery ratio, Vina score,
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Figure 4: Results of the ablation study of pocket information. (a) Distribution of numbers
of clashes in reference test set and molecules sampled from DiffDec models with different
pocket representations. (b) R-groups generated by DiffDec without pockets and with pockets
as context (PDB id is 4xli).

Table 3: Ablation study of the fake atom module on single R-group decoration task.

Method Validity
(%, ↑)

Uniqueness
(%, ↑)

Recovery
(%, ↑)

Similarity
(↑)

Vina Score
(kcal/mol, ↓)

High Affinity
(%, ↑)

DiffDec (w/o anchors, size GNN) 95.5195.5195.51 55.23 51.67 0.82 -8.09 38.85
DiffDec (w/o anchors) 93.05 55.3355.3355.33 60.67 0.83 -8.16 42.11
DiffDec (w/o anchors, given size) 95.16 38.33 62.0062.0062.00 0.850.850.85 -8.18-8.18-8.18 46.5746.5746.57
DiffDec (size GNN) 97.87 48.27 54.67 0.85 -8.15 49.89
DiffDec 98.00 48.5448.5448.54 69.67 0.86 -8.25 55.06
DiffDec (given size) 98.0798.0798.07 41.26 79.3379.3379.33 0.880.880.88 -8.29-8.29-8.29 60.9760.9760.97

and high affinity ratio than DiffDec (w/o anchors, size GNN). These results suggested that

the fake atom module could predict a better R-group size than GNN to accommodate the

surrounding pocket and benefit the subsequent generation.
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Case study. We provided several case studies for DiffDec on single and multi R-groups

generation and showed examples of generated molecules with higher binding affinities (lower

Vina score) than the reference compounds (Figure 5, S2-S3). As shown in Figure 5, S2-S3,

DiffDec could generate compounds that bound geometrically complementary to the tar-

get pocket, and the generated molecules exhibited significantly improved binding affinities

compared to the scaffold and reference ligands. Then we analyzed the binding modes and

interactions of molecule 1-1 and 1-2 with surrounding amino acid residues using Maestro of

Schrödinger52 to interpret the binding affinity improvement of these generated molecules.

Compared to the reference molecule, the generated R-groups of molecule 1-1 and 1-2 formed

an additional hydrogen bond with Asn220 of the protein, and mol 1-1 formed another addi-

tional H-bond interaction with Asn218 (Figure 5). Thus, the binding affinities of molecule

1-1 and 1-2 were higher than those of the reference ligand. When decorating multi R-groups

(Figure 5 mol2-1 and mol2-2), DiffDec could also generate molecules with significantly im-

proved affinities and recover the complex trifluoromethyl group in the reference compound.

Therefore, DiffDec is capable of generating molecules with improved binding affinities and

more favourable binding interactions for lead optimization.

Discussion and conclusions

In this study, we developed an E(3)-equivariant 3D-conditional diffusion model, DiffDec, for

molecular scaffold decoration conditioned on 3D protein pockets. The model could generate

single and multi R-groups for scaffold decoration inside protein pockets based on two newly

constructed benchmark datasets.

Comprehensive evaluations demonstrated that DiffDec achieved state-of-the-art perfor-

mance on R-groups generation and outperformed the baseline methods on conventional met-

rics such as validity, recovery, similarity, and binding affinity. The t-SNE projection indicated

that our model could not only well recover the R-groups in the training set but also generate
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Figure 5: (a) R-groups generated by DiffDec on single and multi R-groups decoration tasks.
The two rows represent two different scaffolds and pockets (PDB ids are 4iiy and 4ja8
respectively). (b) Protein-ligand interaction of case 4iiy (PDB id is 4iiy).

a number of novel R-groups out of learning space. In addition, our method could identify

the growth anchors and generate R-groups well for scaffolds without provided anchors. Be-

sides, our model conditioned on full-atomic pocket representation generated R-groups with

a minimum number of clashes. Our newly introduced fake atom module could predict the

suitable R-groups sizes according to the surrounding pocket. Case studies indicated that
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DiffDec generated decorated molecules which were geometrically complementary to the tar-

get pocket and exhibited higher binding affinities and more favourable interactions with the

surrounding pocket than the reference compound.

However, there are still some limitations of DiffDec in the current framework. First, the

output of DiffDec is a 3D atomic point cloud of the generated R-groups, and the covalent

bonds between pairs of atoms are additionally computed by a bond inference algorithm (e.g.

OpenBabel53). Therefore, the accuracy of OpenBabel will impact the validity and recovery

ratio of the generated molecules. Optimization of this bond generation problem could be

the direction of our further work. Second, the R-groups generation process in DiffDec re-

quires step-by-step denoising from Gaussian noise, which is computationally intensive and

limits the sampling efficiency. This may be solved by combining distributed CPU and GPU

computations in a mixed fashion.

In summary, DiffDec provides a flexible and effective method for 3D structure-aware

scaffold decoration. We believe that our method will provide a practical way in real scenarios

and inspire future scaffold decoration work.
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